JP4022018B2 - Raw material granulation method to improve productivity of sintering machine - Google Patents

Raw material granulation method to improve productivity of sintering machine Download PDF

Info

Publication number
JP4022018B2
JP4022018B2 JP09806299A JP9806299A JP4022018B2 JP 4022018 B2 JP4022018 B2 JP 4022018B2 JP 09806299 A JP09806299 A JP 09806299A JP 9806299 A JP9806299 A JP 9806299A JP 4022018 B2 JP4022018 B2 JP 4022018B2
Authority
JP
Japan
Prior art keywords
raw material
drum mixer
fine powder
stirring
sintering machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09806299A
Other languages
Japanese (ja)
Other versions
JP2000290733A (en
Inventor
健一 八ケ代
武 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09806299A priority Critical patent/JP4022018B2/en
Publication of JP2000290733A publication Critical patent/JP2000290733A/en
Application granted granted Critical
Publication of JP4022018B2 publication Critical patent/JP4022018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、焼結機に供給される焼結鉱用原料を造粒製造して、焼結機の生産性を向上させる原料造粒方法に関する。
【0002】
【従来の技術】
高炉に装入される焼結鉱は、鉄鉱石、石灰、コークス等を含む複数のそれぞれ粒度の異なる原料を造粒処理した後、この得られた造粒原料を焼結機の走行するパレット上に焼結層を形成させた状態で装入し、焼結層の下部から吹き込まれる空気によって原料中のコークスを燃焼させることによって製造されている。
このような造粒原料を効率的に製造するための方法として、例えば特開昭59−213432号公報には、造粒を行うドラムミキサーから排出される排出原料の一部を循環させ、
この循環量を調整してドラムミキサーにおける造粒性を良好にする方法が示されている。
また、特公平7−76383号公報には、造粒用の原料となる粉鉄鉱石と返鉱を予め特定量の水でドラムミキサーを用いて混合した後、粉コークス、石灰石、副原料と水を添加してドラムミキサー内で擬似粒子化させて造粒原料を製造して、造粒原料中のコークスへの着火、燃焼を高めて生産性よく焼結鉱を製造する方法が示されている。
さらに特開昭62−225238号公報には、ドラムミキサー内の装入原料運動領域に噴霧管を設置して擬似粒子化促進剤を添加することにより、この得られた造粒原料で焼結層を形成した時の通気性を向上させる方法が示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開昭59−213432号公報に示されるようなドラムミキサーから排出される処理原料の一部をドラムミキサーに循環させて造粒性を向上させる方法では、造粒性の良好な粒子であってもドラムミキサーに戻されて再処理されるため、全体の処理効率が悪く処理費用が増加する上、ドラムミキサーに装入される原料の粒度構成が変化した場合に、これに対応して効率よく調整させることが困難であるという問題があった。
また、特公平7−76383号公報に示される、ドラムミキサーを用いて粉鉄鉱石と返鉱を予め特定量の水で混合した後、粉コークス、石灰石、副原料と水を添加して擬似粒子化させる方法は、ドラムミキサーで2段階の処理が必要となるため処理効率を増大させるのには限界があり、水分の添加量の調整だけで適正な燃焼性と通気性とを兼ね備えた擬似粒子を製造することは実際上困難となっていた。
さらに、特開昭62−225238号公報に示される、ドラムミキサー内の装入原料運動領域に噴霧管を設置して擬似粒子化促進剤を添加し、得られる造粒原料の通気性を向上させる方法は、高価な擬似粒子化促進剤が必要となる他に、原料の粒度構成、即ち粗粒部分と微粉部分との比率が変わるような場合には、ドラムミキサー内における原料に付与される撹拌力が変化するため、これに対応して適正な撹拌効果が得られるように調整することが困難であった。
【0004】
本発明はこのような事情に鑑みてなされたもので、ドラムミキサーに装入される原料の粒度構成が変化しても、これに対応して常時適正な通気性、燃焼性を有した擬似粒子を製造することのできる焼結機の生産性を向上させる原料造粒方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明に係る焼結機の生産性を向上させる原料造粒方法は、ドラムミキサーを用いて粗粒及び微粉からなる焼結鉱用の原料を擬似粒子に造粒し、焼結機に装入される造粒原料を製造する原料造粒方法において、
前記原料には粒子径500μm未満の微粉が30〜70質量%の割合で含まれ、前記ドラムミキサーの内面に前記原料を撹拌する撹拌羽根を着脱可能に取付けると共に、該撹拌羽根の取付け位置を、前記ドラムミキサーの原料装入端を起点にして全機長の1/4〜1/3までの範囲とし、前記擬似粒子の微粉付着厚みを焼結の際における歩留が77%以上、かつ通気性(JPU)が19.5以上となる範囲に設定する。従って、この造粒原料を焼結機に装入したとき、造粒原料によって形成される焼結層に適正範囲となる燃焼性と通気性とが付与されるので、焼結機の生産性を増大させることができる。
【0006】
ドラムミキサーにおける撹拌羽根の取付け状態である撹拌羽根の取付け位置をドラムミキサーの全機長に対し原料装入端を起点にして取付け位置が1/4より少なくなる場合には、撹拌力が小さくなって充分な混合効果を出すことができず、良好な形態又は特性を有した擬似粒子の造粒が困難になるので好ましくない。
【0007】
さらに、撹拌羽根のドラムミキサー中心方向に向かう長さを、例えば100〜500ミリメートルの範囲で調整して撹拌羽根によって原料に付与される撹拌力を必要な微粉付着厚みを有する擬似粒子が形成される範囲に維持させるようにしてもよい。この場合には、ドラムミキサーの回転数を変化させることなく撹拌力の大きさを調整することが可能である。
ドラムミキサーに装入する原料には、粒子径500μm未満の微粉が30〜70質量%の割合で含まれる。粒子径500μm未満となる微粉の含有量が、30質量%より少ないと、十分な厚みを有する微粉付着層を形成することができなくなる。また、70質量%を超えるような場合には、微粉付着層の厚みが限度を超えて厚くなり易くなるために、微粉付着層の厚みのコントロールが困難となるので好ましくない。なお、ここで微粉の粒子径を500μm未満に、即ち、微粉と粗粒との境界値を500μmに設定したのは以下の理由による。即ち、原料は500μm以上のサイズの粒子の運動エネルギーに大きく依存した微粉付着分布をとり易く、ある運動エネルギー値で付着効率が最大となるため、これを指標として用いるのが好ましいことによる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。ここに図1は本発明の一実施の形態に係る焼結機の生産性を向上させる原料造粒方法を適用する原料造粒設備の説明図、図2(a)、(b)、(c)はそれぞれ同原料造粒設備におけるドラムミキサーの断面図、拡大正面図、拡大側面図、図3は原料及び造粒原料の粒度分布を示すグラフ、図4は粗粒に付着する微粉の付着効率と粒子単体に付与される運動エネルギーとの関係を示すグラフ、図5は微粉付着厚みと撹拌エネルギー比との関係を示すグラフ、図6は残存微粉と撹拌エネルギー比との関係を示すグラフ、図7は生産率と微粉付着厚みとの関係を示すグラフである。
【0009】
図1及び図2(a)に示すように、本発明の一実施の形態に係る焼結機の生産性を向上させる原料造粒方法を適用する原料造粒設備10は、焼結鉱となる鉄鉱石、コークス、石灰その他の副原料がそれぞれ所定量配合され粗粒及び微粉からなる原料を搬送するコンベアベルト11と、コンベアベルト11を介して装入される原料を撹拌しながら擬似粒子を形成させるためのドラムミキサー12とを有している。
ドラムミキサー12は、モータ13の駆動により一定速度、例えば約7rpm(4〜15rpm)の回転数で回転させることできる内直径4メートル、長さ20メートルの円筒状の回転体であり、原料の排出側に向けて所定の下向きの角度で傾斜配置されている。
その内壁面14には、ドラムミキサー12の回転軸心に向かって所定長さ、例えば250ミリメートル(200〜300ミリメートル)の長さで突出し、互いに約300ミリメートル(200〜500ミリメートル)のピッチ間隔を有して着脱可能に配置された幅200ミリメートル(150〜400ミリメートル)の矩形状の撹拌羽根15、を多数備えている。なお、撹拌羽根15の突出長さ、幅長さは原料に付与させる撹拌力の大きさに応じて適宜それぞれの長さを調整することができる。
そして、図2(b)、(c)に示すように撹拌羽根15は、L字型の取付け治具17を用いてドラムミキサー12の内壁面14にボルトナット等の締結部材18を介して着脱可能に取付けられている。これら撹拌羽根15の取付け位置は、ドラムミキサー12の原料装入側の端部を領域の始点(起点)として全機長Lに対してL/4〜L/2の図1に斜線で示す範囲に領域の終点が位置するようにしている。
【0010】
続いて、前記原料造粒設備10に適用する焼結機の生産性を向上させる原料造粒方法について説明する。
この際、ドラムミキサー12の内壁に取付ける撹拌羽根15は、ドラムミキサー12の長手方向範囲に、原料装入端を始点としてそのそれぞれの終点が全長に対し(A)0(撹拌羽根15を設置しない)、(B)1/4、(C)1/3、(D)1/2となる4種類の範囲となるようにして設置し、それぞれについて造粒を行った。
ここで使用した原料には、豪州系鉄鉱石40質量%、ブラジル系鉄鉱石15質量%、その他鉄鉱石15質量%を用い、これに石灰粉12質量%、焼結粉鉱8質量%を配合して、残部にダスト、蛇紋岩、生石灰を加えて100質量%とした。そして、さらに、返鉱16質量%、カーボン分3.5質量%を加えてドラムミキサー12に装入する原料とした。
この原料の粒度分布を調査したところ、図3に破線で示すように500μm未満の微粉分が40〜45質量%となっていた。そして、粒径が5000〜2000μmの範囲に二番目の最大値を有し、この範囲の粒子の割合が約27質量%となるような粒度構成となっている。
【0011】
次に、このような特定の粒度構成を有する原料に必要に応じて擬似粒子化促進剤や水分等を添加して、水分量を約3〜8質量%の範囲に調整し、コンベアベルト11を用いて、所定の装入速度で装入するか又は一括してドラムミキサー12に装入する。そして、ドラムミキサー12を定速度で回転させながら、1分間混合した時点で水分を重量比で6.5パーセント分加え、更に3.5分間造粒した。
この造粒して得られる擬似粒子は図3に実線で示されるような粒度分布を有している。なお、図に○印、及び△印で示すデータはそれぞれ実機テスト、ラボテストでの結果を表している。同図に示されるように、造粒前後で500μm未満の粒子が30〜45質量%から10質量%以下のレベルに減少している。従って、この500μm未満の微粉粒子が核となる粗粒の表面に付着して微粉付着層を形成していることが分かる。
そして、この造粒された造粒原料を図示しない焼結機のパレット上に層厚み550ミリメートルとなるように焼結層を形成して装入し、雰囲気温度1200℃、30秒間の条件で点火し、その後およそ1500Nm3/h・m2の風量で焼成し、前記(A)〜(D)の撹拌羽根の設置条件に対応する焼結鉱をそれぞれ製造した。
このそれぞれの造粒原料からなる焼結層の通気性を以下のJPU指標で評価すると共に、
シャッター試験により歩留を求め、焼成時間と歩留から生産率を算出して、以下の表1に示す結果を得た。なお、JPU指標は、JPU=(風量/焼成面積)×(焼結層の厚み/負圧)0.6で定義される値である。ここで風量、焼成面積、焼結層の厚み、負圧の単位はそれぞれ、Nm3/min、m2、mm、mmAqである。また、シャッター試験による歩留は高さ2mより焼結鉱を落下させる操作を4回繰り返した後、破壊されずに残った10mm以上の焼結鉱粒子の重量割合で算出したものである。
【0012】
【表1】

Figure 0004022018
【0013】
この表1に示すように、撹拌羽根15は設置範囲、設置面積を次第に拡大させるのに伴い、歩留は75パーセントから80パーセントに改善するものの、通気性の悪化(20JPUから18JPUへの減少)により風量が減少し、焼成速度が遅れてくる。その結果、生産性は撹拌羽根15をドラムミキサー12の原料装入端から1/3の範囲に設置する場合で最大(30T/dm2)となっている。このように、ドラムミキサー12に装入する原料の粒度構成に応じて撹拌羽根15を適正配置することにより、焼結機における生産性を最大化、もしくは向上させることが可能となる。
【0014】
即ち、焼結原料における造粒とは、500μm以上の粒にそれ以下の粉を付着させる操作であり、それぞれの粒子は各運動エネルギーに応じた付着分布をとり、ある運動エネルギー値で付着効率が最大となり、その前後で低下かする分布を示す。
そして、粉の付着厚みは、可能な限り薄いほうがコークス等の燃焼性が増し、歩留が向上するため、比表面積がより大きな微小粒子を付着させることが望ましい。このためには、
ドラムミキサー12内での運動エネルギーをできるだけ大きくするように撹拌力を増すことが望ましい。
一方、粉と粒との境となる250μm近傍の粒子は造粒されず残存し、通気を阻害する。
この未造粒粉は原料中の250μm以下の微粉比率が30質量%以下の場合、撹拌力をアップさせると増加する傾向にあり通気を悪化させる。
従って、原料中の微粉量比率に応じて、ドラムミキサー12の撹拌力を適正に制御することで粉の付着厚みによる歩留調整と未造粒微粉による通気調整とを制御することが可能となり、ある原料構成下において、微粉付着を適正な厚みにすれば焼結機の生産性を最大化することができる。
【0015】
ここで、図4〜図7は、以上説明した焼結機における生産性を最適化させる造粒条件を設定するために行った実機テスト及びラボテストの実験例を示している。
図4は擬似粒子を形成させる際、その核となる粗粒に付着する微粉の付着効率と撹拌羽根15等によって粒子単体に付与される運動エネルギーとの関係を示している。同図に示すように、粒子単体の運動エネルギーがおよそ10-9〜10-7kgm2/s2となる範囲に設定すれば、付着効率を最大化できることが分かる。なお、○印で示すデータは撹拌羽根15を始点から1/2の範囲に設けた場合のように撹拌力が比較的大きいケースを示している。また、△印で示すデータは、撹拌羽根15を始点から1/4の範囲に設けた場合の撹拌力が小さいケースを示している。また、図4中に矢印で示すように、同じ粒径の粒子であっても、付与する撹拌力の大小によって、付着効率の増減傾向が異なることが分かる。
例えば250μm、500μmの粒径の粒子は、撹拌力を増加させることにより、その付着効率を向上させることができるが、2000μmを超えるような大きい粒子の場合には撹拌力の増加と共に逆に付着効率が低下する傾向となるのが分かる。
【0016】
図5は造粒された擬似粒子における微粉付着厚みと直径1mの実験用ミキサーに撹拌羽根を取付けない場合を1として表した撹拌エネルギー比との関係を示すグラフであり、撹拌エネルギー比の増大と共に微粉付着厚みが次第に減少する傾向にあることを示している。
また、図6はドラムミキサー12から排出される造粒原料に未造粒の状態で残る残存微粉の量と、撹拌エネルギー比との関係を示している。また図7は、焼結機において造粒原料を焼結処理した場合の生産率と、造粒原料の微粉付着厚みとの関係を示しており、この場合には微粉付着厚みをおよそ200〜300μmとなるような範囲に撹拌羽根15の取付け状態を調整して、生産率を最大化もしくは適正化することが可能となる。
以上説明したように、本実施の形態においては、これらの条件を総合的に勘案して、撹拌羽根15を適正配置して、焼結機における造粒原料の生産率を最大化させることができるようになっている。
【0017】
以上、本発明の実施の形態を説明したが、本発明はこの実施の形態に限定されるものではなく、要旨を逸脱しない条件の変更は全て本発明の適用範囲である。例えば、本実施の形態においては、撹拌羽根の取付け状態として、ドラムミキサー内の取付け位置を限定するようにしたが、撹拌羽根の設置個数、設置密度、面積、形状等の各要素毎に、それぞれの撹拌力等を評価して、造粒される粒子(造粒原料)の燃焼性、通気性が最適となるように微粉付着厚みを調整して、この造粒原料を焼結機で処理する際の生産性を最大化させるようにしてもよい。この場合には、各変更要素とこれにより変化する生産性との関係を実験的に求めておき、これらの関係から生産性を最大化させたり、向上させたりするための条件を設定することができる。
【0018】
【発明の効果】
請求項記載の焼結機の生産性を向上させる原料造粒方法においては、装入する原料や造粒原料の条件によって、撹拌羽根の取付け位置を適宜設定することができるので、原料の粗粒及び微粉の粒度構成に応じて撹拌羽根の取付け状態を調整して、擬似粒子の微粉付着厚みを焼結の際における燃焼性と通気性を最適化させる範囲に設定して、造粒原料によって形成される焼結層に適正範囲となる燃焼性と通気性とを付与して、焼結機の生産性を増大させることができる。
【0019】
特に、この焼結機の生産性を向上させる原料造粒方法においては、ドラムミキサーにおける撹拌羽根の取付け状態である撹拌羽根の取付け位置を限定しているので、ドラムミキサーの回転によって原料の各粒子に付与される撹拌力が過大になって、特に形成初期のぜい弱な擬似粒子の破壊を抑制して、良好な形態又は特性を有した擬似粒子をさらに効率的に製造することができる。
【0020】
そして、ドラムミキサーに装入する原料には、粒子径500μm未満の微粉割合を特定範囲としているので、必要十分な厚みを有する微粉付着層を形成することができると共に、
微粉付着層の厚みのコントロールを容易にすることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る焼結機の生産性を向上させる原料造粒方法を適用する原料造粒設備の説明図である。
【図2】(a)、(b)、(c)はそれぞれ同原料造粒設備におけるドラムミキサーの断面図、拡大正面図、拡大側面図である。
【図3】原料及び造粒原料の粒度分布を示すグラフである。
【図4】粗粒に付着する微粉の付着効率と粒子単体に付与される運動エネルギーとの関係を示すグラフである。
【図5】微粉付着厚みと撹拌エネルギー比との関係を示すグラフである。
【図6】残存微粉と撹拌エネルギー比との関係を示すグラフである。
【図7】生産率と微粉付着厚みとの関係を示すグラフである。
【符号の説明】
10:原料造粒設備、11:コンベアベルト、12:ドラムミキサー、13:モータ、14:内壁面、15:撹拌羽根、17:取付け治具、18:締結部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a raw material granulation method for granulating and manufacturing a raw material for sinter supplied to a sintering machine to improve the productivity of the sintering machine.
[0002]
[Prior art]
The sintered ore charged into the blast furnace is granulated from a plurality of raw materials having different particle sizes including iron ore, lime, coke, etc., and then the obtained granulated raw material is placed on a pallet on which the sintering machine runs. Is manufactured in such a manner that the coke in the raw material is burned by the air blown from the lower part of the sintered layer.
As a method for efficiently producing such a granulated raw material, for example, JP-A-59-213432 circulates a part of the discharged raw material discharged from a drum mixer that performs granulation,
A method is shown in which the amount of circulation is adjusted to improve the granulation performance in the drum mixer.
In Japanese Patent Publication No. 7-76383, powdered iron ore as a raw material for granulation and return ore are mixed in advance with a specific amount of water using a drum mixer, and then coke, limestone, auxiliary raw material and water are mixed. Is added to make pulverized raw material in a drum mixer to produce granulated raw material, and the method of producing sintered ore with high productivity by increasing the ignition and combustion of coke in the granulated raw material is shown .
Further, JP-A-62-225238 discloses that the obtained granulated raw material is used as a sintered layer by installing a spray tube in the charged raw material motion region in the drum mixer and adding a pseudo-particle accelerator. It shows a method for improving the air permeability when formed.
[0003]
[Problems to be solved by the invention]
However, in the method of improving the granulation property by circulating a part of the processing raw material discharged from the drum mixer as disclosed in JP-A-59-213432 to the drum mixer, the particles having good granulation property are used. Even if there is, it is returned to the drum mixer and reprocessed, so the overall processing efficiency is poor and the processing cost increases, and when the particle size composition of the raw material charged in the drum mixer changes, it corresponds to this There was a problem that it was difficult to adjust efficiently.
Moreover, after mixing a powder iron ore and a return ore with a specific amount of water beforehand using a drum mixer shown in Japanese Patent Publication No. 7-76383, pseudo-particles are added by adding powder coke, limestone, auxiliary materials and water. The method of making it into a particle requires two stages of processing with a drum mixer, so there is a limit to increasing the processing efficiency. Just by adjusting the amount of water added, pseudo particles that have both proper flammability and air permeability It has been practically difficult to manufacture.
Furthermore, as shown in JP-A-62-2225238, a spray tube is installed in the charged raw material motion region in the drum mixer to add a pseudo-particle accelerator and improve the breathability of the resulting granulated raw material. In addition to the need for an expensive quasi-particle formation accelerator, the method involves stirring applied to the raw material in the drum mixer when the particle size composition of the raw material, that is, the ratio of the coarse part to the fine part changes. Since the force changes, it is difficult to adjust so as to obtain an appropriate stirring effect correspondingly.
[0004]
The present invention has been made in view of such circumstances, and even if the particle size configuration of the raw material charged into the drum mixer changes, pseudo particles that always have appropriate air permeability and combustibility corresponding to this change. It aims at providing the raw material granulation method which improves the productivity of the sintering machine which can manufacture.
[0005]
[Means for Solving the Problems]
The raw material granulation method for improving the productivity of the sintering machine according to the present invention in accordance with the above object is to sinter the raw material for sintered ore consisting of coarse particles and fine powders into pseudo particles by using a drum mixer, and then sintering. In the raw material granulation method for producing the granulated raw material charged into the machine,
The raw material contains fine powder having a particle diameter of less than 500 μm in a proportion of 30 to 70% by mass , and the stirring blade for stirring the raw material is detachably attached to the inner surface of the drum mixer , and the mounting position of the stirring blade is Starting from the raw material charging end of the drum mixer, the range is from ¼ to 3 of the total machine length, and the fine particle adhesion thickness of the pseudo particles is 77% or more in sintering , and air permeability (JPU) is set in a range of 19.5 or more . Therefore, when this granulated raw material is charged into a sintering machine, the combustibility and air permeability within the proper range are imparted to the sintered layer formed by the granulating raw material, so the productivity of the sintering machine is reduced. Can be increased.
[0006]
When the mounting position of the stirring blade in the drum mixer is less than 1/4 with respect to the total length of the drum mixer, starting from the raw material charging end, the stirring force is reduced. It is not preferable because a sufficient mixing effect cannot be obtained and it becomes difficult to granulate pseudo particles having a good shape or characteristics.
[0007]
Furthermore, the length toward the drum mixer center direction of the stirring blade is adjusted, for example, in the range of 100 to 500 millimeters, and pseudo particles having a fine powder adhesion thickness that requires the stirring force applied to the raw material by the stirring blade are formed. The range may be maintained. In this case, it is possible to adjust the magnitude of the stirring force without changing the rotational speed of the drum mixer.
The raw material to be charged into a drum mixer, fine particles having a particle size of less than 500 [mu] m is contained in a proportion of 30 to 70 wt%. When the content of the fine powder having a particle diameter of less than 500 μm is less than 30 % by mass , a fine powder adhesion layer having a sufficient thickness cannot be formed. Moreover, when it exceeds 70 mass% , since the thickness of a fine-powder adhesion layer becomes easy to become thick exceeding a limit, control of the thickness of a fine-powder adhesion layer becomes difficult, and it is unpreferable. Here, the reason why the particle diameter of the fine powder is set to less than 500 μm , that is, the boundary value between the fine powder and the coarse particles is set to 500 μm is as follows. That is, the raw material is likely to have a fine powder adhesion distribution that greatly depends on the kinetic energy of particles having a size of 500 μm or more, and the adhesion efficiency is maximized at a certain kinetic energy value. Therefore, this is preferably used as an index.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. Here, FIG. 1 is an explanatory diagram of a raw material granulating equipment to which a raw material granulating method for improving the productivity of a sintering machine according to an embodiment of the present invention is applied, and FIGS. 2 (a), (b), (c). ) Is a cross-sectional view, an enlarged front view and an enlarged side view of the drum mixer in the raw material granulation facility, FIG. 3 is a graph showing the particle size distribution of the raw material and the granulated raw material, and FIG. 4 is an adhesion efficiency of fine powder adhering to the coarse particles. FIG. 5 is a graph showing the relationship between the fine powder adhesion thickness and the stirring energy ratio, FIG. 6 is a graph showing the relationship between the remaining fine powder and the stirring energy ratio, and FIG. 7 is a graph showing the relationship between the production rate and the fine powder adhesion thickness.
[0009]
As shown in FIG.1 and FIG.2 (a), the raw material granulation equipment 10 which applies the raw material granulation method which improves the productivity of the sintering machine which concerns on one embodiment of this invention turns into a sintered ore. Forming pseudo particles while agitating the conveyor belt 11 for conveying raw materials composed of coarse particles and fine powders, each containing a predetermined amount of iron ore, coke, lime and other auxiliary materials, and the raw material charged via the conveyor belt 11 And a drum mixer 12 for the purpose.
The drum mixer 12 is a cylindrical rotating body having an inner diameter of 4 meters and a length of 20 meters that can be rotated at a constant speed, for example, about 7 rpm (4 to 15 rpm) by driving the motor 13. Inclined at a predetermined downward angle toward the side.
The inner wall surface 14 protrudes with a predetermined length, for example, a length of 250 millimeters (200 to 300 millimeters) toward the rotation axis of the drum mixer 12, and has a pitch interval of about 300 millimeters (200 to 500 millimeters). A plurality of rectangular stirring blades 15 having a width of 200 millimeters (150 to 400 millimeters) that are detachably disposed. In addition, the protrusion length of the stirring blade 15 and the width length can each be adjusted suitably according to the magnitude | size of the stirring force given to a raw material.
2 (b) and 2 (c), the stirring blade 15 is attached to and detached from the inner wall surface 14 of the drum mixer 12 via a fastening member 18 such as a bolt and nut using an L-shaped attachment jig 17. Installed as possible. The mounting positions of these stirring blades 15 are within a range indicated by hatching in FIG. 1 of L / 4 to L / 2 with respect to the entire machine length L, with the end of the raw material charging side of the drum mixer 12 as the starting point (starting point) of the region. The end point of the area is positioned.
[0010]
Then, the raw material granulation method which improves the productivity of the sintering machine applied to the said raw material granulation equipment 10 is demonstrated.
At this time, the stirring blades 15 attached to the inner wall of the drum mixer 12 are (A) 0 (no stirring blades 15 are installed in the longitudinal direction range of the drum mixer 12 starting from the raw material charging end with respect to the total end point. ), (B) 1/4, (C) 1/3, and (D) 1/2 so as to be in a range, and each was granulated.
The raw materials used herein, Australian based iron ore 40% Brazilian ore 15 wt%, with 15 mass% of other iron ore, this formulation lime powder 12 wt%, the Shoyuikoko 8 wt% Then, dust, serpentine and quicklime were added to the balance to make 100 % by mass . Further, 16 % by mass of return mineral and 3.5 % by mass of carbon were added to obtain a raw material charged into the drum mixer 12.
When the particle size distribution of this raw material was investigated, as shown by the broken line in FIG. 3, the fine powder content of less than 500 μm was 40 to 45 mass% . The particle size has a second maximum value in the range of 5000 to 2000 μm , and the particle size is such that the proportion of particles in this range is about 27 % by mass .
[0011]
Next, if necessary, a pseudo-particle accelerator or moisture is added to the raw material having such a specific particle size configuration to adjust the moisture content to a range of about 3 to 8 % by mass. Used to charge at a predetermined charging speed, or to the drum mixer 12 at once. Then, when the drum mixer 12 was rotated at a constant speed and mixed for 1 minute, water was added by 6.5% by weight and granulated for another 3.5 minutes.
The pseudo particles obtained by the granulation have a particle size distribution as shown by a solid line in FIG. In the figure, the data indicated by ◯ and △ indicate the results of the actual machine test and the laboratory test, respectively. As shown in the figure, the particles of less than 500 μm are reduced from 30 to 45 mass% to a level of 10 mass% or less before and after granulation. Therefore, it can be seen that the fine powder particles of less than 500 μm adhere to the surface of the coarse particles serving as nuclei to form a fine powder adhesion layer.
Then, this granulated raw material is charged on a pallet of a sintering machine (not shown) by forming a sintered layer so as to have a layer thickness of 550 mm, and ignited at an atmospheric temperature of 1200 ° C. for 30 seconds. Thereafter, firing was performed at an air flow of about 1500 Nm 3 / h · m 2 , and sintered ores corresponding to the installation conditions of the stirring blades of (A) to (D) were respectively produced.
While evaluating the air permeability of the sintered layer made of each granulated raw material by the following JPU index,
The yield was obtained by the shutter test, and the production rate was calculated from the firing time and the yield. The results shown in Table 1 below were obtained. The JPU index is a value defined by JPU = (air volume / fired area) × (sintered layer thickness / negative pressure) 0.6 . Here, the units of air volume, firing area, sintered layer thickness, and negative pressure are Nm 3 / min, m 2 , mm, and mmAq, respectively. Moreover, the yield by the shutter test is calculated by the weight ratio of sintered ore particles of 10 mm or more remaining without being destroyed after repeating the operation of dropping the sintered ore from a height of 2 m four times.
[0012]
[Table 1]
Figure 0004022018
[0013]
As shown in Table 1, as the agitating blade 15 gradually increases the installation range and installation area, the yield improves from 75% to 80%, but the air permeability deteriorates (reduction from 20 JPU to 18 JPU). This reduces the air volume and delays the firing rate. As a result, the productivity is maximum (30 T / dm 2 ) when the stirring blade 15 is installed in a range of 1/3 from the raw material charging end of the drum mixer 12. Thus, by appropriately arranging the stirring blades 15 according to the particle size configuration of the raw material charged into the drum mixer 12, the productivity in the sintering machine can be maximized or improved.
[0014]
That is, granulation in the sintered raw material is an operation in which a powder smaller than 500 μm is adhered to a particle of 500 μm or more, and each particle takes an adhesion distribution according to each kinetic energy, and the adhesion efficiency is determined with a certain kinetic energy value. Shows a distribution that becomes maximum and decreases before and after.
Further, the thinner the powder is attached, the better the combustibility of coke and the like and the better the yield. Therefore, it is desirable to attach fine particles having a larger specific surface area. For this,
It is desirable to increase the stirring force so that the kinetic energy in the drum mixer 12 is as large as possible.
On the other hand, the particles in the vicinity of 250 μm, which are the boundary between the powder and the grains, remain without being granulated, impeding aeration.
When the ratio of fine powder of 250 μm or less in the raw material is 30 % by mass or less, this non-granulated powder tends to increase when the stirring force is increased, and deteriorates ventilation.
Therefore, according to the fine powder amount ratio in the raw material, it is possible to control the yield adjustment by the adhesion thickness of the powder and the ventilation adjustment by the ungranulated fine powder by appropriately controlling the stirring force of the drum mixer 12. Under a certain raw material configuration, the productivity of the sintering machine can be maximized by setting the fine powder adhesion to an appropriate thickness.
[0015]
Here, FIGS. 4 to 7 show experimental examples of actual machine tests and laboratory tests performed to set the granulation conditions for optimizing the productivity in the above-described sintering machine.
FIG. 4 shows the relationship between the adhering efficiency of fine powder adhering to the coarse particles serving as the core and the kinetic energy imparted to the single particles by the stirring blades 15 and the like when forming the pseudo particles. As shown in the figure, it is understood that the adhesion efficiency can be maximized by setting the kinetic energy of the single particle to a range of about 10 −9 to 10 −7 kgm 2 / s 2 . The data indicated by ◯ indicates a case where the stirring force is relatively large as in the case where the stirring blade 15 is provided in a range of 1/2 from the starting point. The data indicated by Δ indicates a case where the stirring force is small when the stirring blade 15 is provided in a range of ¼ from the starting point. Moreover, as shown by the arrows in FIG. 4, it can be seen that even if the particles have the same particle size, the tendency of increase or decrease in the adhesion efficiency varies depending on the magnitude of the stirring force to be applied.
For example, particles having a particle size of 250 μm and 500 μm can improve the adhesion efficiency by increasing the stirring force. However, in the case of a large particle exceeding 2000 μm , the reverse is accompanied by an increase in stirring force. It can be seen that the adhesion efficiency tends to decrease.
[0016]
FIG. 5 is a graph showing the relationship between the fine powder adhesion thickness in the granulated pseudo particles and the stirring energy ratio expressed as 1 when the stirring blade is not attached to the experimental mixer having a diameter of 1 m, and as the stirring energy ratio increases. It shows that the fine powder adhesion thickness tends to gradually decrease.
FIG. 6 shows the relationship between the amount of residual fine powder remaining in an ungranulated state in the granulated material discharged from the drum mixer 12 and the stirring energy ratio. FIG. 7 shows the relationship between the production rate when the granulated raw material is sintered in the sintering machine and the fine powder adhesion thickness of the granulated raw material. In this case, the fine powder adhesion thickness is about 200 to 300. It is possible to maximize or optimize the production rate by adjusting the mounting state of the stirring blade 15 within a range of μm .
As described above, in the present embodiment, these conditions can be comprehensively considered, and the stirring blades 15 can be appropriately arranged to maximize the production rate of the granulated raw material in the sintering machine. It is like that.
[0017]
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, All the changes of the conditions which do not deviate from a summary are the application scope of this invention. For example, in the present embodiment, the mounting position in the drum mixer is limited as the mounting state of the stirring blade, but for each element such as the number of installed stirring blades, installation density, area, shape, etc. Evaluate the stirring power of the powder, adjust the fine powder adhesion thickness so that the combustibility and breathability of the granulated particles (granulated raw material) are optimal, and treat this granulated raw material with a sintering machine Productivity may be maximized. In this case, it is possible to experimentally determine the relationship between each change factor and the productivity that changes thereby, and to set conditions for maximizing or improving productivity from these relationships. it can.
[0018]
【The invention's effect】
In the raw material granulation method for improving the productivity of the sintering machine according to claim 1 , the mounting position of the stirring blade can be appropriately set depending on the raw material to be charged and the conditions of the raw material for granulation. Adjust the mounting state of the stirring blade according to the particle size composition of the particles and fine powder, set the fine particle adhesion thickness of the pseudo particles to a range that optimizes the combustibility and breathability during sintering, and depending on the granulation raw material It is possible to increase the productivity of the sintering machine by imparting appropriate ranges of combustibility and air permeability to the formed sintered layer.
[0019]
In particular, in the raw material granulation method for improving the productivity of the sintering machine, so that by limiting the mounting position of the stirring blade is attached state of agitation vanes in the drum mixer, each particle of the material by the rotation of the drum mixer The agitation force applied to is excessive, and the breakage of weak pseudo-particles at the initial stage of formation can be suppressed, and pseudo-particles having good morphology or characteristics can be produced more efficiently.
[0020]
And since the raw material charged into the drum mixer has a specific range of a fine powder ratio with a particle diameter of less than 500 μm , a fine powder adhesion layer having a necessary and sufficient thickness can be formed,
Control of the thickness of the fine powder adhesion layer can be facilitated.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a raw material granulation facility to which a raw material granulation method for improving the productivity of a sintering machine according to an embodiment of the present invention is applied.
FIGS. 2A, 2B, and 2C are a cross-sectional view, an enlarged front view, and an enlarged side view of a drum mixer in the raw material granulation facility, respectively.
FIG. 3 is a graph showing the particle size distribution of raw materials and granulated raw materials.
FIG. 4 is a graph showing the relationship between the adhesion efficiency of fine powder adhering to coarse particles and the kinetic energy imparted to a single particle.
FIG. 5 is a graph showing the relationship between fine powder adhesion thickness and stirring energy ratio.
FIG. 6 is a graph showing the relationship between residual fine powder and stirring energy ratio.
FIG. 7 is a graph showing the relationship between the production rate and the fine powder adhesion thickness.
[Explanation of symbols]
10: Raw material granulation equipment, 11: Conveyor belt, 12: Drum mixer, 13: Motor, 14: Inner wall surface, 15: Stirring blade, 17: Mounting jig, 18: Fastening member

Claims (1)

ドラムミキサーを用いて粗粒及び微粉からなる焼結鉱用の原料を擬似粒子に造粒し、焼結機に装入される造粒原料を製造する原料造粒方法において、
前記原料には粒子径500μm未満の微粉が30〜70質量%の割合で含まれ、前記ドラムミキサーの内面に前記原料を撹拌する撹拌羽根を着脱可能に取付けると共に、該撹拌羽根の取付け位置を、前記ドラムミキサーの原料装入端を起点にして全機長の1/4〜1/3までの範囲とし、前記擬似粒子の微粉付着厚みを焼結の際における歩留が77%以上、かつ通気性(JPU)が19.5以上となる範囲に設定することを特徴とする焼結機の生産性を向上させる原料造粒方法。
In a raw material granulation method for granulating raw materials for sintered ore consisting of coarse particles and fine powder into pseudo particles using a drum mixer, and producing a granulated raw material charged into a sintering machine,
The raw material contains fine powder having a particle diameter of less than 500 μm in a proportion of 30 to 70% by mass , and the stirring blade for stirring the raw material is detachably attached to the inner surface of the drum mixer, and the mounting position of the stirring blade is Starting from the raw material charging end of the drum mixer, the range is from ¼ to 3 of the total machine length, and the fine particle adhesion thickness of the pseudo particles is 77% or more in sintering , and air permeability (JPU) It sets to the range which becomes 19.5 or more, The raw material granulation method which improves the productivity of the sintering machine characterized by the above-mentioned.
JP09806299A 1999-04-05 1999-04-05 Raw material granulation method to improve productivity of sintering machine Expired - Lifetime JP4022018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09806299A JP4022018B2 (en) 1999-04-05 1999-04-05 Raw material granulation method to improve productivity of sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09806299A JP4022018B2 (en) 1999-04-05 1999-04-05 Raw material granulation method to improve productivity of sintering machine

Publications (2)

Publication Number Publication Date
JP2000290733A JP2000290733A (en) 2000-10-17
JP4022018B2 true JP4022018B2 (en) 2007-12-12

Family

ID=14209851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09806299A Expired - Lifetime JP4022018B2 (en) 1999-04-05 1999-04-05 Raw material granulation method to improve productivity of sintering machine

Country Status (1)

Country Link
JP (1) JP4022018B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564326B1 (en) * 2001-12-26 2006-03-29 주식회사 포스코 Drum mixer structure
UA90903C2 (en) * 2005-05-10 2010-06-10 Ниппон Стил Корпорейшн Method for production of granuls of sintered material (variants)
CN102741434A (en) * 2009-12-24 2012-10-17 孙翼夫 Method and apparatus for manufacturing molten reduced iron using an iron-containing byproduct
JP7024650B2 (en) * 2018-07-26 2022-02-24 日本製鉄株式会社 How to mix raw materials for granulation

Also Published As

Publication number Publication date
JP2000290733A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
KR100530815B1 (en) Metal oxide-containing green pellet for reducing furnace, method for production thereof, method for reduction thereof, and reduction facilities
JP4568243B2 (en) Method of kneading fine powder material
JP5315659B2 (en) Method for producing sintered ore
KR20140147139A (en) Method for manufacturing granulating raw material for sintering, device for manufacturing same, and method for manufacturing sintered ore for blast furnace
KR20140079818A (en) Method for granulation of sintering raw material
KR930003599B1 (en) Method for manufacturing agglomerates of sintered pellets
JP4022018B2 (en) Raw material granulation method to improve productivity of sintering machine
TWI509081B (en) Method for producing granulation material for sintering
RU2675883C2 (en) Method and device for producing granulates
JP3635253B2 (en) Method for producing pellet for reducing furnace, and method for reducing metal oxide
JP3820132B2 (en) Pretreatment method of sintering raw material
US5102586A (en) Agglomerating process of sinter mix and apparatus therefor
CN108291270B (en) Method for producing sintered ore
JP3058015B2 (en) Granulation method of sintering raw material
JP4261672B2 (en) Granulation method of sintering raw material
JP2004137575A (en) Production method for sintered ore
JP2004204332A (en) Method for producing sintering material
JP2790008B2 (en) Pre-processing method for sintering raw materials
JP3252646B2 (en) Sinter production method
JP2020033595A (en) Granulation method of blending raw material
JPH0819485B2 (en) Powder coke, anthracite granulation method and sinter production method
JP2002317228A (en) Method for treating iron ore powder hard to be granulated
JPH0437635A (en) Method for kneading powder coke and limestone
WO2023233871A1 (en) Method for producing granulated starting material for sintering, and method for producing sintered ore
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term