JP4023786B2 - Impact relaxation structure - Google Patents

Impact relaxation structure Download PDF

Info

Publication number
JP4023786B2
JP4023786B2 JP2002215961A JP2002215961A JP4023786B2 JP 4023786 B2 JP4023786 B2 JP 4023786B2 JP 2002215961 A JP2002215961 A JP 2002215961A JP 2002215961 A JP2002215961 A JP 2002215961A JP 4023786 B2 JP4023786 B2 JP 4023786B2
Authority
JP
Japan
Prior art keywords
spring
sealing member
spring guide
cylinder body
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002215961A
Other languages
Japanese (ja)
Other versions
JP2004060678A (en
Inventor
義人 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2002215961A priority Critical patent/JP4023786B2/en
Publication of JP2004060678A publication Critical patent/JP2004060678A/en
Application granted granted Critical
Publication of JP4023786B2 publication Critical patent/JP4023786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、衝撃緩和構造に関し、特に、相対移動があるところにおけるストロークエンド時の衝撃を緩和する衝撃緩和構造の改良に関する。
【0002】
【従来技術とその課題】
相対移動があるところにおけるストロークエンド時の衝撃は、これが緩和されるのが常態であるが、この衝撃緩和は、多くの場合に、衝撃緩和構造によって具現化されるとしている。
【0003】
たとえば、図3に示すダンパにあっては、一端が固定側とされるシリンダ体1の開口端を封止する封止部材2に係止されると共に他端が可動側とされるロッド体3に連設されるストッパ4に当接されてシリンダ体1とロッド体3との間における相対移動時に収縮してバネ力を発揮するバネ部材5を有する衝撃緩和構造が設けられている。
【0004】
ちなみに、図示するところでは、ロッド体3は、封止部材2の軸芯部をブッシュ6の配在下に貫通して、シリンダ体1に対して出没可能に連繋している。
【0005】
それゆえ、この衝撃緩和構造によれば、ダンパが伸び切り作動する際に、収縮するバネ部材5でロッド体3側たるストッパ4がシリンダ体1たる封止部材2に直接衝突することを回避でき、また、バネ部材5が発揮するバネ力でストッパ4が封止部材2に高速で衝突することを回避でき、所望の衝撃緩和を実現し得ることになる。
【0006】
しかしながら、上記した衝撃緩和構造にあって、バネ部材5のバネ力を低く設定すると、バネ部材5を長くしなければストッパ4が封止部材2に高速で衝突する際の衝撃を効果的に緩和できなくなり、ダンパの有効ストロークを短くする不具合がある。
【0007】
それに対して、バネ部材5のバネ力を高く設定すると、バネ部材5が短くてもストッパ4が封止部材2に高速で衝突する際の衝撃を効果的に緩和できる反面、ダンパが反転して収縮作動する際にバネ部材5のバネ力が高いために収縮荷重の吸収性が低下する不具合がある。
【0008】
この発明は、上記した現状を鑑みて創案されたものであって、その目的とするところは、凡そ固定側と可動側との間における相対移動があるところにあって、高速下でのストロークエンド時の衝撃緩和を効果的に実現し得るのはもちろんのこと、反転動作をいたずらに助長することがなく、たとえば、ダンパに利用し得るなどして、その汎用性の向上を期待するのに最適となる衝撃緩和構造を提供することである。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明の手段は、シリンダ体の開口端に封止部材を設け、シリンダ体内に挿入したロッド体を上記封止部材に摺動自在に貫通させ、上記封止部材と上記ロッド体に設けたストッパとの間にばね部材を介在させ、上記シリンダ体と上記ロッドとの間の相対移動時に上記ばね部材を収縮して衝撃を緩和するダンパにおける衝撃緩和構造において、上記封止部材の内側に筒状のバネガイドを摺接させながら上記封止部材の内周と上記バネガイドとの間に容室を画成させ、上記バネガイドと上記ストッパとの間に上記ばね部材を介在させ、上記容室内に上記ばね部材に抗して上記バネガイドをばね部材方向に附勢する附勢部材を挿入し、更に、上記バネガイドまたは上記封止部材に上記容室をシリンダ体内に連通させる絞り流路又は溝を形成したことを特徴とする。
この場合、バネガイドが小径筒部とこの小径筒部に段差部を介して下方に連設した大径筒部とで形成され、上記段差部の下側にばね部材の上端を当接させているのが好ましい。
【0010】
そして、上記した構成において、より具体的には、固定側がシリンダ体の開口端を封止する封止部材とされると共に、可動側が封止部材の軸芯部を貫通するロッド体とされてなるとする。
【0011】
ちなみに、附勢体のバネ力は、バネガイドへの外力の解消時に復元し得る限りにおいて、バネ部材のバネ力より低く設定されるのが好ましい。
【0012】
また、絞り流路は、バネガイドに形成されるとき、オリフィスからなり、封止部材に形成されるとき、溝からなるとするのが好ましい。
【0013】
【発明の実施の形態】
以下に、図示した実施形態に基づいて、この発明を説明するが、この発明による衝撃緩和構造にあっても、基本的には、前記した従来の衝撃緩和構造と同様の構成を有している。
【0014】
本発明の基本構造は、図1に示すように、シリンダ体1の開口端に封止部材2を設け、シリンダ体1内に挿入したロッド体3を上記封止部材2に摺動自在に貫通させ、上記封止部材2と上記ロッド体3に設けたストッパ4との間にばね部材5を介在させ、上記シリンダ体1と上記ロッド3との間の相対移動時に上記ばね部材5を収縮して衝撃を緩和するものである。
そして、本発明の特徴は、図2に示すように、上記封止部材2の内側に筒状のバネガイド7を摺接させながら上記封止部材2の内周と上記バネガイド7との間に容室Rを画成させ、上記バネガイド7と上記ストッパ4との間にばね部材5を介在させている。
また、上記容室R内に上記ばね部材5に抗して上記バネガイド7をばね部材5方向に附勢する附勢部材8を挿入し、更に、上記バネガイド7に上記容室Rを外部たるシリンダ体1内に連通させる絞り流路7bを形成している。
バネガイド7は小径筒部とこの小径筒部に段差部7aを介して下方に連設した大径筒部とで形成され、上記段差部7aの下側にばね部材5の上端を当接させている。
以下更に詳しく説明する。
【0015】
ちなみに、図示する実施形態にあっても、この発明による衝撃緩和構造がダンパに具現化されてなるとしている。
【0016】
少し説明すると、まず、図1に示すように、この発明による衝撃緩和構造にあっては、バネ部材5の図中で上端となる一端が固定側たる封止部材2に摺接されたバネガイド7に係止されてなるとしている。
【0017】
このとき、バネガイド7は、図2にも示すように、下端側を広径にしながら上端側を細径にする二段絞りの筒状に形成されていて、段部7aにバネ部材5の上端たる一端を係止させ、軸芯部にロッド体3を挿通させている。
【0018】
そして、このバネガイド7は、図示する実施の形態では、後述するように、容室Rを画成することから、基本的には、言わば外周を上記の封止部材2に密接させて、容室Rをいわゆる閉鎖空間にし得るように配慮している。
【0019】
ちなみに、バネガイド7が封止部材2に摺接されている態勢は、図示するところでは、封止部材2の外周に嵌装されたストッパリング21にバネガイド7の下端が担持されることで保障されている。
【0020】
その一方で、この衝撃緩和構造にあっては、バネガイド7と封止部材2との間にバネガイド7の摺動時に容積を大小させる容室Rを画成するとしている。
【0021】
このとき、封止部材2にあっては、段部2aを有していて、この段部2aを内周側から覆うように上記したバネガイド7が封止部材2に摺接するとしており、したがって、上記の容室Rは、図示するところでは、環状に形成されてなるとしている。
【0022】
そして、この衝撃緩和構造にあっては、上記の容室R内にバネガイド7への外力の作用時に収縮してこの容室Rの容積を小さくすると共に、バネガイド7への外力の解消時に復元してこの容室Rの容積を元に戻す附勢体8を有してなるとしている。
【0023】
このとき、この附勢体8は、その機能するところからしてバネ力を有することになるが、このバネ力は、上記のバネガイド7への外力が解消されて旧状に復元し得る限りにおいて、バネ部材5のバネ力より低く設定されるのが好ましい。
【0024】
さらに、この衝撃緩和構造にあっては、上記の容室Rがバネガイド7に形成の絞り流路7bを介して外部に連通してなるとしている。
【0025】
それゆえ、この発明による衝撃緩和構造にあっては、バネガイド7が摺動して附勢体8を収縮する状況になると、容室Rの容積が圧縮されるようになり、このとき、容室R内の流体、たとえば、油が絞り流路7bを介して外部に流出されることになり、油が絞り流路7aを通過するときの抵抗でバネガイド7の摺動速度が遅速傾向に制御されることになる。
【0026】
その結果、シリンダ体1内からロッド体3が高速で突出するようになる高速での伸長作動時に、ストッパ4がバネ部材5を介してであるが、封止部材2に激突することを阻止し得ることになり、所望の衝撃緩和を実現し得ることになる。
【0027】
のみならず、上記した衝撃緩和構造にあっては、バネ部材5のバネ力および長さを従来のままの設定にし得るから、ダンパの有効ストロークを短くせずして、ストッパ4が封止部材2に高速で衝突する際の衝撃を効果的に緩和できることになる。
【0028】
しかも、附勢体8を有する容室Rを短いスペース内に画成して所定の衝撃緩和を図り得るから、ダンパの有効ストロークをいたずらに削減させない点でも有利になる。
【0029】
以上からすれば、附勢体8は、その収縮時にバネ力を発揮するから、このことを持ってすれば、たとえば、シリンダ体1内からロッド体3が低速で突出するようになる低速での伸長作動時にも、上記のバネ部材5と共に、ストッパ4が封止部材2に衝突することを阻止し得ることになり、所望の衝撃緩和を実現し得ることになる。
【0030】
また、絞り流路7bは、その機能するところからすれば、バネガイド7に形成されるのに代えて、図示しないが、封止部材2に形成されるとしても良く、その場合に、溝からなるとしても良い。
【0031】
前記したところでは、この発明による衝撃緩和構造がダンパに、特に、オイルダンパに具現化されてなるとして説明したが、この衝撃緩和構造の構成からすれば、エアダンパに具現化されてなるとしても良く、その場合の作用効果が異ならないことはもちろんである。
【0032】
また、前記したところでは、この発明による衝撃緩和構造がダンパに具現化されてなるとしたが、この衝撃緩和構造の基本的な構成からすれば、凡そ固定側と可動側との間において相対移動がある限りにおいて、たとえば、装置類などに具現化されてなるとしても良く、その場合にも同等の作用効果が得られるのはもちろんである。
【0033】
【発明の効果】
以上のように、請求項1の発明にあっては、バネガイドが摺動して附勢体を収縮する状況になると、容室の容積が圧縮されるようになり、このとき、容室内の流体が絞り流路又は溝を介してシリンダ体内に流出されることになり、流体が通過するときの抵抗でバネガイドの摺動速度が遅速傾向に制御され、その結果、ロッド体がシリンダ体内を高速で移動するときに、ロッド体が封止部材に激突することを阻止し得ることになり、所望の衝撃緩和を実現し得ることになる。
【0034】
のみならず、可動側が固定側に低速で移動するときにも、附勢体がバネ力を発揮するから、所望の衝撃緩和を実現し得えて、可動側が固定側に衝突することを阻止し得ることになる。
【0035】
このとき、いわゆる反転するときには、バネ部材のバネ力だけで反転作動するから、バネ部材におけるバネ力がいたずらに大きく設定されない限りにおいて、反転速度がいたずらに高速化されるような不具合を招来しないことになる。
【図面の簡単な説明】
【図1】この発明による衝撃緩和構造を具現化したダンパを示す部分縦断面図である。
【図2】図1の衝撃緩和構造を拡大して示す部分縦断面図である。
【図3】従来の衝撃緩和構造を具現化したダンパを図1と同様に示す図である。
【符号の説明】
1 シリンダ体
2 封止部材
2a,7a 段差部
3 ロッド体
4 ストッパ
5 バネ部材
6 ブッシュ
7 バネガイド
7b 絞り流路
8 附勢体
21 ストッパリング
R 容室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an impact mitigation structure, and more particularly to an improvement of an impact mitigation structure that mitigates an impact at a stroke end where there is relative movement.
[0002]
[Prior art and its problems]
It is normal that the impact at the stroke end where there is relative movement is alleviated, but this impact relaxation is often embodied by an impact relaxation structure.
[0003]
For example, in the damper shown in FIG. 3, the rod body 3 that is locked to the sealing member 2 that seals the opening end of the cylinder body 1 whose one end is a fixed side and whose other end is a movable side. There is provided an impact mitigating structure having a spring member 5 which is brought into contact with a stopper 4 which is connected to the cylinder body 1 and contracts during relative movement between the cylinder body 1 and the rod body 3 to exert a spring force.
[0004]
Incidentally, as shown in the figure, the rod body 3 penetrates the shaft core portion of the sealing member 2 under the arrangement of the bush 6 and is connected to the cylinder body 1 so as to be capable of protruding and retracting.
[0005]
Therefore, according to this shock relaxation structure, it is possible to avoid the stopper 4 on the rod body 3 side from directly colliding with the sealing member 2 that is the cylinder body 1 by the contracting spring member 5 when the damper is fully extended. In addition, it is possible to avoid the stopper 4 from colliding with the sealing member 2 at a high speed by the spring force exerted by the spring member 5, and it is possible to realize a desired impact relaxation.
[0006]
However, if the spring force of the spring member 5 is set to be low in the above-described impact relaxation structure, the impact when the stopper 4 collides with the sealing member 2 at high speed can be effectively reduced unless the spring member 5 is lengthened. There is a problem that it becomes impossible to shorten the effective stroke of the damper.
[0007]
On the other hand, if the spring force of the spring member 5 is set high, the shock when the stopper 4 collides with the sealing member 2 at high speed can be effectively reduced even if the spring member 5 is short, but the damper is reversed. Since the spring force of the spring member 5 is high during the contraction operation, there is a problem that the absorbability of the contraction load is lowered.
[0008]
The present invention has been developed in view of the above-described present situation, and the object of the present invention is that there is a relative movement between the fixed side and the movable side, and the stroke end under high speed. Ideal for expecting improved versatility, for example, it can be used for a damper, without relieving the reversing action unnecessarily, as well as effectively mitigating impact at times It is to provide an impact relaxation structure.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a sealing member is provided at an opening end of a cylinder body, and a rod body inserted into the cylinder body is slidably passed through the sealing member. And a stopper provided on the rod body, a shock member is interposed between the cylinder body and the rod, and the spring member is shrunk during a relative movement between the cylinder body and the rod. A space is defined between the inner periphery of the sealing member and the spring guide while sliding the cylindrical spring guide inside the sealing member, and the spring member is interposed between the spring guide and the stopper. A urging member for urging the spring guide in the direction of the spring member against the spring member is inserted into the chamber, and further, a restriction for communicating the chamber with the spring guide or the sealing member in the cylinder body. And characterized by forming the channel or groove.
In this case, the spring guide is formed by a small-diameter cylindrical portion and a large-diameter cylindrical portion that is provided below the small-diameter cylindrical portion via a step portion, and the upper end of the spring member is in contact with the lower side of the step portion. Is preferred.
[0010]
In the configuration described above, more specifically, the fixed side is a sealing member that seals the opening end of the cylinder body, and the movable side is a rod body that penetrates the shaft core portion of the sealing member. To do.
[0011]
Incidentally, the spring force of the urging body is preferably set lower than the spring force of the spring member as long as it can be restored when the external force to the spring guide is eliminated.
[0012]
Further, it is preferable that the throttle channel is made of an orifice when formed in the spring guide and made of a groove when formed in the sealing member.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the following, the present invention will be described based on the illustrated embodiment. Even in the impact mitigating structure according to the present invention, basically, it has the same configuration as the above-described conventional impact mitigating structure. .
[0014]
As shown in FIG. 1, the basic structure of the present invention is provided with a sealing member 2 at the opening end of a cylinder body 1 and slidably penetrates the sealing member 2 through a rod body 3 inserted into the cylinder body 1. The spring member 5 is interposed between the sealing member 2 and the stopper 4 provided on the rod body 3, and the spring member 5 is contracted during the relative movement between the cylinder body 1 and the rod 3. To relieve shock.
As shown in FIG. 2, the feature of the present invention is that the cylindrical spring guide 7 is slidably contacted with the inner side of the sealing member 2 and the space between the inner periphery of the sealing member 2 and the spring guide 7 is satisfied. A chamber R is defined, and a spring member 5 is interposed between the spring guide 7 and the stopper 4.
Further, a biasing member 8 for biasing the spring guide 7 in the direction of the spring member 5 against the spring member 5 is inserted into the chamber R, and a cylinder that externally connects the chamber R to the spring guide 7. A throttle channel 7b communicating with the inside of the body 1 is formed.
The spring guide 7 is formed by a small-diameter cylindrical portion and a large-diameter cylindrical portion that is continuously provided on the small-diameter cylindrical portion via a stepped portion 7a. The upper end of the spring member 5 is brought into contact with the lower side of the stepped portion 7a. Yes.
This will be described in more detail below.
[0015]
Incidentally, even in the illustrated embodiment, the shock absorbing structure according to the present invention is embodied in a damper.
[0016]
To explain a little, first, as shown in FIG. 1, in the shock absorbing structure according to the present invention, a spring guide 7 in which one end which is the upper end of the spring member 5 is slidably contacted with the sealing member 2 on the fixed side. It is supposed to be locked to.
[0017]
At this time, as shown in FIG. 2, the spring guide 7 is formed in a cylindrical shape of a two-stage throttle having a wide diameter at the lower end and a small diameter at the upper end, and the upper end of the spring member 5 is formed in the step 7a. One end is locked, and the rod body 3 is inserted through the shaft core.
[0018]
In the illustrated embodiment, the spring guide 7 defines a chamber R, as will be described later. Basically, the outer periphery of the spring guide 7 is basically brought into close contact with the sealing member 2. Consideration is given so that R can be a closed space.
[0019]
Incidentally, the state in which the spring guide 7 is in sliding contact with the sealing member 2 is guaranteed by the lower end of the spring guide 7 being carried on the stopper ring 21 fitted on the outer periphery of the sealing member 2 as shown in the figure. ing.
[0020]
On the other hand, in this impact mitigating structure, a chamber R is defined between the spring guide 7 and the sealing member 2 so as to increase or decrease the volume when the spring guide 7 slides.
[0021]
At this time, the sealing member 2 has a step portion 2a, and the spring guide 7 described above is in sliding contact with the sealing member 2 so as to cover the step portion 2a from the inner peripheral side. The container chamber R is formed in an annular shape in the drawing.
[0022]
In this shock relaxation structure, the volume of the chamber R is reduced by contracting when the external force is applied to the spring guide 7 in the chamber R, and is restored when the external force to the spring guide 7 is eliminated. The lever 8 is provided with an urging body 8 for returning the volume of the container chamber R to its original state.
[0023]
At this time, the urging body 8 has a spring force from the point of its function, but this spring force is as long as the external force to the spring guide 7 is eliminated and can be restored to the old state. The spring force of the spring member 5 is preferably set lower.
[0024]
Furthermore, in this impact mitigation structure, the above-described chamber R communicates with the outside via a throttle channel 7 b formed in the spring guide 7.
[0025]
Therefore, in the impact mitigating structure according to the present invention, when the spring guide 7 slides and contracts the urging body 8, the volume of the chamber R is compressed. The fluid in R, for example, oil flows out to the outside through the throttle channel 7b, and the sliding speed of the spring guide 7 is controlled to be slow by the resistance when the oil passes through the throttle channel 7a. Will be.
[0026]
As a result, when the rod body 3 protrudes from the cylinder body 1 at a high speed, the stopper 4 is prevented from colliding with the sealing member 2 through the spring member 5 during the high-speed extension operation. As a result, desired impact relaxation can be realized.
[0027]
In addition, in the above-described impact mitigating structure, the spring force and length of the spring member 5 can be set as in the prior art, so that the stopper 4 is a sealing member without shortening the effective stroke of the damper. The impact when colliding with 2 at high speed can be effectively mitigated.
[0028]
In addition, since the chamber R having the urging member 8 can be defined in a short space to reduce a predetermined impact, it is advantageous in that the effective stroke of the damper is not reduced unnecessarily.
[0029]
In view of the above, the urging body 8 exerts a spring force when contracted. Therefore, if this is held, for example, the rod body 3 protrudes from the cylinder body 1 at a low speed. Even during the extension operation, together with the spring member 5 described above, the stopper 4 can be prevented from colliding with the sealing member 2, and a desired impact relaxation can be realized.
[0030]
In view of its function, the throttle channel 7b may be formed in the sealing member 2 (not shown) instead of being formed in the spring guide 7, and in this case, it is formed of a groove. It is also good.
[0031]
In the above description, it has been described that the impact mitigation structure according to the present invention is embodied in the damper, in particular, the oil damper. However, according to the configuration of the impact mitigation structure, the impact mitigation structure may be embodied in the air damper. Of course, the effects in this case are not different.
[0032]
In the above description, the shock absorbing structure according to the present invention is embodied in the damper. However, according to the basic structure of the shock absorbing structure, the relative movement is approximately between the fixed side and the movable side. As long as it is provided, for example, it may be embodied in a device or the like, and in that case, the same operation effect can be obtained.
[0033]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the spring guide slides to contract the biasing body, the volume of the chamber is compressed, and at this time, the fluid in the chamber is compressed. Will flow out into the cylinder body through the throttle channel or groove, and the sliding speed of the spring guide is controlled to be slow due to the resistance when the fluid passes, so that the rod body moves through the cylinder body at high speed. When moving, the rod body can be prevented from colliding with the sealing member, and desired impact relaxation can be realized.
[0034]
Not only when the movable side moves to the fixed side at a low speed, the urging body exerts a spring force, so that the desired impact can be mitigated and the movable side can be prevented from colliding with the fixed side. It will be.
[0035]
At this time, when the so-called reversal is performed, the reversal operation is performed only by the spring force of the spring member. Therefore, unless the spring force of the spring member is set to be unnecessarily large, the reversal speed is not unnecessarily increased. become.
[Brief description of the drawings]
FIG. 1 is a partial longitudinal sectional view showing a damper embodying an impact relaxation structure according to the present invention.
FIG. 2 is a partial longitudinal sectional view showing, in an enlarged manner, the impact relaxation structure of FIG.
FIG. 3 is a view similar to FIG. 1 showing a damper embodying a conventional impact mitigation structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylinder body 2 Sealing member 2a, 7a Step part 3 Rod body 4 Stopper 5 Spring member 6 Bush 7 Spring guide 7b Restriction flow path 8 Energizing body 21 Stopper ring R

Claims (2)

シリンダ体の開口端に封止部材を設け、シリンダ体内に挿入したロッド体を上記封止部材に摺動自在に貫通させ、上記封止部材と上記ロッド体に設けたストッパとの間にばね部材を介在させ、上記シリンダ体と上記ロッドとの間の相対移動時に上記ばね部材を収縮して衝撃を緩和するダンパにおける衝撃緩和構造において、上記封止部材の内側に筒状のバネガイドを摺接させながら上記封止部材の内周と上記バネガイドとの間に容室を画成させ、上記バネガイドと上記ストッパとの間に上記ばね部材を介在させ、上記容室内に上記ばね部材に抗して上記バネガイドをばね部材方向に附勢する附勢部材を挿入し、更に、上記バネガイドまたは上記封止部材に上記容室をシリンダ体内に連通させる絞り流路又は溝を形成したことを特徴とするダンパにおける衝撃緩和構造。  A sealing member is provided at the opening end of the cylinder body, a rod body inserted into the cylinder body is slidably passed through the sealing member, and a spring member is provided between the sealing member and a stopper provided on the rod body. In a shock relief structure in a damper that relieves shock by contracting the spring member during relative movement between the cylinder body and the rod, a cylindrical spring guide is slidably contacted inside the sealing member. However, a chamber is defined between the inner periphery of the sealing member and the spring guide, the spring member is interposed between the spring guide and the stopper, and the spring member is opposed to the spring member in the chamber. An urging member for urging the spring guide in the direction of the spring member is inserted, and a throttle channel or groove for communicating the chamber with the cylinder body is formed in the spring guide or the sealing member. Shock-absorbing structure in. バネガイドが小径筒部とこの小径筒部に段差部を介して下方に連設した大径筒部とで形成され、上記段差部の下側にばね部材の上端を当接させている請求項1ダンパにおける衝撃緩和構造。2. The spring guide is formed of a small-diameter cylindrical portion and a large-diameter cylindrical portion connected to the small-diameter cylindrical portion downward via a step portion, and the upper end of the spring member is in contact with the lower side of the step portion. Shock mitigation structure of the damper.
JP2002215961A 2002-07-25 2002-07-25 Impact relaxation structure Expired - Fee Related JP4023786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215961A JP4023786B2 (en) 2002-07-25 2002-07-25 Impact relaxation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215961A JP4023786B2 (en) 2002-07-25 2002-07-25 Impact relaxation structure

Publications (2)

Publication Number Publication Date
JP2004060678A JP2004060678A (en) 2004-02-26
JP4023786B2 true JP4023786B2 (en) 2007-12-19

Family

ID=31937842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215961A Expired - Fee Related JP4023786B2 (en) 2002-07-25 2002-07-25 Impact relaxation structure

Country Status (1)

Country Link
JP (1) JP4023786B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000099B2 (en) * 2012-12-10 2016-09-28 大成建設株式会社 Isolated vibration structure

Also Published As

Publication number Publication date
JP2004060678A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JPS6142135B2 (en)
GB2036247A (en) A spring device with lost-motion transmission
US3831919A (en) Telescopic gas springs
JP4023786B2 (en) Impact relaxation structure
KR20210031077A (en) Shock absorber for vehicle
KR100853510B1 (en) Shock absorber
JPH0243050B2 (en)
AU763495B2 (en) Valve system
JP2006177531A (en) Hydraulic draft gear
US3963225A (en) Telescopic gas springs
KR101131048B1 (en) Stopper of shock absorber
JP2005054924A (en) Structure for extension to full length
JP2023535911A (en) drive for car door
JPH07269519A (en) Cushioning structure for hydraulic cylinder
JP2008045716A (en) Shock absorber
JP2007046667A (en) Valve structure
JP2002193100A (en) Lateral movement damping device of railway rolling stock
JP3998055B2 (en) Damping force adjustment valve structure
KR102092478B1 (en) Precisely acting type shock absorber
JPS6142134B2 (en)
JP3015476U (en) Shock absorbers for load-operated tap changers, especially for load-operated tap-change transformers
JP4231396B2 (en) Front fork
KR100489369B1 (en) Damping device use in a shock absorber
JP4059669B2 (en) Damping force adjustment device for hydraulic shock absorber
JP2006144862A (en) Hydraulic shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040730

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Effective date: 20070626

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101012

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20121012

LAPS Cancellation because of no payment of annual fees