JP4022353B2 - Incineration equipment - Google Patents

Incineration equipment Download PDF

Info

Publication number
JP4022353B2
JP4022353B2 JP2000062626A JP2000062626A JP4022353B2 JP 4022353 B2 JP4022353 B2 JP 4022353B2 JP 2000062626 A JP2000062626 A JP 2000062626A JP 2000062626 A JP2000062626 A JP 2000062626A JP 4022353 B2 JP4022353 B2 JP 4022353B2
Authority
JP
Japan
Prior art keywords
boiler
dust
electrostatic precipitator
exhaust gas
dust collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000062626A
Other languages
Japanese (ja)
Other versions
JP2001248824A (en
Inventor
睦夫 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2000062626A priority Critical patent/JP4022353B2/en
Publication of JP2001248824A publication Critical patent/JP2001248824A/en
Application granted granted Critical
Publication of JP4022353B2 publication Critical patent/JP4022353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)
  • Chimneys And Flues (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭燃焼ボイラやごみ処理設備等で廃熱回収ボイラを有する設備の排ガス処理技術に関する。
【0002】
【従来の技術】
ゴミ焼却炉から排出される排ガス中には、HClやSOxなどの酸性有害物質が含まれるため、これらを中和する目的で、Ca(OH)2(消石灰)を吹き込んで中和し、生成されたCaCl2やCaSO4の粉体を後続のバグフィルタで粉塵と共に除去して無害化していた。ところが、この処理方法を旧来の処理設備に適用すると、バグフィルタに堆積するダストの量が増加するため、バグフィルタの逆洗の頻度が高くなって、効率が低下する。
【0003】
そこで本出願人は先に、特開平8−117549号公報において、図12に示すような処理方法を開示した。
図12において、焼却炉1で発生したダストを含む排ガスは、ボイラ2、エアヒータ3を経てプレダスタ4に送られて一次集塵した後、消石灰を吹き込み、バグフィルタ5で二次集塵し、ブロア6で吸引されて煙突7から大気中に放出される。プレダスタ4で一次集塵することにより、バグフィルタ5に送られる排ガス中のダストの量を低減し、バグフィルタ5の逆洗の頻度を低くすることが可能となる。
【0004】
このプレダスタ4に用いられる集塵機としては、電気集塵機が一般的である。電気集塵機は、放電極(−)と集塵極(+)との間に直流の高電圧を印加し、放電極で負に帯電したダストを集塵極に吸着し、集塵極を超音波振動や槌打により落下させて集塵を行うものである。
【0005】
電気集塵機の集塵効率は、ダストの電気抵抗率に影響されることが知られている。図14に示すように、ダストの電気抵抗率が1011Ω・cm以上になると逆電離現象により効率が低下する。また、ダストの電気抵抗率は、図15に示すように、ガス温度が130℃近辺で最大になり、その温度より低くなるほど、あるいは高くなるほど電気抵抗率が低下し、集塵効率が向上する。なお、炭種やダスト成分性状で、a1、a2、a3に示すカーブのように、抵抗特性が異なる。
【0006】
一方、石炭焚きボイラにおいては、図13(a)に示すようにエアヒータの後流に設置する低温電気集塵機方式(130℃前後)と、図13(b)に示すようにボイラー節炭器の後流に設置する高温電気集塵機方式(380℃)がある。
図中11はボイラ、12は脱硝設備、13はエアヒータ、14は電気集塵機、15は誘引通風機、16,18はヒートパイプ式ガス−ガスヒータ、17は脱硫設備、19は煙突である。
【0007】
三菱重工技報Vol.31、No.4(1994−7)においては、90℃の低低温電気集塵機により、電気抵抗率を低くして効率を上げることが開示されている。
日立評論Vol.76、No.10(1994−10)においても、排ガスを低低温(90〜100℃)で電気集塵するシステムが提案されている。
【0008】
【発明が解決しようとする課題】
これらの低温電気集塵機方式及び高温電気集塵方式のいずれも、電気集塵機の集塵効率を向上させることを目的とするものであるが、図12及び図13に示すように、各排ガス処理設備がシリーズに設置されており、スペース大、構造複雑、コスト大となっている。
【0009】
さらに、図13(a)に示すような低温電気集塵機方式においては、集塵効率は高くなるが、酸露点腐食が発生し、その対策に、耐酸腐食剤、塗装が必要となり、その維持管理が複雑になると共に、失敗すると設備保全費が嵩むという問題がある。
【0010】
また、図13(b)に示すような高温電気集塵機方式においては、図16に示すようにボイラ2と電気集塵機10の間をダクト8で接続しているため、排ガス温度が低下し、所定の高温電気集塵効率が得られなかったり、ダクト8の長さが必要であるため、設備の設置スペースを確保する必要があるという問題があった。
【0011】
本発明が解決しようとする課題は、低温や高温域では電気抵抗が低下するため電気集塵機の性能がよくなる特質を利用して、高温域のボイラ内に電気集塵機を設置することで電気集塵機の高性能、小型化を図り、設備全体のスペースを大幅に縮小すると共に、集塵効率の向上を図ることのできる焼却処理設備を提供することにある。
【0012】
【課題を解決するための手段】
前記課題を解決するため、本発明は、ボイラと、ボイラから排出された排ガス中のダストを集塵する電気集塵機とを備えた焼却処理設備において、排ガス温度が300℃のところで集塵する前記電気集塵機を、前記ボイラと共通の缶体に内蔵し、電気集塵機設置箇所の通気断面積をボイラ部の通気断面積よりも広くするとともに、案内板及び整流板の役割を果たすボイラチューブ群の後流に配置したことを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
図1は本発明を適用したゴミ焼却炉の排ガス処理システムの構成例を示すものである。本例においては、電気集塵機10をボイラ2と共通の缶体に内蔵したものである。図中3はエアヒータ、5はバグフィルタ、6はブロワ、7は煙突である。この実施の形態では、電気集塵機10をボイラ2と共通の缶体に内蔵することにより、従来のプレダスターが不要となり、そのスペースとコストの低減が可能となる。
【0015】
図2は本発明を適用した石炭焚きボイラの排ガス処理システムの構成例を示すものである。本例においては、電気集塵機20をボイラ11と共通の缶体に内蔵したものである。図中12は脱硝設備、13はエアヒータ、15は誘引通風機、16,18はヒートパイプ式ガス−ガスヒータ、17は脱硫設備、19は煙突である。この実施の形態では、スペースとコストの低減と共に、電気抵抗率が低くなる高温度領域に電気集塵機を設置できるため炭種制限が無くなり、また炭種に合わせて電気集塵機設置温度域を選定することが可能となる。
【0016】
【実施例】
以下、本発明の実施例について具体的に説明する。
図3は本発明の第1実施例の概略図を示すものである。図において、31はボイラ・節炭器、32はボイラ、33はボイラチューブ、34は電気集塵機、35はダスト排出用コンベアである。電気集塵機34は、図3のように1基だけでなく、図4に示す第2実施例のように、複数基、多段に配置して集塵効率を上げることもできる。
【0017】
電気集塵機34の効率を考慮して、例えば排ガス温度が約300℃のところで運転する場合、必ずしも、図3のようにボイラチューブ33の後流の位置が最適とは限らないため、図5に示す第3実施例のように、2基のボイラチューブ33の中間に電気集塵機34を配置することもできる。また、図6に示す第4実施例のように、ボイラチューブ33が垂直設置型のものでは、その下部に配置することもできる。さらに、図7に示す第5実施例のように、電気集塵機34の設置個所の通気断面積をボイラ部の通気断面積よりも広くすることで、排ガスの流速を下げ、集塵時間を長くして効率を向上させることができる。
このように、ボイラ内のガス流速は1.0〜3m/sであり、電気集塵機の適正ガス流1〜2.5m/sと大差ないため、ほぼ同じ缶体サイズでよいため、内蔵が可能である。
【0018】
次に、電気集塵機における電極の配列の仕方について説明する。
図8はボイラにおけるボイラチューブ33と電気集塵機における電極の配置を示す横断面図である。ボイラチューブ33は、排ガス通路に対して、熱交換率を向上させるために均等に配列されている。その後流に集塵極41を排ガス通路の幅方向にほぼ等間隔で配置し、集塵極41の中間に放電極42を配置している。
【0019】
一方、図9に示す配置例では、ボイラチューブ33の後流に、集塵極41を幅方向に並べたものと、放電極42を幅方向に並べたものを交互に配列している。
このように、集塵極41と放電極42の配列は任意である。これらの集塵極41としては、パイプ、フラットバー、パンチングプレート、金網等が使用できる。
図9の配列を拡張すると、ボイラチューブ33を集塵極41とし、ボイラチューブ33の間に放電極42を配置することで、金属管であるボイラチューブを集塵極と兼用することができる。
【0020】
従来の単独の電気集塵機では、図10に示すように多数の集塵極と放電極に均等に排ガスが接触するように電極の前に、排ガスの整流のための案内板51、整流板52が必要であったが、本発明では、ボイラチューブ33の後流に電気集塵機34を配列することで、ボイラチューブ33が案内板及び整流板の役割を果たす。したがって、案内板及び整流板が不要になると共に、それらの設置スペースを節減することができる。
【0021】
図11は、本発明による排ガス温度と集塵効率及び見掛けガス量比の関係を示すものである。η1〜η3の違いは、煤塵の電気抵抗率の違いによるものであるが、300℃程度になると、集塵効率に差が無くなる。煤塵の電気抵抗率は、炭種によって変化するので、300℃の高温で電気集塵機を運転することにより、炭種に影響されにくい集塵効率を達成することができる。
なお、高温で集塵処理を行うと見掛けガス量が増え、130℃のガス量に比べて300℃では1.4倍になるが、集塵効率が向上するため、見掛けガス量の増加を考慮しても、全体として効率が向上する。
【0022】
【発明の効果】
上述したように、本発明によれば下記の効果を奏する。
(1)高温域のボイラ内に電気集塵機を設置することで電気集塵機の高性能、小型化を図ることができる。
(2)ボイラと電気集塵機のダスト処理設備が併用できるため、省スペース、省コストとなる。
(3)電気集塵機の性能がよくなる温度領域に電気集塵機を配置できるため、電気集塵機が小型高性能となる。
(4)ボイラチューブによるガス整流機能を利用できるため、電気集塵機のガス整流器が不要で省スペースとなる。
(5)電気集塵機を高温域に配置するため、酸露点腐食の心配が無く、また炭種が低級な材料を使用でき、低コスト化が図れる。
(6)最上流で除塵するため、後置の脱硫、脱硝、エアヒータ設備等へのダストアタックが少ない。
(7)電気集塵機の荷電制御により出口煤塵量を調整できる。この結果、SO3量とダスト量の比を適正に保持できるため、腐食対策が行える。
(8)電気集塵機の荷電制御でダストのスルー量を自由に調整できるため、バグフィルタの目詰まり防止とダストのハンドリングが容易になる。
(9)電気集塵機のダスト凝集効果により濾布の圧損上昇が抑制されるため、濾布の寿命延長が図れる。
(10)スートブローや槌打によるダスト払い落とし直後のダストが分散する前に除塵するため、高い集塵効率が得られる。
【図面の簡単な説明】
【図1】 本発明を適用したゴミ焼却炉の排ガス処理システムの構成例を示すブロック図である。
【図2】 本発明を適用した石炭焚きボイラの排ガス処理システムの構成例を示すブロック図である。
【図3】 本発明の第1実施例を示す概略図である。
【図4】 本発明の第2実施例を示す概略図である。
【図5】 本発明の第3実施例を示す概略図である。
【図6】 本発明の第4実施例を示す概略図である。
【図7】 本発明の第5実施例を示す概略図である。
【図8】 ボイラにおけるボイラチューブと電気集塵機における電極の配置を示す横断面図である。
【図9】 ボイラにおけるボイラチューブと電気集塵機における電極の配置の他の例を示す横断面図である。
【図10】 従来の案内板と整流板を備えた電気集塵機の構成を示す断面図である。
【図11】 本発明による排ガス温度と集塵効率及び見掛けガス量比の関係を示すグラフである。
【図12】 従来のごみ焼却設備の排ガス処理方法を示すブロック図である。
【図13】 従来の石炭焚きボイラの排ガス処理方法を示すブロック図である。
【図14】 ダスト電気抵抗率と電気集塵機の電流・電圧、集塵効率の関係を示すグラフである。
【図15】 電気集塵機におけるガス温度と電気抵抗率の関係を示すグラフである。
【図16】 従来のボイラの構造を示す概略図である。
【符号の説明】
1 焼却炉、2 ボイラ、3 エアヒータ、4 プレダスタ、5 バグフィルタ、6 ブロア、7 煙突、8 ダクト、10 電気集塵機、11 ボイラ、12脱硝設備、13 エアヒータ、14 電気集塵機、15 誘引通風機、16,18 ヒートパイプ式ガス−ガスヒータ、17 脱硫設備、19 煙突、20 電気集塵機、31 ボイラ・節炭器、32 ボイラ、33 ボイラチューブ、34 電気集塵機、35 ダスト排出用コンベア、41 集塵極、42 放電極、51 案内板、52 整流板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas treatment technology for facilities having a waste heat recovery boiler such as a coal combustion boiler and a waste treatment facility.
[0002]
[Prior art]
The exhaust gas discharged from the garbage incinerator contains acidic harmful substances such as HCl and SO x, and in order to neutralize these, neutralize by blowing in Ca (OH) 2 (slaked lime). The CaCl 2 and CaSO 4 powders were removed together with dust by a subsequent bag filter to make them harmless. However, when this treatment method is applied to a conventional treatment facility, the amount of dust accumulated on the bag filter increases, so that the frequency of backwashing the bag filter increases and efficiency decreases.
[0003]
Therefore, the present applicant has previously disclosed a processing method as shown in FIG. 12 in Japanese Patent Laid-Open No. 8-117549.
In FIG. 12, the exhaust gas containing dust generated in the incinerator 1 is sent to the pre-duster 4 through the boiler 2 and the air heater 3 and primary dust is collected. Then, slaked lime is blown in, and secondary dust is collected by the bag filter 5 and blower. 6 is sucked in and discharged from the chimney 7 into the atmosphere. By performing primary dust collection with the pre-duster 4, the amount of dust in the exhaust gas sent to the bag filter 5 can be reduced, and the frequency of backwashing the bag filter 5 can be reduced.
[0004]
As the dust collector used in the pre-duster 4, an electric dust collector is generally used. The electrostatic precipitator applies a high DC voltage between the discharge electrode (-) and the collection electrode (+), adsorbs negatively charged dust at the discharge electrode to the collection electrode, and ultrasonically collects the collection electrode. It is collected by dropping it by vibration or hammering.
[0005]
It is known that the dust collection efficiency of an electric dust collector is affected by the electrical resistivity of dust. As shown in FIG. 14, when the electrical resistivity of the dust is 10 11 Ω · cm or more, the efficiency decreases due to the reverse ionization phenomenon. Moreover, as shown in FIG. 15, the electrical resistivity of dust becomes maximum when the gas temperature is around 130 ° C., and the electrical resistivity decreases as the temperature becomes lower or higher, and the dust collection efficiency improves. In addition, resistance characteristics differ like the curves shown by a 1 , a 2 , and a 3 depending on the charcoal type and dust component properties.
[0006]
On the other hand, in a coal fired boiler, as shown in FIG. 13 (a), a low-temperature electrostatic precipitator system (around 130 ° C.) installed downstream of the air heater, and a boiler economizer as shown in FIG. 13 (b). There is a high temperature electrostatic precipitator system (380 ° C.) installed in the flow.
In the figure, 11 is a boiler, 12 is a denitration facility, 13 is an air heater, 14 is an electrostatic precipitator, 15 is an induction fan, 16 and 18 are heat pipe type gas-gas heaters, 17 is a desulfurization facility, and 19 is a chimney.
[0007]
Mitsubishi Heavy Industries Technical Report Vol. 31, no. 4 (1994-7) discloses that a low-temperature low-temperature electrostatic precipitator at 90 ° C. reduces the electrical resistivity and increases the efficiency.
Hitachi Review Vol. 76, no. 10 (1994-10) also proposes a system for collecting dust at low temperatures (90 to 100 ° C.).
[0008]
[Problems to be solved by the invention]
Both of these low-temperature electrostatic precipitator methods and high-temperature electrostatic precipitator methods are intended to improve the dust collection efficiency of the electrostatic precipitator. However, as shown in FIGS. Installed in the series, the space is large, the structure is complex, and the cost is high.
[0009]
Furthermore, in the low-temperature electrostatic precipitator system as shown in FIG. 13 (a), the dust collection efficiency is high, but acid dew point corrosion occurs. In addition to being complicated, there is a problem that equipment maintenance costs increase if it fails.
[0010]
Further, in the high-temperature electrostatic precipitator system as shown in FIG. 13B, the exhaust gas temperature is reduced because the boiler 2 and the electrostatic precipitator 10 are connected by the duct 8 as shown in FIG. There is a problem that high-temperature electric dust collection efficiency cannot be obtained or the length of the duct 8 is necessary, so that it is necessary to secure an installation space for the equipment.
[0011]
The problem to be solved by the present invention is that the electric dust collector is installed in a boiler in a high temperature region by utilizing the property that the performance of the electric dust collector is improved because the electric resistance decreases at low and high temperatures. An object of the present invention is to provide an incineration processing facility capable of improving performance and downsizing, greatly reducing the space of the entire facility, and improving dust collection efficiency.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an incineration processing facility comprising a boiler and an electric dust collector that collects dust in the exhaust gas discharged from the boiler, wherein the electricity that collects dust at an exhaust gas temperature of 300 ° C. the dust collector incorporates a common can body and the boiler, the ventilation cross-sectional area of the electrostatic precipitator installation site as well as wider than venting cross-sectional area of the boiler unit, wake role boiler tube group of the guide plate and the rectifying plate It is characterized by having been arranged in.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 shows a configuration example of an exhaust gas treatment system for a garbage incinerator to which the present invention is applied. In this example, the electrostatic precipitator 10 is built in a common can body with the boiler 2. In the figure, 3 is an air heater, 5 is a bag filter, 6 is a blower, and 7 is a chimney. In this embodiment, by incorporating the electrostatic precipitator 10 in a common can body with the boiler 2, the conventional pre-duster becomes unnecessary, and the space and cost can be reduced.
[0015]
FIG. 2 shows a configuration example of an exhaust gas treatment system for a coal fired boiler to which the present invention is applied. In this example, the electrostatic precipitator 20 is built in a common can body with the boiler 11. In the figure, 12 is a denitration facility, 13 is an air heater, 15 is an induction fan, 16 and 18 are heat pipe type gas-gas heaters, 17 is a desulfurization facility, and 19 is a chimney. In this embodiment, with the reduction of space and cost, the electric dust collector can be installed in the high temperature region where the electrical resistivity is low, so there is no restriction on the coal type, and the electric dust collector installation temperature region is selected according to the coal type. Is possible.
[0016]
【Example】
Examples of the present invention will be specifically described below.
FIG. 3 shows a schematic diagram of the first embodiment of the present invention. In the figure, 31 is a boiler and a economizer, 32 is a boiler, 33 is a boiler tube, 34 is an electric dust collector, and 35 is a dust discharge conveyor. The electrostatic precipitator 34 can be arranged not only in one unit as shown in FIG. 3 but also in a plurality of stages and in multiple stages as in the second embodiment shown in FIG.
[0017]
Considering the efficiency of the electric dust collector 34, for example, when operating at an exhaust gas temperature of about 300 ° C., the position of the wake of the boiler tube 33 is not necessarily optimal as shown in FIG. As in the third embodiment, the electrostatic precipitator 34 can be disposed between the two boiler tubes 33. Further, in the case where the boiler tube 33 is of a vertical installation type as in the fourth embodiment shown in FIG. 6, it can also be arranged at the lower part thereof. Further, as in the fifth embodiment shown in FIG. 7, by making the ventilation cross-sectional area of the place where the electrostatic precipitator 34 is installed wider than the ventilation cross-sectional area of the boiler part, the flow rate of exhaust gas is lowered and the dust collection time is lengthened. Efficiency can be improved.
In this way, the gas flow rate in the boiler is 1.0 to 3 m / s, which is not much different from the appropriate gas flow 1 to 2.5 m / s of the electrostatic precipitator. It is.
[0018]
Next, how to arrange the electrodes in the electrostatic precipitator will be described.
FIG. 8 is a cross-sectional view showing the arrangement of the boiler tube 33 in the boiler and the electrodes in the electric dust collector. The boiler tubes 33 are evenly arranged with respect to the exhaust gas passage in order to improve the heat exchange rate. In the subsequent flow, the dust collecting electrode 41 is arranged at substantially equal intervals in the width direction of the exhaust gas passage, and the discharge electrode 42 is arranged in the middle of the dust collecting electrode 41.
[0019]
On the other hand, in the arrangement example shown in FIG. 9, in the downstream of the boiler tube 33, the dust collection electrodes 41 arranged in the width direction and the discharge electrodes 42 arranged in the width direction are alternately arranged.
Thus, the arrangement of the dust collection electrode 41 and the discharge electrode 42 is arbitrary. As these dust collecting electrodes 41, pipes, flat bars, punching plates, wire nets, and the like can be used.
9 is expanded, the boiler tube 33 is used as the dust collecting electrode 41, and the discharge electrode 42 is disposed between the boiler tubes 33, so that the boiler tube that is a metal tube can also be used as the dust collecting electrode.
[0020]
In the conventional single electric dust collector, as shown in FIG. 10, a guide plate 51 and a rectifying plate 52 for rectifying the exhaust gas are provided in front of the electrodes so that the exhaust gas contacts the numerous dust collecting electrodes and the discharge electrodes evenly. Although it was necessary, in this invention, the boiler tube 33 plays the role of a guide plate and a baffle plate by arranging the electric dust collector 34 in the downstream of the boiler tube 33. FIG. Therefore, the guide plate and the current plate are not required, and the installation space for them can be saved.
[0021]
FIG. 11 shows the relationship between exhaust gas temperature, dust collection efficiency, and apparent gas amount ratio according to the present invention. The difference between η 1 and η 3 is due to the difference in the electrical resistivity of the dust, but when it reaches about 300 ° C., there is no difference in the dust collection efficiency. Since the electric resistivity of the soot dust varies depending on the coal type, by operating the electric dust collector at a high temperature of 300 ° C., it is possible to achieve a dust collection efficiency that is hardly affected by the coal type.
When the dust collection process is performed at a high temperature, the apparent gas amount increases and becomes 1.4 times at 300 ° C compared to the gas amount at 130 ° C. However, since the dust collection efficiency is improved, the increase in the apparent gas amount is considered. Even so, the overall efficiency is improved.
[0022]
【The invention's effect】
As described above, the present invention has the following effects.
(1) It is possible to achieve high performance and downsizing of the electrostatic precipitator by installing the electrostatic precipitator in the boiler in a high temperature range.
(2) Since the dust treatment equipment of the boiler and the electrostatic precipitator can be used in combination, the space and cost can be saved.
(3) Since the electrostatic precipitator can be disposed in a temperature range where the performance of the electrostatic precipitator is improved, the electrostatic precipitator is small and has high performance.
(4) Since the gas rectification function by the boiler tube can be used, the gas rectifier of the electrostatic precipitator is unnecessary and the space is saved.
(5) Since the electrostatic precipitator is arranged in a high temperature region, there is no worry about acid dew point corrosion, and a material with a low carbon type can be used, so that the cost can be reduced.
(6) Since dust is removed at the uppermost stream, there is little dust attack to the desulfurization, denitration, air heater equipment, etc. at the rear.
(7) The amount of dust at the outlet can be adjusted by charge control of the electric dust collector. As a result, since the ratio of the SO 3 amount and the dust amount can be properly maintained, a countermeasure against corrosion can be performed.
(8) Since the through amount of dust can be freely adjusted by charge control of the electrostatic precipitator, it is easy to prevent clogging of the bag filter and handle dust.
(9) Since the increase in pressure loss of the filter cloth is suppressed by the dust aggregation effect of the electric dust collector, the life of the filter cloth can be extended.
(10) High dust collection efficiency can be obtained because dust is removed before the dust immediately after dust removal by soot blow or hammering is dispersed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of an exhaust gas treatment system for a refuse incinerator to which the present invention is applied.
FIG. 2 is a block diagram showing a configuration example of an exhaust gas treatment system for a coal fired boiler to which the present invention is applied.
FIG. 3 is a schematic view showing a first embodiment of the present invention.
FIG. 4 is a schematic view showing a second embodiment of the present invention.
FIG. 5 is a schematic view showing a third embodiment of the present invention.
FIG. 6 is a schematic view showing a fourth embodiment of the present invention.
FIG. 7 is a schematic view showing a fifth embodiment of the present invention.
FIG. 8 is a cross-sectional view showing the arrangement of a boiler tube in a boiler and an electrode in an electric dust collector.
FIG. 9 is a cross-sectional view showing another example of the arrangement of the boiler tube in the boiler and the electrode in the electric dust collector.
FIG. 10 is a cross-sectional view showing a configuration of a conventional electric dust collector including a guide plate and a current plate.
FIG. 11 is a graph showing the relationship between exhaust gas temperature, dust collection efficiency, and apparent gas amount ratio according to the present invention.
FIG. 12 is a block diagram showing an exhaust gas treatment method for a conventional waste incineration facility.
FIG. 13 is a block diagram showing an exhaust gas treatment method for a conventional coal fired boiler.
FIG. 14 is a graph showing the relationship between the dust electrical resistivity, the current / voltage of the electrostatic precipitator, and the dust collection efficiency.
FIG. 15 is a graph showing the relationship between gas temperature and electrical resistivity in an electric dust collector.
FIG. 16 is a schematic view showing the structure of a conventional boiler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Incinerator, 2 Boilers, 3 Air heaters, 4 Predusters, 5 Bag filters, 6 Blowers, 7 Chimneys, 8 Ducts, 10 Electric dust collectors, 11 Boilers, 12 Denitration equipment, 13 Air heaters, 14 Electric dust collectors, 15 Induction ventilators, 16 , 18 Heat pipe type gas-gas heater, 17 Desulfurization equipment, 19 Chimney, 20 Electric dust collector, 31 Boiler / Carrier, 32 Boiler, 33 Boiler tube, 34 Electric dust collector, 35 Dust discharge conveyor, 41 Dust collecting electrode, 42 Discharge electrode, 51 guide plate, 52 rectifier plate

Claims (1)

ボイラと、ボイラから排出された排ガス中のダストを集塵する電気集塵機とを備えた焼却処理設備において、
排ガス温度が300℃のところで集塵する前記電気集塵機を、前記ボイラと共通の缶体に内蔵し、電気集塵機設置箇所の通気断面積をボイラ部の通気断面積よりも広くするとともに、案内板及び整流板の役割を果たすボイラチューブ群の後流に配置したことを特徴とする焼却処理設備。
In an incineration treatment facility equipped with a boiler and an electric dust collector that collects dust in the exhaust gas discharged from the boiler,
Said electrostatic precipitator exhaust gas temperature dust collection at the 300 ° C., built on a common can body and the boiler, the ventilation cross-sectional area of the electrostatic precipitator installation site as well as wider than venting cross-sectional area of the boiler unit, the guide plate and An incineration facility that is located downstream of a group of boiler tubes that act as current plates .
JP2000062626A 2000-03-07 2000-03-07 Incineration equipment Expired - Lifetime JP4022353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062626A JP4022353B2 (en) 2000-03-07 2000-03-07 Incineration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062626A JP4022353B2 (en) 2000-03-07 2000-03-07 Incineration equipment

Publications (2)

Publication Number Publication Date
JP2001248824A JP2001248824A (en) 2001-09-14
JP4022353B2 true JP4022353B2 (en) 2007-12-19

Family

ID=18582604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062626A Expired - Lifetime JP4022353B2 (en) 2000-03-07 2000-03-07 Incineration equipment

Country Status (1)

Country Link
JP (1) JP4022353B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493976B2 (en) * 2015-08-03 2019-04-03 株式会社日向製錬所 How to operate the rotary kiln
CN115155814B (en) * 2022-05-26 2023-07-18 华能国际电力股份有限公司上海石洞口第二电厂 Ash falling turbulence optimizing device for preventing electrostatic precipitator from collapsing

Also Published As

Publication number Publication date
JP2001248824A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
CN103495322A (en) Dust removal and mercury removal integrated device and method
CN201513959U (en) Combined-type oil smoke purifier
CN105664633B (en) For purifying the Integral electric bag complex dust collector and dust removal method of coal-fired flue-gas
CN102183155A (en) Smoke high-temperature dust removal and steam and coal gas recovery system and method for calcium carbide furnace
CN112755704A (en) Industrial high-temperature ceramic filter element dust remover and using method thereof
CN201175681Y (en) Filteration anode electrostatic precipitator
JP4022353B2 (en) Incineration equipment
JP4094223B2 (en) Electric dust collector
CN101337148B (en) Large electric-bag complex type dust remover
CN103551250A (en) Electric dust collector and vibrating method thereof
CN103090403B (en) The integrated apparatus of dedusting and flue gas waste heat recovery after a kind of boiler and application thereof
CN213873852U (en) Flue gas treatment system of sintering machine
CN201609623U (en) Electric dust remover for improvement on ash flushing
CN213747840U (en) Hazardous waste high-temperature smelting waste gas waste heat recovery and pollutant treatment device
CN103055619A (en) Ferroalloy electric furnace flue gas purifying and dust recovering novel technology and device thereof
CN209378795U (en) Combined pollution control system based on low temperature plasma denitration
CN105841175A (en) Smoke collaborative treatment method based on ultra-low temperature electric deduster
JPS6341073Y2 (en)
CN111203435A (en) Organic contaminated soil remediation system and remediation method
CN218132535U (en) Off-line radial electric dust remover
CN1309232A (en) Exhaust gas particle filter for diesel engine
CN219210269U (en) Electric dust collector porcelain axle cleaning device and electric dust collector
CN217188861U (en) Electric bag composite dust removal and SCR denitration device
CN202683011U (en) High-efficiency energy-saving smoke dry-wet compound dust removal and desulfurization system
CN219647107U (en) High-temperature oil smoke waste gas treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350