JP4021209B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4021209B2
JP4021209B2 JP2002013901A JP2002013901A JP4021209B2 JP 4021209 B2 JP4021209 B2 JP 4021209B2 JP 2002013901 A JP2002013901 A JP 2002013901A JP 2002013901 A JP2002013901 A JP 2002013901A JP 4021209 B2 JP4021209 B2 JP 4021209B2
Authority
JP
Japan
Prior art keywords
refrigerator
cooling
compartment
temperature
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002013901A
Other languages
Japanese (ja)
Other versions
JP2003214748A (en
Inventor
哲哉 斎藤
寿和 境
義人 木村
賢一 森下
真 小山田
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP2002013901A priority Critical patent/JP4021209B2/en
Publication of JP2003214748A publication Critical patent/JP2003214748A/en
Application granted granted Critical
Publication of JP4021209B2 publication Critical patent/JP4021209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵室と冷凍室を交互に独立して冷却する冷却システムを有する冷蔵庫に関するものである。
【0002】
【従来の技術】
図11に従来の冷却サイクル並びに冷蔵庫の一例として、特開2001−91130号公報に開示されている冷蔵庫の概略図を示す。
【0003】
図において、1は圧縮機、2は凝縮器、3は機械室11内に配設された切替弁であり、5は冷蔵室9内に配設された冷蔵室用蒸発器であり、7は冷凍室10内に配設された冷凍室用蒸発器である。
【0004】
4は冷蔵室冷却用である冷蔵室用蒸発器5の上流側に配設された第一のキャピラリであり、6は冷凍室冷却用である冷凍室用蒸発器7の上流側に配設された第二のキャピラリであり、8は冷凍室用蒸発器7の下流側に設けた逆止弁である。
【0005】
以上のように構成された冷蔵庫について、以下、その動作を説明する。
【0006】
圧縮機1が駆動された状態で、切替弁3により、圧縮機1から吐出される冷媒が冷蔵室用蒸発器5側に流れるように冷媒流路を切り替えた状態では、圧縮機1において圧縮された冷媒は、高温高圧ガスとなって凝縮器2に送られ、ここで放熱して液化される。そして液化された冷媒は、切替弁3により第一のキャピラリ4を通って冷蔵室用蒸発器5に送られ、所定の温度で蒸発することに伴い周囲の熱を奪い、この結果、周囲の空気を冷却する。ガス化した冷媒は再び圧縮機1において圧縮されるようになる。
【0007】
このとき、冷蔵室用蒸発器5により冷却された冷気は冷蔵室用ファン11の送風作用により冷蔵室9に供給され庫内が冷却される。この場合、冷蔵室9の設定温度は例えば+2℃程度であり、冷蔵室用蒸発器5による蒸発温度が約−5℃程度となるように、圧縮機1の運転周波数が設定される。また、この時の冷蔵室用蒸発器5の圧力は約0.24MPaである。このような冷却状態を冷蔵室冷却モードという。
【0008】
また、圧縮機1が駆動された状態で、切替弁3により、圧縮機1から吐出される冷媒が冷凍室用蒸発器7側に流れるように冷媒流路を切り替えた状態では、圧縮機1において圧縮された冷媒は、高温高圧ガスとなって凝縮器2に送られ液化された冷媒は、切替弁3により第二のキャピラリ6を通って冷凍室用蒸発器7に送られ、所定の温度で蒸発することに伴い周囲の熱を奪い、この結果、周囲の空気を冷却する。ガス化した冷媒は逆止弁8を通り、再び圧縮機1において圧縮される。
【0009】
このとき、冷凍室用蒸発器7により冷却された冷気は冷凍室用ファン12の送風作用により冷凍室10に供給され庫内が冷却される。この場合、冷凍室10の設定温度は約−18℃であるために、冷凍室用蒸発器7による蒸発温度が約−28℃となるように、圧縮機1の運転周波数が設定される。また、この時の冷凍室用蒸発器7の圧力は約0.09MPaである。このような冷却状態を冷凍室冷却モードという。
【0010】
このような冷蔵庫において、冷蔵室9、冷凍室10には図示しないがそれぞれ温度センサーが設けられていて、それら各温度センサーの検出信号はマイクロコンピューターを備えた制御回路に入力されるようになる。制御回路は、それらの検出信号と、予め備えた制御プログラムに従って、圧縮機1、切替弁3、冷蔵室用ファン11、冷凍室用ファン12などを制御する。
【0011】
そして、冷蔵室9および冷凍室10とが共に予め設定された設定温度まで冷却された状態で、圧縮機1を停止させる場合、冷蔵室冷却モードで行う。冷蔵室冷却モードにおいては、切替弁3としては圧縮機1と冷蔵室用蒸発器5の入口とを連通した状態となっており、圧縮機1と冷凍室用蒸発器7の入口との間は遮断されている。この状態で圧縮機1を停止させた場合、高圧側からの高温の冷媒が冷凍室用蒸発器7に流入することはなく、しかも、圧力差のために冷凍室用蒸発器7の出口側の逆止弁3が作用するようになるので、冷蔵室用蒸発器5から冷凍室用蒸発器7への冷媒の逆流もない。従って、冷凍室用蒸発器7には低温の冷媒が保持されることになり、冷凍室用蒸発器7の温度が上昇することを抑えられるようになる。そして、圧縮機1の再起動時には冷凍室冷却モードから開始され、このときに、冷凍室用蒸発器7に保持されていた低温の冷媒が再循環することになるので、冷却効率の良い運転ができる。
【0012】
【発明が解決しようとする課題】
しかしながら、上記従来の構成は圧縮機1を冷蔵室冷却モードで停止させるので圧縮機1と冷凍室用蒸発器7の入口との間は遮断されているために、冷凍室用蒸発器7の温度上昇に伴う冷凍室10の昇温は抑制できるが、圧縮機1と冷蔵室用蒸発器5の入口とが連通した状態となっているために、高圧側から高温の冷媒が冷蔵室用蒸発器5に流入し、冷蔵室用蒸発器5の温度上昇に伴う冷蔵室9の温度上昇が大きいという欠点があった。
【0013】
また、常に圧縮機1を冷蔵室冷却モードで停止させるので、冷蔵室9の冷却が必要ない場合においても冷蔵室9を冷却するなど、庫内温度の変化にフレキシブルに対応できないという欠点もあった。
【0014】
本発明は、従来の課題を解決するもので、圧縮機停止中の冷蔵室および冷凍室の昇温を最小限にとどめ、且つ冷却時の効率を向上することを目的とする。
【0017】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、圧縮機と、凝縮器と、流路切替手段である三方弁と、第一のキャピラリと、冷蔵室用蒸発器と、第二のキャピラリと、冷凍室用蒸発器と、逆止弁と、冷蔵室冷却用ファンと、冷凍室冷却用ファンとを備えた冷蔵室と冷凍室とを有する冷蔵庫において、前記冷蔵室に前記冷蔵室用蒸発器を、前記冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室用蒸発器と冷凍室用蒸発器に切り替え、前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、各庫内温度の何れか一方が設定温度以上を検知すると前記三方弁を前記冷蔵室用蒸発器側に開としたのち所定時間経過後、前記圧縮機を起動させるものであり、圧縮機停止初期に、高温高圧の冷媒が冷蔵室、冷凍室それぞれの蒸発器ともに流入しないので、圧縮機停止直前の最もよく冷却された蒸発器の温度上昇を防止でき、各庫内の温度上昇を効率的に抑えることが可能となる。とともに、圧縮機起動時には冷蔵室用蒸発器回路を介して高圧側と低圧側の圧力は同等圧力にバランスしているので、起動時に圧縮機にかかるトルクを最小限に抑えることができ圧縮機のトルク不足による起動不良を防止することが可能となる。
【0018】
請求項2に記載の発明は、請求項1に記載の発明において、冷蔵室冷却開始時、所定時間、冷凍室冷却用ファンを運転するものであり、冷凍室用蒸発器内に滞留している冷媒の蒸発を促進し冷凍室用蒸発器から圧縮機へ冷媒をスムーズに供給できるので冷蔵室冷却開始時の冷媒循環量不足を防止でき冷却効率を向上することが可能なる。また、効率的な冷媒供給によりシステム内の冷媒封入量を低減することができる。
【0019】
請求項3に記載の発明は、請求項2に記載の発明において、冷蔵室冷却モード中に冷凍室用蒸発器の温度検知手段が冷凍室の温度検知手段より所定温度以上高いことを検知すると、所定時間内であっても冷凍室冷却用ファンを停止させるものであり、冷凍室用蒸発器内に滞留していた冷媒が全て圧縮機側へ供給されたか検知することができ、冷凍室用ファンの運転時間を短縮できるので冷蔵室冷却中の冷凍室の昇温を最小限に抑えることが可能となる。
【0020】
請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明において、冷蔵室冷却モードと冷凍室冷却モードの切替は、現在冷却を行っている庫内の設定温度以下または各冷却モード毎に設定した最大冷却時間経過後に行うものであり、実際の使用条件下において各庫内を偏ることなく交互に効率よく冷却することが可能となる。
【0024】
請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、圧縮機停止中に冷蔵室および冷凍室が共に設定温度以上を検知した場合、冷蔵室冷却モードから冷却を開始するものであり、冷蔵室冷却モード中に冷凍室蒸発器内に滞留する冷媒を最小限に抑えることができ冷蔵室冷却の効率を向上することが可能となる。
【0025】
請求項6に記載の発明は、請求項1から請求項5のいずれか一項に記載の発明において、冷凍室用蒸発器を除霜する除霜ヒータを有し、前記除霜ヒータにより前記冷凍室用蒸発器を除霜した後は、冷凍室冷却モードから開始するものであり、除霜による冷凍室庫内の昇温を最小限に抑えることができアイスクリーム等の冷凍食品の保鮮性を向上することが可能となる。
【0026】
請求項7に記載の発明は、請求項1から請求項6のいずれか一項に記載の発明において、電源投入時は冷蔵室冷却モードから冷却を開始するものであり、電源投入後初回の前記冷蔵室冷却中に冷凍室蒸発器内に滞留する冷媒を最小限に抑えることができ冷蔵室冷却の効率を向上することが可能となる。
【0027】
請求項8に記載の発明は、請求項1から請求項7のいずれか一項に記載の発明において、冷凍サイクルの冷媒として、炭化水素を用いたものであり、地球温暖化を抑制できるとともに、冷却効率を高めた冷蔵庫を提供できる。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態について図1〜図11を用いて説明する。なお、従来と同一構成については同一符号を付して詳細な説明を省略する。
【0029】
(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の断面図であり、図2は同実施例のタイムチャートである。
【0030】
18は冷蔵庫箱体であり、上方部に比較的高温の区画である冷蔵室9を、下方部に比較的低温の冷凍室10を配置しており、例えばウレタンのような断熱材で周囲と断熱して構成している。食品等の収納物の出し入れは図示しない断熱ドアを介して行われる。冷蔵室9は冷蔵保存のために通常1〜5℃で設定されているが、保鮮性向上のため若干低めの温度、例えば−3〜0℃で設定されることもあり、収納物によって、使用者が自由に上記のような温度設定を切り替えることを可能としている場合もある。また、ワインや根野菜等の保鮮のために、例えば10℃前後の若干高めの温度設定とする場合もある。
【0031】
冷凍室10は冷凍保存のために通常−22〜−18℃で設定されているが、保鮮性向上のためより低温の温度、例えば−30〜−25℃で設定されることもある。冷凍サイクル19は圧縮機1と凝縮器2と流路切替手段である三方弁3と第一のキャピラリ4と冷蔵室用蒸発器5と第一のサクションライン13を順次接続し、三方弁3を介して第一のキャピラリ4と冷蔵室用蒸発器5と第一のサクションライン13と並列になるように第ニのキャピラリ6と冷凍室用蒸発器7と第二のサクションライン14と第二のサクションライン14の途中には逆止弁8を接続してある。そして、流路切替手段である三方弁3は、冷蔵室用蒸発器5にも冷凍室用蒸発器7にも連通しない全閉機能を有している。そして、冷凍サイクルの冷媒としては、炭化水素系冷媒、たとえばイソブタンを用いている。
【0032】
圧縮機1と凝縮器2と三方弁3と逆止弁8は可燃性を有する炭化水素系冷媒を用いた場合の安全性向上の面から冷蔵庫箱体18内での配管溶接箇所低減のため機械室17内に配設してある。また、各蒸発器から戻ってくる冷媒は圧縮機吸込管15を通って圧縮機1内空間へ放出された後、圧縮機吐出管16を通じて吐出される構成である。冷蔵室用蒸発器5は冷蔵室9内の、例えば冷蔵室9奥面に配設されており、近傍には冷蔵室9の区画内空気を冷蔵室用蒸発器5に通過させて循環させる冷蔵室用ファン11が設けてある。また、冷凍室用蒸発器7は冷凍室10内の、例えば冷凍室10奥面に配設されており、近傍には冷凍室10の区画内空気を冷凍室用蒸発器7を通過させて循環させる冷凍室用ファン12が設けてある。
【0033】
また、圧縮機1は例えばインバータによる回転数制御で冷媒循環量を制御し冷凍能力を変化させることができる能力可変型としてある。また、三方弁3は例えばパルスモータにより作動するものであり開閉の動作中のみ通電されるものである。また、冷蔵室9と冷凍室10には区画室内温度を検知する、例えばサーミスタである温度検知手段TH1、TH2を設けてあり、圧縮機1と三方弁3と冷蔵室用ファン11と冷凍室用ファン12とを制御する制御手段C1とを備えている。
【0034】
以上のように構成された冷蔵庫について、冷蔵室9と冷凍室10の冷却制御について図2のタイムチャートを参照しながら説明する。
【0035】
圧縮機1停止中に、冷蔵室9および冷凍室10の温度検知手段であるTH1もしくはTH2のうちいずれか一方が、予め設定された所定の温度以上を検知すると制御手段C1はこの信号を受け、例えば冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると圧縮機1と冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9冷却を開始する(T1)。圧縮機1の動作により吐出された高温高圧の冷媒は、凝縮器2にて放熱して凝縮液化し、三方弁3を経て第一のキャピラリ4に至る。その後、第一のキャピラリ4で第一のサクションライン13と熱交換しながら減圧されて冷蔵室用蒸発器5に至る。冷蔵室用ファン11の作動により冷蔵室9内の空気と積極的に熱交換した冷媒は冷蔵室用蒸発器5内で蒸発気化し、熱交換した空気はより低温の空気となって吐出され冷蔵室9を冷却する。気化した冷媒は、第一のサクションライン13を経て圧縮機1に吸入される。
【0036】
なお、第二のサクションライン14の途中に逆止弁8を配設しているので第一のサクションライン13を経た冷媒が第二のサクションライン14を経て冷凍室用蒸発器7内に流入することはない。
【0037】
冷蔵室9冷却中に冷蔵室温度検知手段TH1が予め設定された所定の温度(t1L)以下且つ冷凍室温度検知手段であるTH2が予め設定された所定の温度(t2L)以上を検知以下すると、制御手段C1はこの信号を受け冷蔵室用ファン11を停止するとともに冷凍室用ファン12を作動し、三方弁3を第ニのキャピラリ6側に開放し冷凍室10の冷却を開始する(T2)。圧縮機1の動作により吐出された高温高圧の冷媒は、凝縮器2にて放熱して凝縮液化し、三方弁3を経て第ニのキャピラリ6に至る。その後、第ニのキャピラリ6で第ニのサクションライン14と熱交換しながら減圧されて冷凍室用蒸発器7に至る。冷凍室用ファン12の作動により冷凍室10内の空気と積極的に熱交換した冷媒は冷凍室用蒸発器7内で蒸発気化し、熱交換した空気はより低温の空気となって吐出され冷凍室10を冷却する。気化した冷媒は、第ニのサクションライン14および逆止弁8を経て圧縮機1に吸入される。
【0038】
冷凍室10冷却中に冷凍室温度検知手段TH2が予め設定された所定の温度(t2L)以下且つ冷蔵室温度検知手段であるTH1が予め設定された所定の温度(t1H)以上を検知すると制御手段C1はこの信号を受け冷凍室用ファン12を停止するとともに冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9の冷却を開始する(T3)。
【0039】
以上の動作を繰り返し、三方弁3を用いて冷媒の流れを切り替えることにより、冷蔵室9と冷凍室10を交互に冷却し、冷蔵室9と冷凍室10の温度検知手段が共に予め設定された所定の温度(t1Hおよびt2L)より低いことを検知すると三方弁3を第一のキャピラリ4側流路および第ニのキャピラリ6側流路ともに閉とし圧縮機1、冷蔵室用ファン11、冷凍室用ファン12を停止する(T4)。圧縮機1停止中に、冷蔵室9および冷凍室10の温度検知手段であるTH1もしくはTH2のうちいずれか一方が、予め設定された所定の温度以上を検知すると制御手段C1はこの信号を受け、例えば冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると圧縮機1と冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9冷却を開始する(T5)。
【0040】
そして、圧縮機1停止中は三方弁3を第一のキャピラリ4側流路および第ニのキャピラリ6側流路ともに閉としているので、圧縮機1運転中に凝縮器2内に滞留していた高温高圧の冷媒は冷蔵室用蒸発器5および冷凍室用蒸発器7に流入しないので圧縮機1停止中の各部屋の温度上昇を最小限に抑えることが可能となる。また、圧縮機1停止中は凝縮器2側に冷媒を滞留しているので、次回の冷却モードが冷蔵室9冷却、冷凍室10冷却何れの場合でも速やかに各蒸発器に冷媒を供給することが可能となり冷却効率を向上することができる。
【0041】
なお、冷蔵室用ファン11を停止後冷凍室10の冷却を開始するとしたが、冷蔵室用蒸発器5を除霜する目的で冷凍室10の冷却開始後、所定時間経過した後に冷蔵室ファン11を停止させてもよい。これにより冷蔵室用蒸発器5を冷凍室10の冷却中に除霜でき、次回の冷蔵室10の冷却をさらに効率よく行うことが可能となる。また、可燃性の炭化水素系冷媒を用いた場合でも、冷蔵室用蒸発器5あるいは冷凍室用蒸発器7での冷媒滞留を減らすことができるので、冷凍サイクル内の冷媒封入量を削減でき、万が一の冷媒漏洩時の安全性を高めることができる。
【0042】
(実施の形態2)
図3は、本発明の実施の形態2における冷蔵庫のタイムチャートを示している。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0043】
冷蔵室9と冷凍室10の温度検知手段が共に予め設定された所定の温度(t1Hおよびt2L)より低いことを検知すると三方弁3を第一のキャピラリ4側に開放し圧縮機1を停止する(T6)。そして、圧縮機1停止中に、冷蔵室9および冷凍室10の温度検知手段であるTH1もしくはTH2のうちいずれか一方が、予め設定された所定の温度以上を検知すると制御手段C1はこの信号を受け、例えば冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると圧縮機1と冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放した状態で冷蔵室9冷却を開始する(T7)。
【0044】
以上説明したように、三方弁3を圧縮機1停止と同時に冷蔵室用蒸発器5側に開放するので、圧縮機停止直前の冷却モードに制約されることがなく、冷蔵室9冷却、冷凍室10冷却いずれの冷却からでも圧縮機1を停止することができるので、実際の使用条件下でも効率的でフレキシブルな運転制御が可能となる。
【0045】
また、圧縮機停止中、三方弁3は冷蔵室用蒸発器5側に開放されており、且つ逆止弁8の作用により圧縮機1運転中に凝縮機2内に滞留していた高温高圧の冷媒は冷凍室用蒸発器7に流入しないので冷凍室10の温度上昇を最小限に抑えることが可能となる。
【0046】
さらに、圧縮機起動時には冷蔵室用蒸発器回路を介して高圧側と低圧側の圧力は同等圧力にバランスしているので、起動時に圧縮機にかかるトルクを最小限に抑える事ができ、圧縮機のトルク不足による起動不良を防止することが可能となり圧縮機の信頼性が向上するとともに低トルクのモータ設計が可能となり省エネ効果も有する。
【0047】
(実施の形態3)
図4は、本発明の実施の形態3における冷蔵庫のタイムチャートを示している。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0048】
冷蔵室9と冷凍室10の温度検知手段が共に予め設定された所定の温度(t1Hおよびt2L)より低いことを検知すると三方弁3を第一のキャピラリ4側流路および第ニのキャピラリ6側流路ともに閉とし圧縮機1を停止する(T8)。圧縮機1停止中に、冷蔵室9および冷凍室10の温度検知手段であるTH1もしくはTH2のうちいずれか一方が、予め設定された所定の温度以上を検知すると制御手段C1はこの信号を受け、例えば冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると三方弁3を冷蔵室蒸発器5側に開放する(T9)。そして、所定時間経過後(Ta)、圧縮機1と冷蔵室用ファン11を作動し冷蔵室9冷却を開始する(T10)。
【0049】
したがって、圧縮機1起動時には冷蔵室用蒸発器5回路を介して高圧側と低圧側の圧力は同等圧力にバランスしているので、起動時に圧縮機1にかかるトルクを最小限に抑えることができ圧縮機1のトルク不足による起動不良を防止することが可能となり、且つ冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知するまで三方弁3を冷蔵室用蒸発器5側および冷凍室用蒸発器7側ともに閉としているので冷蔵室9の昇温を最小限に抑えることができる。つまり、冷蔵室9の効率的な温度上昇防止と圧縮機起動性向上のためのシステム圧力のバランス化を両立することができる。
【0050】
なお、所定時間(Ta)は高低圧がバランスするまでの最小時間に設定することが望ましく、外気温により高低圧がバランスする時間にばらつきがあるので外気温別に所定時間(Ta)を設定することで、さらに冷却効率を向上することが可能となる。
【0051】
また、図5のタイムチャートに示すように、圧縮機1停止中に冷凍室10の温度検知手段が予め設定された所定の温度(t2H)以上を検知した場合も同様に三方弁3を冷蔵室蒸発器5側に開放し(T9)、所定時間経過後(Ta)、圧縮機1と冷凍室用ファン12を作動し三方弁3を第二のキャピラリ6側に開放し冷凍室10冷却を開始する。つまり、圧縮機1停止中に冷凍室10の庫内温度が上昇した場合でも三方弁3を冷蔵室蒸発器5側に開放して高低圧をバランスさせるので、冷凍室10の昇温を最小限に抑えることが可能となる。
【0052】
(実施の形態4)
図6は、本発明の実施の形態4における冷蔵庫のタイムチャートを示している。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0053】
冷凍室10冷却中に冷凍室温度検知手段TH2が予め設定された所定の温度(t2L)以下且つ冷蔵室温度検知手段であるTH1が予め設定された所定の温度(t1H)以上を検知すると制御手段C1はこの信号を受け冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9の冷却を開始する(T12)。そして、タイマーにより所定時間(TFAN)経過後、冷凍室用ファン12を停止し冷蔵室9冷却を継続する(T13)。
【0054】
また、圧縮機1停止中に、冷蔵室9の温度検知手段が予め設定された所定の温度(t1H)以上を検知すると圧縮機1と冷蔵室用ファン11と冷凍室用ファン12を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9冷却を開始する(T14)。そして、同様にタイマーにより所定時間(TFAN)経過後、冷凍室用ファン12を停止し冷蔵室9冷却を継続する(T15)。
【0055】
また、所定時間(TFAN)以内に冷蔵室温度検知手段TH1が予め設定された所定の温度(t1L)以下を検知した場合は冷蔵室10冷却を終了するとともに冷凍室用ファン12を停止する。
【0056】
以上説明したように、冷蔵室9冷却開始時に冷凍室用ファン12を所定時間運転することにより冷凍室用蒸発器7内に滞留している冷媒の蒸発を促進し、冷凍室用蒸発器7から圧縮機1へ冷媒をスムーズに供給できるので冷蔵室9冷却開始時の冷媒循環量不足を防止でき冷蔵室9の冷却効率を向上することが可能となる。
【0057】
なお、冷凍室用ファン12が能力可変型の場合、冷蔵室9冷却開始から所定時間(TFAN)最大能力で運転させることにより冷凍室用蒸発器7からさらに速やかに圧縮機1へ冷媒を供給できるので冷蔵室9の冷却効率をさらに向上することが可能となる。
【0058】
なお、図7のタイムチャートに示すように、冷凍室10冷却中に冷凍室温度検知手段TH2が予め設定された所定の温度(t2L)以下且つ冷蔵室温度検知手段であるTH1が予め設定された所定の温度(t1H)以上を検知すると制御手段C1はこの信号を受け冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9の冷却を開始する(T16)。
【0059】
そして、冷蔵室9冷却中に冷凍室用蒸発器7の配管もしくはフィンに取り付けた温度検知手段TH3が冷凍室温度検知手段TH2より設定温度(t23)以上高いことを検知すると所定時間(TFAN)内であっても冷凍室ファン12を停止させる(T17)。
【0060】
以上より、冷蔵室9冷却開始時に冷凍室用ファン12を運転することにより冷凍室用蒸発器7内に滞留している冷媒の蒸発を促進し、冷凍室用蒸発器7から圧縮機1へ冷媒をスムーズに供給できるので冷蔵室9冷却開始時の冷媒循環量不足を防止でき冷蔵室9の冷却効率を向上することが可能となり、且つ冷凍室用蒸発器7内に滞留していた冷媒が全て圧縮機1側へ供給されたか検知することができるので、必要以上に冷凍室用ファン12を運転させることがなくなり冷蔵室9冷却中の冷凍室10の昇温を最小限に抑えることが可能となる。
【0061】
なお、上記実施の形態では冷凍室10冷却から冷蔵室9冷却を開始する例で説明したが、圧縮機1停止から冷蔵室9冷却を開始する場合も同様の効果が得られる。
【0062】
(実施の形態5)
図8は、本発明の実施の形態5における冷蔵庫のタイムチャートを示している。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0063】
冷蔵室9冷却と冷凍室10冷却の冷却時間にそれぞれ最大冷却時間TmPC、TmFCを設けて最大時間経過後冷却状態の切り替えることを行うことを特徴としている。
【0064】
冷凍室10冷却中に冷凍室温度検知手段TH2が予め設定された所定の温度(t2L)以下且つ冷蔵室温度検知手段であるTH1が予め設定された所定の温度(t1H)以上を検知すると制御手段C1はこの信号を受け冷凍室用ファン12を停止するとともに冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷蔵室9の冷却を開始する(T20)。
【0065】
そして、冷蔵室9冷却中に冷蔵室温度検知手段TH1が予め設定された所定の温度(t1L)以下にならなければ冷蔵室9冷却に設けられた最大冷蔵室冷却時間(TmPC)経過後、冷蔵室用ファン11を停止するとともに冷凍室用ファン12を作動し、三方弁3を第ニのキャピラリ6側に開放し冷蔵室9冷却を終了するとともに冷凍室10冷却を開始する(T21)。
【0066】
そして、冷蔵室9冷却同様、冷凍室10冷却中に冷蔵室温度検知手段TH2が予め設定された所定の温度(t2L)以下にならなければ冷凍室10冷却に設けられた最大冷凍室冷却時間(TmFC)経過後、冷凍室用ファン12を停止するとともに冷蔵室用ファン11を作動し、三方弁3を第一のキャピラリ4側に開放し冷凍室10冷却を終了するとともに冷蔵室9冷却を開始する(T22)。
【0067】
以上の動作を繰り返し、最大冷却時間内に温度検知手段が所定の温度(t1L、t2L)に到達すれば冷却状態の切り替えを行う。
【0068】
したがって、例えば冷蔵室9のドア開閉が頻繁に行われた場合、所定の温度(t1L)のみで冷蔵室9の冷却を制御すると長時間冷凍室10の冷却に移行しないので冷凍室10内の食品の温度上昇が激しくなりアイスクリームが溶ける等の問題が生ずるが、本実施の形態のように冷蔵室9、冷凍室10の冷却に最大冷却時間を設けることにより偏った負荷バランスの場合でも負荷が軽い部屋の昇温を抑えつつ、負荷が大きい部屋の冷却を優先して行うことが可能となる。
【0069】
なお、各部屋の最大冷却時間(TmPC、TmFC)を各外気温別に設けるとさらに効率よく冷却を行うことが可能となる。
【0070】
また、冷蔵室9冷却と冷凍室10冷却の冷却時間にそれぞれ最大冷却時間TmPC、TmFCを設け、且つTmPC、TmFCを、冷却開始時の冷却を開始する側の庫内温度と設定温度との温度差および冷却を行わない側の庫内温度と設定温度との温度差により毎サイクルごとに見直しを行うことができる。
【0071】
(表1)は最大冷蔵室冷却時間TmPC設定テーブルの一例を示す。
【0072】
【表1】

Figure 0004021209
【0073】
(表2)は最大冷凍室冷却時間TmFC設定テーブルの一例を示す。
【0074】
【表2】
Figure 0004021209
【0075】
ここで、(表1)、(表2)に示した最大冷却時間テーブルより具体的な数値を用いてTmPC、TmFCの設定方法を説明する。
【0076】
冷蔵室9冷却開始時に、例えば冷蔵室温度検知手段であるTH1が予め設定された所定の温度(t1H)+2℃以下であり、且つ冷凍室検知手段であるTH2が予め設定された所定の温度(t2H)以下である場合、冷蔵室9、冷凍室10ともに優先して冷却する必要はないと判断し、最大冷蔵室冷却時間を基本時間であるTmPCとして冷蔵室9の冷却を開始する。
【0077】
また、冷蔵室9冷却開始時に、TH1がt1H+2℃以上、t1H+4℃以下であり、且つ冷凍室検知手段であるTH2がt2H以下である場合は冷蔵室9を優先して冷却すべきであると判断し、最大冷蔵室冷却時間を基本時間であるTmPC+5分に延長し冷蔵室9の冷却を開始する。
【0078】
同様に、冷蔵室9冷却開始時に、TH1がt1H+4℃以上であり、且つ冷凍室検知手段であるTH2がt2H以下である場合は冷蔵室9をさらに優先して冷却すべきであると判断し、最大冷蔵室冷却時間を基本時間であるTmPC+10分に延長し冷蔵室9の冷却を開始する。
【0079】
次に、冷蔵室9冷却開始時に、冷凍室検知手段であるTH2が予め設定された所定の温度(t2H)以上である場合について説明する。
【0080】
冷蔵室9冷却開始時に、TH1がt1H+2℃以下であり、且つTH2がt2H以上、t1H+2℃以下である場合は、冷蔵室9、冷凍室10ともに優先して冷却する必要はないと判断し、最大冷蔵室冷却時間を基本時間であるTmPCとして冷蔵室9の冷却を開始する。
【0081】
また、冷蔵室9冷却開始時に、TH1がt1H+2℃以下であり、且つTH2がt2H+2℃以上、t2H+4℃以下である場合は冷凍室10を優先して冷却すべきであると判断し、次回の冷凍室10冷却を速やかに開始するために最大冷蔵室冷却時間を基本時間であるTmPC−5分に短縮し冷蔵室9の冷却を開始する。
【0082】
同様に、冷蔵室9冷却開始時に、TH1がt1H+2℃以下であり、且つTH2がt2H+4℃以上である場合は冷凍室10をさらに優先して冷却すべきであると判断し、次回の冷凍室10冷却を速やかに開始するために最大冷蔵室冷却時間を基本時間であるTmPC−10分に短縮し冷蔵室9の冷却を開始する。
【0083】
同様に、冷蔵室9冷却開始時に、TH1がt1H+4℃以上であり、且つTH2がt2H+4℃以上である場合は冷蔵室9、冷凍室10ともに庫内の温度上昇が大きく、偏ることなく交互に冷却を行う必要があるので、最大冷蔵室冷却時間を基本時間であるTmPCとして冷蔵室9の冷却を開始する。
【0084】
以上説明したように、冷蔵室9冷却開始時に最大冷蔵室冷却時間TmPCテーブルにより最大冷蔵室冷却時間の見直しを毎サイクルごとに行い、冷蔵室9の冷却を行う。また、冷凍室10に関しても同様に、冷凍室10冷却開始時に最大冷凍室冷却時間TmFCテーブルにより最大冷凍室冷却時間の見直しを毎サイクルごとに行い、冷凍室10の冷却を行うことにより、一方の部屋の庫内温度が設定温度に対して大幅に大きい場合、他方の部屋の最大冷却時間を小さく設定することにより冷却すべき部屋の冷却に速やかに移行し優先して冷却することができるので食品の昇温を最小限に抑えることが可能となる。
【0085】
また、各部屋の基本の最大冷却時間(TmPC、TmFC)を各外気温別に組合せ設けるとさらに効率よく冷却を行うことが可能となる。
【0086】
また、TmPC、TmFCのテーブルは一例であるのでTH1とt1Hの差とTH2とt2Hの差の範囲を2℃、4℃と同様の数値としたがデータの蓄積によりTH1とTH2の範囲を異なる数値にすることにより、さらに効率よく冷却を行うことが可能となる。
【0087】
(実施の形態6)
図9は、本発明の実施の形態6における冷蔵庫のタイムチャートを示している。
【0088】
本実施の形態の冷蔵庫における圧縮機1の回転数は、圧縮機1停止から冷却への移行の場合は冷却を開始する庫内の庫内温度と設定温度との温度差により決定し、冷却から冷却への移行の場合は移行直前の回転数を最低回転数とした上で庫内温度と設定温度との温度差により回転数を決定するものである。
【0089】
(表3)は同実施の形態の冷蔵庫の冷蔵室冷却時の圧縮機回転数設定テーブルである。
【0090】
【表3】
Figure 0004021209
【0091】
(表4)は同実施の形態の冷蔵庫の冷凍室冷却時の圧縮機回転数設定テーブルである。
【0092】
【表4】
Figure 0004021209
【0093】
(表3)、(表4)において、圧縮機1停止中に、例えば冷蔵室9の温度検知手段が予め設定された所定の温度t1H以上、tH1+tpc1以下を検知した場合、冷蔵室9冷却時の圧縮機回転数設定テーブルにより決められた回転数HZ1で圧縮機1を作動し、冷蔵室9の冷却を開始する(T23)。
【0094】
冷蔵室9冷却終了後、冷凍室検知手段であるTH2が予め設定された所定の温度t2H+tfc1以上、t2H+tfc2以下を検知した場合、冷凍室10冷却時の圧縮機回転数設定テーブルにより決められた回転数HZ2に圧縮機1の回転数をシフトUPし、冷凍室10の冷却を開始する(T24)。
【0095】
冷凍室10冷却終了後、冷蔵室検知手段であるTH1がt1H+tfc2以上を検知した場合、冷蔵室9冷却時の圧縮機回転数設定テーブルにより決められた回転数HZ3に圧縮機1の回転数をシフトUPし、冷蔵室9の冷却を開始する(T25)。冷蔵室9冷却終了後、冷凍室検知手段であるTH2が所定の温度t2H+tfc1以上、t2H+tfc2以下を検知した場合、冷凍室10冷却時の圧縮機回転数設定テーブルにより決められる圧縮機1の回転数はHZ2となるが、冷蔵室9冷却終了時の圧縮機1の回転数がHZ3であるので、HZ3を最低回転数として圧縮機回転数設定テーブルより回転数を決定し、回転数HZ3で冷凍室10の冷却を開始する(T26)。
【0096】
圧縮機1の回転数をHZ3に維持したまま以上の動作を繰り返し、冷蔵室9と冷凍室10の温度検知手段が共に予め設定された所定の温度(t1Hおよびt2L)より低いことを検知すると圧縮機1を停止する(T28)。
【0097】
また、次回の圧縮機1起動は昇温した側の圧縮機回転数設定テーブルにより決められた回転数で行う。
【0098】
以上説明したように、冷凍室10の冷却を必要以上の圧縮機1の冷凍能力で行うために速やかに冷凍室10冷却を終了し、庫内温度と設定温度との差が大きい冷蔵室9の冷却を優先して行うことができるので、庫内温度と設定温度との差が大きい側の食品の昇温を最小限に抑えることが可能となる。
【0099】
また、圧縮機1の起動から停止までの回転数変動を最小限に抑えることができるので安定した冷却が可能となる。
【0100】
なお、上記実施の形態では冷蔵室9冷却から冷凍室10冷却に移行する場合の圧縮機1の回転数設定について説明したが、冷凍室10冷却から冷蔵室9冷却に移行する場合も圧縮機1の最低回転数の設定を冷凍室10冷却の最終回転数とすると同様の効果が得られる。
【0101】
また、本実施の形態における冷蔵庫は、圧縮機1の回転数は、同一冷却モード中は回転数上昇のみを行なうものである。
【0102】
つまり、冷凍室10冷却終了後、冷蔵室検知手段であるTH1がt1H+fc2以上を検知した場合、冷蔵室冷却時の圧縮機回転数設定テーブルにより決められた回転数HZ3で冷蔵室9の冷却を開始する(T25)。そして、冷蔵室9冷却中にTH1が所定の温度t1H+tpc2以下を検知した場合、冷蔵室9冷却時の圧縮機回転数設定テーブルにより決められる圧縮機1の回転数はHZ2となるが、現在の回転数であるHZ3のまま冷蔵室9冷却を終了する(T26)。また、同様に冷凍室10冷却中に冷凍室温度検知手段であるTH2がt2H+tfc1以下を検知しても現在の回転数であるHZ3を維持したまま冷凍室10冷却を終了する(T27)。
【0103】
そして、圧縮機1の回転数をHZ3に維持したまま以上の動作を繰り返し、冷蔵室9と冷凍室10の温度検知手段が共に予め設定された所定の温度(t1Hおよびt2L)より低いことを検知すると圧縮機1を停止する(T28)。
【0104】
したがって、庫内温度の昇温が小さい側の冷却を必要以上の圧縮機1の冷凍能力で行うために速やかに終了でき、庫内温度と設定温度との差が大きい側の冷却を優先して行うことができるので、庫内温度と設定温度との差が大きい側の食品の昇温を最小限に抑えることが可能となる。また、圧縮機1の起動から停止までの回転数変動を最小限に抑えることができるので安定した冷却が可能となる。
【0105】
また、本実施の形態における冷蔵庫は、圧縮機1停止中に冷蔵室9および冷凍室10が共に設定温度以上を検知した場合、冷蔵室9から冷却を開始するものである。
【0106】
冷蔵室9冷却中、冷凍室用蒸発器7内に滞留している冷媒は圧縮機1側へ回収された後、冷蔵室9冷却側回路へと供給されているが、冷媒は冷凍サイクル内で最も低温である箇所に滞留しやすい性質があるので、冷蔵室9冷却時の冷凍室用蒸発器7の温度が高いほど、より速やかに冷凍室用蒸発器7内に滞留している冷媒を圧縮機1側へ回収することが可能になる。
【0107】
そこで、圧縮機1停止状態から冷蔵室9を冷却する場合、冷凍室用蒸発器7が低温となる冷凍室10冷却が終了してから冷蔵室9冷却を開始するより、冷凍室用蒸発器7が比較的高温となっている圧縮機1停止状態から冷蔵室9冷却を開始した方が冷媒不足になりにくく、冷媒を効率よく利用できるので、冷蔵室9冷却の効率を向上することが可能となる。
【0108】
なお、冷蔵庫の電源投入時も上記と同様の理由により、冷蔵室9冷却から開始することにより冷蔵室9冷却の効率を向上できるので冷蔵室9の冷却スピードを早めることが可能となる。
【0109】
(実施の形態7)
図10は、本発明の実施の形態7における冷蔵庫のタイムチャートを示している。なお、実施の形態1と同一構成については詳細な説明を省略し、異なる部分のみ説明する。
【0110】
冷凍室用蒸発器7を図示しない除霜ヒータにより除霜した後の冷却は冷凍室10冷却から開始するものである。
【0111】
制御手段C1から除霜開始の信号を受けると、圧縮機1、冷蔵室用ファン11、冷凍室用ファン12を停止し三方弁3を冷凍室用蒸発器7側に開放するとともに除霜ヒータの通電を行い冷凍室用蒸発器7の除霜を開始する(T29)。
【0112】
除霜中に冷凍室用蒸発器7の配管もしくはフィンに取り付けた温度検知手段TH3が設定温度(t3H)を検知すると除霜ヒータの通電を停止し除霜を終了する(T30)。
【0113】
除霜終了後、圧縮機1と冷凍室用ファン12を作動し、三方弁3を冷凍室用蒸発器7側に開放し冷凍室10の冷却を開始する。除霜後は冷凍室10の冷却を優先して行うことにより、除霜による冷凍室10の昇温を最小限に抑えることができアイスクリーム等の冷凍食品の保鮮性を向上することが可能となる。
【0114】
なお、冷凍室用蒸発器7の除霜は常に冷凍室10冷却モード終了時に開始するとさらに冷凍室10の昇温を抑えることが可能となる。
【0117】
【発明の効果】
以上説明したように、請求項1に記載の発明は、圧縮機と、凝縮器と、流路切替手段である三方弁と、第一のキャピラリと、冷蔵室用蒸発器と、第二のキャピラリと、冷凍室用蒸発器と、逆止弁と、冷蔵室冷却用ファンと、冷凍室冷却用ファンとを備えた冷蔵室と冷凍室とを有する冷蔵庫において、前記冷蔵室に前記冷蔵室用蒸発器を、前記冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室用蒸発器と冷凍室用蒸発器に切り替え、前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、各庫内温度の何れか一方が設定温度以上を検知すると前記三方弁を前記冷蔵室用蒸発器側に開としたのち所定時間経過後、前記圧縮機を起動させるものであり、圧縮機停止初期に、高温高圧の冷媒が冷蔵室、冷凍室それぞれの蒸発器ともに流入しないので、圧縮機停止直前の最もよく冷却された蒸発器の温度上昇を防止でき、各庫内の温度上昇を効率的に抑えることが可能となる。とともに、圧縮機起動時には冷蔵室用蒸発器回路を介して高圧側と低圧側の圧力は同等圧力にバランスしているので、起動時に圧縮機にかかるトルクを最小限に抑えることができ圧縮機のトルク不足による起動不良を防止することが可能となる。
【0118】
請求項2に記載の発明は、請求項1に記載の発明において、冷蔵室冷却開始時、所定時間、冷凍室冷却用ファンを運転するものであり、冷凍室用蒸発器内に滞留している冷媒の蒸発を促進し冷凍室用蒸発器から圧縮機へ冷媒をスムーズに供給できるので冷蔵室冷却開始時の冷媒循環量不足を防止でき冷却効率を向上することが可能なる。また、効率的な冷媒供給によりシステム内の冷媒封入量を低減することができ、可燃性冷媒である自然冷媒を用いた場合でも漏洩時の安全性を高めることができる。
【0119】
請求項3に記載の発明は、請求項2に記載の発明において、冷蔵室冷却モード中に冷凍室用蒸発器の温度検知手段が冷凍室の温度検知手段より所定温度以上高いことを検知すると、所定時間内であっても冷凍室冷却用ファンを停止させるものであり、冷凍室用蒸発器内に滞留していた冷媒が全て圧縮機側へ供給されたか検知することができ、冷凍室用ファンの運転時間を短縮できるので冷蔵室冷却中の冷凍室の昇温を最小限に抑えることが可能となる。
【0120】
請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明において、冷蔵室冷却モードと冷凍室冷却モードの切替は、現在冷却を行っている庫内の設定温度以下または各冷却モード毎に設定した最大冷却時間経過後に行うものであり、実際の使用条件下において各庫内を偏ることなく交互に効率よく冷却することが可能となる。
【0124】
請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、圧縮機停止中に冷蔵室および冷凍室が共に設定温度以上を検知した場合、冷蔵室冷却モードから冷却を開始するものであり、冷蔵室冷却モード中に冷凍室蒸発器内に滞留する冷媒を最小限に抑えることができ冷蔵室冷却の効率を向上することが可能となる。
【0125】
請求項6に記載の発明は、請求項1から請求項5のいずれか一項に記載の発明において、冷凍室用蒸発器を除霜する除霜ヒータを有し、前記除霜ヒータにより前記冷凍室用蒸発器を除霜した後は、冷凍室冷却モードから開始するものであり、除霜による冷凍室庫内の昇温を最小限に抑えることができアイスクリーム等の冷凍食品の保鮮性を向上することが可能となる。
【0126】
請求項7に記載の発明は、請求項1から請求項6のいずれか一項に記載の発明において、電源投入時は冷蔵室冷却モードから冷却を開始するものであり、電源投入後初回の前記冷蔵室冷却中に冷凍室蒸発器内に滞留する冷媒を最小限に抑えることができ冷蔵室冷却の効率を向上することが可能となる。
【0127】
請求項8に記載の発明は、請求項1から請求項7のいずれか一項に記載の発明において、冷凍サイクルの冷媒として、炭化水素を用いたものであり、地球温暖化を抑制できるとともに、冷却効率を高めた冷蔵庫を提供できる。
【図面の簡単な説明】
【図1】本発明による冷蔵庫の実施の形態1の断面図
【図2】同実施の形態の冷蔵庫のタイムチャート
【図3】本発明による冷蔵庫の実施の形態2のタイムチャート
【図4】本発明による冷蔵庫の実施の形態3のタイムチャート
【図5】同実施の形態の冷蔵庫の他の事例を示すタイムチャート
【図6】本発明による冷蔵庫の実施の形態4のタイムチャート
【図7】同実施の形態の冷蔵庫の他の事例を示すタイムチャート
【図8】本発明による冷蔵庫の実施の形態5のタイムチャート
【図9】本発明による冷蔵庫の実施の形態6のタイムチャート
【図10】本発明による冷蔵庫の実施の形態7のタイムチャート
【図11】従来の冷蔵庫の断面図
【符号の説明】
1 圧縮機
2 凝縮器
3 三方弁
4 第一のキャピラリ
5 冷蔵室用蒸発器
6 第二のキャピラリ
7 冷凍室用蒸発器
8 逆止弁
9 冷蔵室
10 冷凍室
11 冷蔵室用ファン
12 冷凍室用ファン
13 第一のサクション
14 第二のサクション
15 圧縮機吸込管
16 圧縮機吐出管
17 機械室
18 冷蔵庫
19 冷凍サイクル
C1 制御手段
TH1、TH2、TH3 温度検知手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator having a cooling system that alternately and independently cools a refrigerator compartment and a freezer compartment.
[0002]
[Prior art]
FIG. 11 shows a schematic diagram of a refrigerator disclosed in Japanese Patent Application Laid-Open No. 2001-91130 as an example of a conventional cooling cycle and refrigerator.
[0003]
In the figure, 1 is a compressor, 2 is a condenser, 3 is a switching valve disposed in the machine room 11, 5 is a refrigerating room evaporator disposed in the refrigerating room 9, and 7 is It is a freezer compartment evaporator disposed in the freezer compartment 10.
[0004]
Reference numeral 4 denotes a first capillary disposed upstream of the refrigerating room evaporator 5 for cooling the refrigerating room, and reference numeral 6 denotes an upstream side of the refrigerating room evaporator 7 for cooling the freezing room. A second capillary 8 is a check valve provided on the downstream side of the freezer compartment evaporator 7.
[0005]
About the refrigerator comprised as mentioned above, the operation | movement is demonstrated below.
[0006]
In a state where the compressor 1 is driven and the refrigerant flow path is switched by the switching valve 3 so that the refrigerant discharged from the compressor 1 flows to the refrigerator 5 evaporator side, the compressor 1 is compressed. The refrigerated refrigerant is sent to the condenser 2 as a high-temperature and high-pressure gas, where it dissipates heat and is liquefied. The liquefied refrigerant is sent by the switching valve 3 to the refrigerating room evaporator 5 through the first capillary 4 and takes away ambient heat as it evaporates at a predetermined temperature. Cool down. The gasified refrigerant is compressed again in the compressor 1.
[0007]
At this time, the cold air cooled by the refrigerator 5 for the refrigerator compartment is supplied to the refrigerator compartment 9 by the blowing action of the fan 11 for the refrigerator compartment, and the inside of the refrigerator is cooled. In this case, the set temperature of the refrigerator compartment 9 is, for example, about + 2 ° C., and the operating frequency of the compressor 1 is set so that the evaporation temperature by the evaporator 5 for refrigerator compartment is about −5 ° C. Moreover, the pressure of the evaporator 5 for refrigerator compartments at this time is about 0.24 MPa. Such a cooling state is called a refrigerator compartment cooling mode.
[0008]
In the state where the compressor 1 is driven and the refrigerant flow path is switched by the switching valve 3 so that the refrigerant discharged from the compressor 1 flows to the freezer compartment evaporator 7 side. The compressed refrigerant is sent to the condenser 2 as high-temperature and high-pressure gas, and the liquefied refrigerant is sent to the freezer compartment evaporator 7 through the second capillary 6 by the switching valve 3 at a predetermined temperature. As it evaporates, it takes away ambient heat and, as a result, cools the surrounding air. The gasified refrigerant passes through the check valve 8 and is compressed again in the compressor 1.
[0009]
At this time, the cold air cooled by the freezer compartment evaporator 7 is supplied to the freezer compartment 10 by the blowing action of the freezer compartment fan 12 to cool the inside of the refrigerator. In this case, since the set temperature of the freezer compartment 10 is about −18 ° C., the operating frequency of the compressor 1 is set so that the evaporation temperature by the freezer compartment evaporator 7 is about −28 ° C. At this time, the pressure in the freezer evaporator 7 is about 0.09 MPa. Such a cooling state is called a freezer compartment cooling mode.
[0010]
In such a refrigerator, the refrigerator compartment 9 and the freezer compartment 10 are each provided with a temperature sensor (not shown), and detection signals of the respective temperature sensors are input to a control circuit equipped with a microcomputer. The control circuit controls the compressor 1, the switching valve 3, the refrigerator compartment fan 11, the freezer compartment fan 12, and the like according to these detection signals and a control program provided in advance.
[0011]
When the compressor 1 is stopped in a state where both the refrigerator compartment 9 and the freezer compartment 10 are cooled to a preset temperature, the cooling compartment cooling mode is performed. In the refrigerating room cooling mode, the switching valve 3 is in a state where the compressor 1 and the inlet of the refrigerating room evaporator 5 are in communication with each other. Blocked. When the compressor 1 is stopped in this state, the high-temperature refrigerant from the high-pressure side does not flow into the freezer compartment evaporator 7 and, on the outlet side of the freezer compartment evaporator 7 due to the pressure difference. Since the check valve 3 is activated, there is no reverse flow of the refrigerant from the refrigerator compartment evaporator 5 to the freezer compartment evaporator 7. Therefore, a low temperature refrigerant is held in the freezer compartment evaporator 7, and an increase in the temperature of the freezer compartment evaporator 7 can be suppressed. When the compressor 1 is restarted, the freezer cooling mode is started. At this time, the low-temperature refrigerant held in the freezer evaporator 7 is recirculated. it can.
[0012]
[Problems to be solved by the invention]
However, since the conventional configuration stops the compressor 1 in the refrigerating room cooling mode, the compressor 1 and the inlet of the freezer evaporator 7 are disconnected. Although the temperature rise of the freezer compartment 10 accompanying the rise can be suppressed, since the compressor 1 and the inlet of the evaporator 5 for the refrigerator compartment are in communication with each other, a high-temperature refrigerant is supplied from the high pressure side to the evaporator for the refrigerator compartment. The temperature rise of the refrigerator compartment 9 accompanying the temperature rise of the evaporator 5 for refrigerator compartment was large.
[0013]
In addition, since the compressor 1 is always stopped in the refrigerator compartment cooling mode, there is a disadvantage that the refrigerator compartment 9 cannot be flexibly accommodated, for example, the refrigerator compartment 9 is cooled even when the refrigerator compartment 9 is not required to be cooled. .
[0014]
An object of the present invention is to solve the conventional problems and to minimize the temperature increase in the refrigerator compartment and the freezer compartment while the compressor is stopped, and to improve the efficiency during cooling.
[0017]
[Means for Solving the Problems]
  Claim 1 of the present inventionThe invention described in, a compressor, a condenser, a three-way valve that is a flow path switching means, a first capillary, an evaporator for a refrigerator compartment, a second capillary, an evaporator for a freezer compartment, A refrigerator having a refrigerating room and a freezing room provided with a check valve, a refrigerating room cooling fan, and a freezing room cooling fan, wherein the refrigerating room evaporator is provided in the freezing room, and the freezing room is provided with the freezing room. Each of the room evaporators is arranged in parallel, and the refrigerant flow is switched between the refrigerating room evaporator and the freezing room evaporator by the three-way valve, and the refrigerating room and the freezing room are alternately cooled. When both the temperature of the refrigerator compartment and the temperature of the freezer compartment detect a set temperature or less, the compressor is stopped and the three-way valve is fully closed, and when any one of the internal temperatures detects a set temperature or more, A predetermined time has elapsed after opening the three-way valve on the evaporator side of the refrigerator compartment The compressor is started, and since the high-temperature and high-pressure refrigerant does not flow into both the refrigerator and the freezer in the initial stage of stopping the compressor, the temperature of the best cooled evaporator immediately before the compressor stops. The rise can be prevented, and the temperature rise in each cabinet can be efficiently suppressed. At the same time, the pressure on the high-pressure side and the low-pressure side is balanced to the same pressure via the evaporator circuit for the refrigerator when starting up the compressor, so that the torque applied to the compressor at the start-up can be minimized. It becomes possible to prevent starting failure due to insufficient torque.
[0018]
  Claim 2The invention described inClaim 1In this invention, the cooling room cooling fan is operated for a predetermined time at the start of cooling in the freezer compartment, and the evaporation of the refrigerant staying in the freezing room evaporator is promoted. Since the refrigerant can be smoothly supplied to the compressor, it is possible to prevent the refrigerant circulation shortage at the start of cooling in the refrigerator compartment and to improve the cooling efficiency. In addition, the amount of refrigerant enclosed in the system can be reduced by efficient refrigerant supply.
[0019]
  Claim 3The invention described inClaim 2When the temperature detecting means of the evaporator for the freezer compartment is detected to be higher than the predetermined temperature by the temperature detecting means for the freezer compartment during the refrigerator cooling mode, It is possible to detect whether all the refrigerant that has accumulated in the freezer evaporator has been supplied to the compressor side, and the operation time of the freezer fan can be shortened, so It is possible to minimize the temperature rise in the freezer compartment.
[0020]
  Claim 4The invention described inAny one of Claim 1 to Claim 3In the invention described in (2), switching between the refrigerator compartment cooling mode and the freezer compartment cooling mode is performed at a temperature lower than the set temperature in the currently cooling chamber or after the maximum cooling time set for each cooling mode has elapsed. It becomes possible to cool each chamber efficiently and efficiently without biasing under the use conditions.
[0024]
  Claim 5The invention described inAny one of Claims 1-4In the invention described in the above, when both the refrigerator compartment and the freezer compartment detect the set temperature or higher while the compressor is stopped, the cooling is started from the refrigerator compartment cooling mode. Therefore, it is possible to minimize the refrigerant staying in the refrigerator and improve the efficiency of cooling in the refrigerator compartment.
[0025]
  Claim 6The invention described inAny one of Claims 1-5In the invention described in the above, the apparatus has a defrost heater for defrosting the freezer evaporator, and after defrosting the freezer evaporator by the defrost heater, starts from the freezer cooling mode. The temperature rise in the freezer compartment due to defrosting can be minimized and the freshness of frozen foods such as ice cream can be improved.
[0026]
  Claim 7The invention described inAny one of Claims 1-6In the invention described in the above, cooling is started from the cold room cooling mode when the power is turned on, and it is possible to minimize the refrigerant remaining in the freezer evaporator during the first cooling room cooling after the power is turned on. It is possible to improve the cooling room cooling efficiency.
[0027]
  Claim 8The invention described inAny one of Claims 1-7In the invention described in item 1, a hydrocarbon is used as a refrigerant in the refrigeration cycle, and it is possible to provide a refrigerator capable of suppressing global warming and having improved cooling efficiency.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0029]
(Embodiment 1)
FIG. 1 is a cross-sectional view of the refrigerator according to Embodiment 1 of the present invention, and FIG. 2 is a time chart of the same example.
[0030]
Reference numeral 18 denotes a refrigerator box, which has a refrigerating chamber 9 which is a relatively high temperature compartment in the upper part and a relatively low temperature freezing room 10 in the lower part, and is insulated from the surroundings by a heat insulating material such as urethane. Configured. The storage of food and other items is performed through a heat insulating door (not shown). The refrigerator compartment 9 is usually set at 1 to 5 ° C. for refrigerated storage, but it may be set at a slightly lower temperature, for example, −3 to 0 ° C. for improving the freshness, depending on the stored items. In some cases, a person can freely switch the temperature setting as described above. In addition, in order to preserve wine, root vegetables, etc., the temperature may be set slightly higher, for example, around 10 ° C.
[0031]
The freezer compartment 10 is usually set at −22 to −18 ° C. for frozen storage, but may be set at a lower temperature, for example −30 to −25 ° C., for improving freshness. The refrigeration cycle 19 sequentially connects the compressor 1, the condenser 2, the three-way valve 3, which is a flow path switching means, the first capillary 4, the refrigerating room evaporator 5, and the first suction line 13. The second capillary 6, the freezer compartment evaporator 7, the second suction line 14, and the second suction line so as to be in parallel with the first capillary 4, the refrigerator compartment evaporator 5, and the first suction line 13. A check valve 8 is connected in the middle of the suction line 14. The three-way valve 3 serving as the flow path switching means has a fully closed function that does not communicate with the evaporator 5 for the refrigerator compartment or the evaporator 7 for the freezer compartment. And as a refrigerant of a refrigerating cycle, hydrocarbon system refrigerant, for example, isobutane, is used.
[0032]
The compressor 1, the condenser 2, the three-way valve 3, and the check valve 8 are machines for reducing pipe welding points in the refrigerator box 18 from the viewpoint of improving safety when using a flammable hydrocarbon refrigerant. It is disposed in the chamber 17. Further, the refrigerant returning from each evaporator is discharged through the compressor discharge pipe 16 after being discharged to the internal space of the compressor 1 through the compressor suction pipe 15. The refrigerating room evaporator 5 is disposed inside the refrigerating room 9, for example, on the inner surface of the refrigerating room 9, and in the vicinity, the air in the compartment of the refrigerating room 9 is passed through the refrigerating room evaporator 5 and circulated. A room fan 11 is provided. Further, the freezer compartment evaporator 7 is disposed in the freezer compartment 10, for example, at the back surface of the freezer compartment 10, and the compartment air in the freezer compartment 10 is circulated through the freezer compartment evaporator 7 in the vicinity. A freezer compartment fan 12 is provided.
[0033]
Further, the compressor 1 is of a variable capacity type that can change the refrigeration capacity by controlling the refrigerant circulation amount by, for example, controlling the rotational speed by an inverter. The three-way valve 3 is operated by a pulse motor, for example, and is energized only during the opening / closing operation. Further, the refrigerator compartment 9 and the freezer compartment 10 are provided with temperature detecting means TH1 and TH2, for example, thermistors for detecting the compartment temperature, and the compressor 1, the three-way valve 3, the refrigerator compartment fan 11, and the freezer compartment. Control means C1 for controlling the fan 12 is provided.
[0034]
About the refrigerator comprised as mentioned above, it demonstrates, referring the time chart of FIG. 2 about the cooling control of the refrigerator compartment 9 and the freezer compartment 10. FIG.
[0035]
When the compressor 1 is stopped, if either one of the temperature detection means TH1 or TH2 which is the temperature detection means of the refrigerator compartment 9 and the freezer compartment 10 detects a predetermined temperature or higher, the control means C1 receives this signal, For example, when the temperature detecting means of the refrigerating chamber 9 detects a predetermined temperature (t1H) or higher that is set in advance, the compressor 1 and the refrigerating chamber fan 11 are operated, and the three-way valve 3 is opened to the first capillary 4 side for refrigerating. Chamber 9 cooling is started (T1). The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 1 releases heat in the condenser 2 to be condensed and liquefied, and reaches the first capillary 4 through the three-way valve 3. Thereafter, the pressure is reduced while exchanging heat with the first suction line 13 by the first capillary 4 and reaches the evaporator 5 for the refrigerator compartment. The refrigerant that has actively exchanged heat with the air in the refrigerating chamber 9 by the operation of the refrigerating chamber fan 11 evaporates and evaporates in the refrigerating chamber evaporator 5, and the heat-exchanged air is discharged as cooler air and is refrigerated. Cool chamber 9. The vaporized refrigerant is sucked into the compressor 1 through the first suction line 13.
[0036]
Since the check valve 8 is disposed in the middle of the second suction line 14, the refrigerant that has passed through the first suction line 13 flows into the freezer compartment evaporator 7 through the second suction line 14. There is nothing.
[0037]
When the refrigerator compartment temperature detection means TH1 is below a predetermined temperature (t1L) set in advance and the TH2 which is the freezer compartment temperature detection means detects below the preset temperature (t2L) preset during the cooling of the refrigerator compartment 9, Upon receiving this signal, the control means C1 stops the refrigerator compartment fan 11 and operates the freezer compartment fan 12, opens the three-way valve 3 to the second capillary 6 side, and starts cooling the freezer compartment 10 (T2). . The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 1 dissipates heat in the condenser 2 to be condensed and liquefied, and reaches the second capillary 6 through the three-way valve 3. Thereafter, the second capillary 6 is depressurized while exchanging heat with the second suction line 14, and reaches the freezer compartment evaporator 7. The refrigerant which has actively exchanged heat with the air in the freezer compartment 10 by the operation of the freezer fan 12 evaporates in the freezer compartment evaporator 7, and the heat-exchanged air is discharged as lower temperature air to be frozen. The chamber 10 is cooled. The vaporized refrigerant is sucked into the compressor 1 through the second suction line 14 and the check valve 8.
[0038]
When the freezer compartment temperature detection means TH2 detects a temperature lower than a predetermined temperature (t2L) set in advance during cooling of the freezer compartment 10 and TH1 as the refrigerator temperature detection means detects a temperature higher than a predetermined temperature (t1H) set in advance. C1 receives this signal, stops the freezer compartment fan 12 and activates the refrigerator compartment fan 11, opens the three-way valve 3 to the first capillary 4 side, and starts cooling the refrigerator compartment 9 (T3).
[0039]
By repeating the above operation and switching the flow of the refrigerant using the three-way valve 3, the refrigerator compartment 9 and the freezer compartment 10 are alternately cooled, and both temperature detecting means for the refrigerator compartment 9 and the refrigerator compartment 10 are preset. When it is detected that the temperature is lower than the predetermined temperatures (t1H and t2L), the three-way valve 3 is closed for both the first capillary 4 side flow path and the second capillary 6 side flow path, and the compressor 1, the refrigerator compartment fan 11, the freezer compartment The fan 12 is stopped (T4). When the compressor 1 is stopped, if either one of the temperature detection means TH1 or TH2 which is the temperature detection means of the refrigerator compartment 9 and the freezer compartment 10 detects a predetermined temperature or higher, the control means C1 receives this signal, For example, when the temperature detecting means of the refrigerating chamber 9 detects a predetermined temperature (t1H) or higher that is set in advance, the compressor 1 and the refrigerating chamber fan 11 are operated, and the three-way valve 3 is opened to the first capillary 4 side for refrigerating. Cooling of the chamber 9 is started (T5).
[0040]
While the compressor 1 is stopped, the three-way valve 3 is closed in both the first capillary 4 side flow path and the second capillary 6 side flow path, so that it stays in the condenser 2 during the operation of the compressor 1. The high-temperature and high-pressure refrigerant does not flow into the refrigerating room evaporator 5 and the freezing room evaporator 7, so that the temperature rise in each room while the compressor 1 is stopped can be minimized. Further, since the refrigerant stays on the condenser 2 side when the compressor 1 is stopped, the refrigerant is promptly supplied to each evaporator regardless of whether the next cooling mode is cooling in the refrigerator compartment 9 or cooling in the freezer compartment 10. And cooling efficiency can be improved.
[0041]
The cooling room fan 11 is stopped and then the cooling of the freezing room 10 is started. However, for the purpose of defrosting the freezing room evaporator 5, the cooling room fan 11 is started after a predetermined time has elapsed after the cooling room 10 is started to cool. May be stopped. Thereby, the evaporator 5 for refrigerator compartment can be defrosted during cooling of the freezer compartment 10, and it becomes possible to cool the refrigerator compartment 10 next time more efficiently. Further, even when a flammable hydrocarbon-based refrigerant is used, the refrigerant retention in the refrigerator compartment evaporator 5 or the freezer compartment evaporator 7 can be reduced, so that the amount of refrigerant enclosed in the refrigeration cycle can be reduced, Safety in the event of a refrigerant leak should be improved.
[0042]
(Embodiment 2)
FIG. 3 shows a time chart of the refrigerator in the second embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0043]
When it is detected that both the temperature detecting means of the refrigerator compartment 9 and the freezer compartment 10 are lower than predetermined temperatures (t1H and t2L) set in advance, the three-way valve 3 is opened to the first capillary 4 side and the compressor 1 is stopped. (T6). When the compressor 1 is stopped, if either one of the temperature detection means TH1 or TH2 of the refrigerator compartment 9 and the freezer compartment 10 detects a predetermined temperature or higher, the control means C1 outputs this signal. For example, when the temperature detecting means of the refrigerating chamber 9 detects a predetermined temperature (t1H) or higher that is set in advance, the compressor 1 and the refrigerating chamber fan 11 are operated to open the three-way valve 3 to the first capillary 4 side. In this state, cooling of the refrigerator compartment 9 is started (T7).
[0044]
As described above, since the three-way valve 3 is opened to the refrigerator compartment evaporator 5 side at the same time as the compressor 1 is stopped, the cooling mode is not limited to the cooling mode immediately before the compressor is stopped, and the refrigerator compartment 9 is cooled and the freezer compartment. Since the compressor 1 can be stopped from any of the 10 coolings, efficient and flexible operation control is possible even under actual use conditions.
[0045]
Further, when the compressor is stopped, the three-way valve 3 is opened to the evaporator 5 side of the refrigerating room, and the high-temperature and high-pressure that stayed in the condenser 2 during the operation of the compressor 1 by the action of the check valve 8. Since the refrigerant does not flow into the freezer evaporator 7, the temperature rise of the freezer 10 can be minimized.
[0046]
Furthermore, since the pressure on the high-pressure side and the low-pressure side are balanced to the same pressure through the evaporator circuit for the refrigerator when starting the compressor, the torque applied to the compressor at the start-up can be minimized. It is possible to prevent starting failure due to insufficient torque, improving the reliability of the compressor and designing a low-torque motor, which also has an energy saving effect.
[0047]
(Embodiment 3)
FIG. 4 shows a time chart of the refrigerator in the third embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0048]
When it is detected that both the temperature detecting means of the refrigerator compartment 9 and the freezer compartment 10 are lower than predetermined temperatures (t1H and t2L) set in advance, the three-way valve 3 is connected to the first capillary 4 side flow path and the second capillary 6 side. Both the flow paths are closed and the compressor 1 is stopped (T8). When the compressor 1 is stopped, if either one of the temperature detection means TH1 or TH2 which is the temperature detection means of the refrigerator compartment 9 and the freezer compartment 10 detects a predetermined temperature or higher, the control means C1 receives this signal, For example, when the temperature detection means in the refrigerator compartment 9 detects a predetermined temperature (t1H) or higher that is set in advance, the three-way valve 3 is opened to the refrigerator compartment evaporator 5 side (T9). Then, after a predetermined time has elapsed (Ta), the compressor 1 and the refrigerator compartment fan 11 are operated to start the refrigerator compartment 9 cooling (T10).
[0049]
Accordingly, when the compressor 1 is started, the pressure on the high pressure side and the low pressure side is balanced to the same pressure via the evaporator 5 circuit for the refrigerator compartment, so that the torque applied to the compressor 1 at the start can be minimized. It is possible to prevent the starting failure due to the torque shortage of the compressor 1, and the three-way valve 3 is connected to the refrigerator for the refrigerator compartment until the temperature detecting means of the refrigerator compartment 9 detects a predetermined temperature (t1H) or higher. Since both the 5 side and the freezer compartment evaporator 7 side are closed, the temperature rise of the refrigerator compartment 9 can be minimized. That is, it is possible to achieve both the efficient temperature rise prevention of the refrigerator compartment 9 and the balance of the system pressure for improving the compressor startability.
[0050]
In addition, it is desirable to set the predetermined time (Ta) to the minimum time until the high and low pressures are balanced. Since the time during which the high and low pressures are balanced varies depending on the outside air temperature, the predetermined time (Ta) should be set according to the outside air temperature. Thus, the cooling efficiency can be further improved.
[0051]
In addition, as shown in the time chart of FIG. 5, the three-way valve 3 is similarly connected to the refrigerator compartment when the temperature detecting means of the freezer compartment 10 detects a predetermined temperature (t2H) or higher while the compressor 1 is stopped. Opened to the evaporator 5 side (T9), and after a predetermined time has passed (Ta), the compressor 1 and the freezer compartment fan 12 are operated to open the three-way valve 3 to the second capillary 6 side and cooling of the freezer compartment 10 is started. To do. That is, even when the temperature inside the freezer compartment 10 rises while the compressor 1 is stopped, the three-way valve 3 is opened to the refrigerator compartment evaporator 5 side to balance the high and low pressures, so that the temperature rise of the freezer compartment 10 is minimized. It becomes possible to suppress to.
[0052]
(Embodiment 4)
FIG. 6 shows a time chart of the refrigerator in the fourth embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0053]
When the freezer compartment temperature detection means TH2 detects a temperature lower than a predetermined temperature (t2L) set in advance during cooling of the freezer compartment 10 and TH1 as the refrigerator temperature detection means detects a temperature higher than a predetermined temperature (t1H) set in advance. C1 receives this signal, operates the refrigerator compartment fan 11, opens the three-way valve 3 to the first capillary 4 side, and starts cooling the refrigerator compartment 9 (T12). And after predetermined time (TFAN) progress by a timer, the freezer compartment fan 12 is stopped and the refrigerator compartment 9 cooling is continued (T13).
[0054]
When the temperature detecting means of the refrigerator compartment 9 detects a preset temperature (t1H) or higher while the compressor 1 is stopped, the compressor 1, the refrigerator compartment fan 11 and the freezer compartment fan 12 are operated. The three-way valve 3 is opened to the first capillary 4 side and cooling of the refrigerator compartment 9 is started (T14). Similarly, after a predetermined time (TFAN) has elapsed by the timer, the freezer compartment fan 12 is stopped and the refrigerator compartment 9 is continuously cooled (T15).
[0055]
Further, when the refrigerating room temperature detecting means TH1 detects a predetermined temperature (t1L) or less within a predetermined time (TFAN), the refrigerating room fan 12 is stopped while the refrigerating room 10 is cooled.
[0056]
As described above, by operating the freezer compartment fan 12 for a predetermined time at the start of cooling in the freezer compartment 9, the evaporation of the refrigerant remaining in the freezer compartment evaporator 7 is promoted, and the freezer compartment evaporator 7 Since the refrigerant can be smoothly supplied to the compressor 1, it is possible to prevent the refrigerant circulation amount from being insufficient at the start of cooling of the refrigerator compartment 9 and to improve the cooling efficiency of the refrigerator compartment 9.
[0057]
When the freezer compartment fan 12 is of a variable capacity type, the refrigerant can be supplied to the compressor 1 more quickly from the freezer compartment evaporator 7 by operating at the maximum capacity (TFAN) for a predetermined time (TFAN) from the start of cooling in the refrigerator compartment 9. Therefore, the cooling efficiency of the refrigerator compartment 9 can be further improved.
[0058]
As shown in the time chart of FIG. 7, during the cooling of the freezer compartment 10, the freezer compartment temperature detection means TH <b> 2 is equal to or lower than a preset predetermined temperature (t <b> 2 </ b> L) and the refrigerator compartment temperature detection means TH <b> 1 is preset. When detecting a temperature equal to or higher than a predetermined temperature (t1H), the control means C1 receives this signal, operates the refrigerator compartment fan 11, opens the three-way valve 3 to the first capillary 4 side, and starts cooling the refrigerator compartment 9 (T16). ).
[0059]
When it is detected that the temperature detection means TH3 attached to the piping or fins of the freezer compartment evaporator 7 is higher than the freezer compartment temperature detection means TH2 by a set temperature (t23) or more during the cooling of the refrigerator compartment 9, it is within a predetermined time (TFAN). Even so, the freezer compartment fan 12 is stopped (T17).
[0060]
As described above, by operating the freezer compartment fan 12 at the start of cooling in the freezer compartment 9, evaporation of the refrigerant staying in the freezer compartment evaporator 7 is promoted, and the refrigerant is transferred from the freezer compartment evaporator 7 to the compressor 1. Can be smoothly supplied, so that it is possible to prevent the refrigerant circulation shortage at the start of cooling in the refrigerator compartment 9 and to improve the cooling efficiency of the refrigerator compartment 9, and all the refrigerant that has accumulated in the freezer compartment evaporator 7 can be obtained. Since it is possible to detect whether the compressor 1 has been supplied or not, the freezer compartment fan 12 is not operated more than necessary, and the temperature increase of the freezer compartment 10 during cooling of the refrigerator compartment 9 can be minimized. Become.
[0061]
In the above embodiment, the example in which the refrigerator compartment 9 cooling is started from the freezer compartment 10 cooling has been described. However, the same effect can be obtained when the refrigerator 1 cooling is started after the compressor 1 is stopped.
[0062]
(Embodiment 5)
FIG. 8 shows a time chart of the refrigerator in the fifth embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0063]
A maximum cooling time TmPC and TmFC are provided for the cooling time of the refrigerator compartment 9 cooling and the freezing chamber 10 cooling, respectively, and the cooling state is switched after the maximum time has elapsed.
[0064]
When the freezer compartment temperature detection means TH2 detects a temperature lower than a predetermined temperature (t2L) set in advance during cooling of the freezer compartment 10 and TH1 as the refrigerator temperature detection means detects a temperature higher than a predetermined temperature (t1H) set in advance. C1 receives this signal, stops the freezer compartment fan 12, and operates the refrigerator compartment fan 11, opens the three-way valve 3 to the first capillary 4 side, and starts cooling the refrigerator compartment 9 (T20).
[0065]
If the temperature of the refrigerator compartment temperature detection means TH1 does not fall below a predetermined temperature (t1L) set in advance during cooling of the refrigerator compartment 9, the refrigerator is cooled after the maximum refrigerator compartment cooling time (TmPC) provided for cooling of the refrigerator compartment 9 has elapsed. The room fan 11 is stopped and the freezer fan 12 is operated to open the three-way valve 3 to the second capillary 6 side to finish cooling the refrigerating room 9 and start cooling the freezing room 10 (T21).
[0066]
And, like the refrigerator compartment 9 cooling, if the refrigerator compartment temperature detection means TH2 does not fall below a predetermined temperature (t2L) set in advance during the refrigerator compartment 10 cooling, the maximum freezer compartment cooling time provided for the refrigerator compartment 10 cooling ( After elapse of TmFC), the freezer compartment fan 12 is stopped and the refrigerating compartment fan 11 is operated, the three-way valve 3 is opened to the first capillary 4 side, the freezing compartment 10 cooling is finished, and the refrigerating compartment 9 cooling is started. (T22).
[0067]
The above operation is repeated, and the cooling state is switched if the temperature detecting means reaches a predetermined temperature (t1L, t2L) within the maximum cooling time.
[0068]
Therefore, for example, when the door of the refrigerator compartment 9 is frequently opened and closed, if the cooling of the refrigerator compartment 9 is controlled only at a predetermined temperature (t1L), the food in the refrigerator compartment 10 does not shift to the cooling of the freezer compartment 10 for a long time. The temperature rises rapidly, causing problems such as melting of ice cream. However, as shown in the present embodiment, the maximum cooling time is provided for cooling the refrigerator compartment 9 and the freezer compartment 10 so that the load is applied even in the case of uneven load balance. It is possible to prioritize cooling of a room with a large load while suppressing a temperature rise in a light room.
[0069]
In addition, if the maximum cooling time (TmPC, TmFC) of each room is provided for each outside air temperature, it becomes possible to perform cooling more efficiently.
[0070]
Further, the maximum cooling times TmPC and TmFC are provided for the cooling times of the refrigerator compartment 9 cooling and the freezer compartment 10 cooling, respectively, and TmPC and TmFC are the temperatures of the internal temperature and the set temperature on the side of starting cooling at the start of cooling. The temperature difference between the difference and the temperature on the non-cooling side and the set temperature can be reviewed every cycle.
[0071]
(Table 1) shows an example of a maximum cold room cooling time TmPC setting table.
[0072]
[Table 1]
Figure 0004021209
[0073]
(Table 2) shows an example of a maximum freezer compartment cooling time TmFC setting table.
[0074]
[Table 2]
Figure 0004021209
[0075]
Here, the setting method of TmPC and TmFC will be described using specific numerical values from the maximum cooling time tables shown in (Table 1) and (Table 2).
[0076]
At the start of cooling in the refrigerator compartment 9, for example, TH1 as the refrigerator temperature detection means is equal to or lower than a predetermined temperature (t1H) + 2 ° C. set in advance, and TH2 as the freezer detection means is set at a predetermined temperature ( t2H) or less, it is determined that it is not necessary to preferentially cool both the refrigerator compartment 9 and the freezer compartment 10, and cooling of the refrigerator compartment 9 is started by setting the maximum refrigerator compartment cooling time as the basic time TmPC.
[0077]
Further, at the start of cooling of the refrigerator compartment 9, when TH1 is not less than t1H + 2 ° C. and not more than t1H + 4 ° C., and TH2 as the freezer detection means is not more than t2H, it is determined that the refrigerator compartment 9 should be preferentially cooled. Then, the cooling time of the refrigerator compartment 9 is started by extending the maximum refrigerator compartment cooling time to the basic time of TmPC + 5 minutes.
[0078]
Similarly, at the start of cooling in the refrigerator compartment 9, when TH1 is t1H + 4 ° C. or more and TH2 as the freezer detection means is t2H or less, it is determined that the refrigerator compartment 9 should be further prioritized and cooled. The maximum refrigerating room cooling time is extended to the basic time TmPC + 10 minutes, and cooling of the refrigerating room 9 is started.
[0079]
Next, a description will be given of a case where TH2 as the freezer detection means is equal to or higher than a predetermined temperature (t2H) set in advance at the start of cooling in the refrigerator compartment 9.
[0080]
If the TH1 is t1H + 2 ° C. or lower and the TH2 is t2H or higher and t1H + 2 ° C. or lower at the start of cooling in the refrigerator compartment 9, it is determined that both the refrigerator compartment 9 and the freezer compartment 10 need not be preferentially cooled. Cooling of the refrigerator compartment 9 is started with the refrigerator compartment cooling time being TmPC which is the basic time.
[0081]
In addition, when TH1 is t1H + 2 ° C. or less and TH2 is t2H + 2 ° C. or more and t2H + 4 ° C. or less at the start of cooling in the refrigerator compartment 9, it is determined that the freezer compartment 10 should be preferentially cooled, and the next freezing In order to start the cooling of the chamber 10 promptly, the maximum cooling room cooling time is shortened to TmPC-5 minutes which is the basic time, and the cooling of the refrigerator 9 is started.
[0082]
Similarly, when TH1 is t1H + 2 ° C. or lower and TH2 is t2H + 4 ° C. or higher at the start of cooling in the refrigerator compartment 9, it is determined that the freezer compartment 10 should be further prioritized and the next freezer compartment 10 In order to start cooling quickly, the maximum cooling room cooling time is shortened to TmPC-10 minutes, which is the basic time, and cooling of the refrigerator room 9 is started.
[0083]
Similarly, at the start of cooling in the refrigerator compartment 9, when TH1 is t1H + 4 ° C. or more and TH2 is t2H + 4 ° C. or more, both the refrigerator compartment 9 and the freezer compartment 10 have a large temperature rise, and they are alternately cooled without deviation. Therefore, the cooling of the refrigerator compartment 9 is started with the maximum refrigerator compartment cooling time as the basic time TmPC.
[0084]
As described above, at the start of cooling the refrigerator compartment 9, the maximum refrigerator compartment cooling time is reviewed for each cycle by the maximum refrigerator compartment cooling time TmPC table, and the refrigerator compartment 9 is cooled. Similarly, for the freezer compartment 10, when the freezer compartment 10 is started to cool, the maximum freezer compartment cooling time TmFC table is used to review the maximum freezer compartment cooling time for each cycle, and the freezer compartment 10 is cooled. When the room temperature in the room is significantly higher than the set temperature, the maximum cooling time for the other room can be set small so that it can be quickly shifted to cooling the room to be cooled, giving priority to cooling. It is possible to minimize the temperature rise of the.
[0085]
In addition, if the basic maximum cooling time (TmPC, TmFC) of each room is provided in combination with each outside air temperature, cooling can be performed more efficiently.
[0086]
Since the table of TmPC and TmFC is an example, the difference between TH1 and t1H and the difference between TH2 and t2H are set to the same values as 2 ° C and 4 ° C, but the values of TH1 and TH2 differ depending on the accumulation of data. By doing so, it becomes possible to perform cooling more efficiently.
[0087]
(Embodiment 6)
FIG. 9 shows a time chart of the refrigerator in the sixth embodiment of the present invention.
[0088]
The number of rotations of the compressor 1 in the refrigerator according to the present embodiment is determined by the temperature difference between the internal temperature in the storage where the cooling starts and the set temperature in the case of the transition from the stop of the compressor 1 to the cooling. In the case of transition to cooling, the rotational speed immediately before the transition is set to the minimum rotational speed, and the rotational speed is determined by the temperature difference between the internal temperature and the set temperature.
[0089]
(Table 3) is a compressor rotation speed setting table when cooling the refrigerator in the refrigerator according to the embodiment.
[0090]
[Table 3]
Figure 0004021209
[0091]
(Table 4) is a compressor rotation speed setting table at the time of cooling the freezer compartment of the refrigerator of the embodiment.
[0092]
[Table 4]
Figure 0004021209
[0093]
In (Table 3) and (Table 4), when the compressor 1 is stopped, for example, when the temperature detecting means of the refrigerator compartment 9 detects a predetermined temperature not less than a predetermined temperature t1H and not more than tH1 + tpc1, The compressor 1 is operated at the rotation speed HZ1 determined by the compressor rotation speed setting table, and cooling of the refrigerator compartment 9 is started (T23).
[0094]
After completion of cooling in the refrigerator compartment 9, when the TH2 as the freezer detection means detects a predetermined temperature t2H + tfc1 or higher and t2H + tfc2 or lower, the rotational speed determined by the compressor rotational speed setting table when the freezer compartment 10 is cooled. The rotational speed of the compressor 1 is shifted up to HZ2, and cooling of the freezer compartment 10 is started (T24).
[0095]
After the cooling of the freezer compartment 10 is finished, when the cold compartment detection means TH1 detects t1H + tfc2 or more, the rotational speed of the compressor 1 is shifted to the rotational speed HZ3 determined by the compressor rotational speed setting table when the refrigerator compartment 9 is cooled. UP, and cooling of the refrigerator compartment 9 is started (T25). When the cooling chamber 9 finishes cooling, when TH2 as the freezer detection means detects a predetermined temperature t2H + tfc1 or more and t2H + tfc2 or less, the rotation speed of the compressor 1 determined by the compressor rotation speed setting table when the freezer compartment 10 is cooled is However, since the rotation speed of the compressor 1 at the end of cooling in the refrigerator compartment 9 is HZ3, the rotation speed is determined from the compressor rotation speed setting table with HZ3 as the minimum rotation speed, and the freezer compartment 10 at the rotation speed HZ3. Starts cooling (T26).
[0096]
The above operation is repeated while maintaining the rotation speed of the compressor 1 at HZ3, and compression is performed when it is detected that the temperature detection means of the refrigerator compartment 9 and the freezer compartment 10 are both lower than predetermined temperatures (t1H and t2L). The machine 1 is stopped (T28).
[0097]
The next start-up of the compressor 1 is performed at the rotational speed determined by the compressor rotational speed setting table on the temperature rising side.
[0098]
As described above, in order to cool the freezer compartment 10 with the refrigerating capacity of the compressor 1 more than necessary, the freezer compartment 10 is quickly cooled, and the refrigerator 9 has a large difference between the internal temperature and the set temperature. Since cooling can be prioritized, it is possible to minimize the temperature rise of food on the side where the difference between the internal temperature and the set temperature is large.
[0099]
Moreover, since the rotation speed fluctuation | variation from the starting of the compressor 1 to a stop can be suppressed to the minimum, the stable cooling is attained.
[0100]
In addition, although the said embodiment demonstrated the rotation speed setting of the compressor 1 in the case of transfer from the refrigerator compartment 9 cooling to the freezer compartment 10 cooling, the compressor 1 is also used in the case of changing from the refrigerator compartment 10 cooling to the refrigerator compartment 9 cooling. The same effect can be obtained by setting the minimum number of rotations to the final number of rotations for cooling the freezer compartment 10.
[0101]
In the refrigerator according to the present embodiment, the rotational speed of the compressor 1 only increases the rotational speed during the same cooling mode.
[0102]
That is, after the cooling of the freezer compartment 10 is finished, when the cold compartment detection means TH1 detects t1H + fc2 or more, cooling of the refrigerator compartment 9 is started at the rotational speed HZ3 determined by the compressor rotational speed setting table during cooling of the cold compartment. (T25). When TH1 detects a predetermined temperature t1H + tpc2 or less during cooling of the refrigerator compartment 9, the compressor 1 rotation speed determined by the compressor rotation speed setting table during cooling of the refrigerator compartment 9 becomes HZ2, but the current rotation The cooling of the refrigerator compartment 9 is terminated with the numerical value HZ3 (T26). Similarly, cooling of the freezer compartment 10 is terminated while maintaining the current rotation speed HZ3 even if TH2 as the freezer compartment temperature detecting means detects t2H + tfc1 or less during cooling of the freezer compartment 10 (T27).
[0103]
Then, the above operation is repeated while maintaining the rotation speed of the compressor 1 at HZ3, and it is detected that the temperature detection means of the refrigerator compartment 9 and the freezer compartment 10 are both lower than predetermined temperatures (t1H and t2L) set in advance. Then, the compressor 1 is stopped (T28).
[0104]
Therefore, in order to perform the cooling on the side where the temperature rise of the internal temperature is small with the refrigerating capacity of the compressor 1 more than necessary, the cooling on the side where the difference between the internal temperature and the set temperature is large is given priority. Since it can be performed, it becomes possible to minimize the temperature rise of the food on the side where the difference between the internal temperature and the set temperature is large. Moreover, since the rotation speed fluctuation | variation from the starting of the compressor 1 to a stop can be suppressed to the minimum, the stable cooling is attained.
[0105]
Moreover, the refrigerator in this Embodiment starts cooling from the refrigerator compartment 9 when both the refrigerator compartment 9 and the freezer compartment 10 detect the preset temperature or more while the compressor 1 is stopped.
[0106]
During the cooling of the refrigerator compartment 9, the refrigerant staying in the freezer evaporator 7 is recovered to the compressor 1 side and then supplied to the refrigerator compartment 9 cooling side circuit. Since it has the property of easily staying at the coldest place, the higher the temperature of the freezer evaporator 7 when the refrigerator 9 is cooled, the faster the refrigerant staying in the freezer evaporator 7 is compressed. It can be recovered to the machine 1 side.
[0107]
Therefore, when the refrigerator compartment 9 is cooled from the stopped state of the compressor 1, the freezer compartment evaporator 7 is started from the start of the refrigerator compartment 9 cooling after the freezer compartment evaporator 10 is cooled after the freezer compartment evaporator 7 is cooled. When the refrigerator 1 starts cooling from a state where the compressor 1 is at a relatively high temperature, the refrigerant is less likely to be insufficient, and the refrigerant can be used efficiently, so that the efficiency of cooling the refrigerator 9 can be improved. Become.
[0108]
When the refrigerator is turned on, for the same reason as described above, the efficiency of cooling the refrigerator compartment 9 can be improved by starting with the refrigerator compartment 9 cooling, so that the cooling speed of the refrigerator compartment 9 can be increased.
[0109]
(Embodiment 7)
FIG. 10 shows a time chart of the refrigerator in the seventh embodiment of the present invention. Detailed description of the same configuration as that of the first embodiment will be omitted, and only different parts will be described.
[0110]
Cooling after the freezing room evaporator 7 is defrosted by a defrosting heater (not shown) starts with cooling of the freezing room 10.
[0111]
When the defrosting start signal is received from the control means C1, the compressor 1, the refrigerator compartment fan 11 and the freezer compartment fan 12 are stopped, the three-way valve 3 is opened to the freezer compartment evaporator 7 side, and the defrost heater is turned on. Energization is performed to start defrosting of the freezer compartment evaporator 7 (T29).
[0112]
When the temperature detection means TH3 attached to the piping or fin of the freezer compartment evaporator 7 detects the set temperature (t3H) during the defrosting, the defrosting heater is deenergized and the defrosting is finished (T30).
[0113]
After the defrosting is completed, the compressor 1 and the freezer fan 12 are operated, the three-way valve 3 is opened to the freezer evaporator 7 side, and cooling of the freezer 10 is started. By prioritizing cooling of the freezing room 10 after defrosting, it is possible to minimize the temperature rise of the freezing room 10 due to defrosting and to improve the freshness of frozen foods such as ice cream. Become.
[0114]
If the defrosting of the freezer compartment evaporator 7 is always started at the end of the freezer compartment 10 cooling mode, the temperature rise of the freezer compartment 10 can be further suppressed.
[0117]
【The invention's effect】
As explained above, claim 1The invention described in, a compressor, a condenser, a three-way valve that is a flow path switching means, a first capillary, an evaporator for a refrigerator compartment, a second capillary, an evaporator for a freezer compartment, A refrigerator having a refrigerating room and a freezing room provided with a check valve, a refrigerating room cooling fan, and a freezing room cooling fan, wherein the refrigerating room evaporator is provided in the freezing room, and the freezing room is provided with the freezing room. Each of the room evaporators is arranged in parallel, and the refrigerant flow is switched between the refrigerating room evaporator and the freezing room evaporator by the three-way valve, and the refrigerating room and the freezing room are alternately cooled. When both the temperature of the refrigerator compartment and the temperature of the freezer compartment detect a set temperature or less, the compressor is stopped and the three-way valve is fully closed, and when any one of the internal temperatures detects a set temperature or more, A predetermined time has elapsed after opening the three-way valve on the evaporator side of the refrigerator compartment The compressor is started, and since the high-temperature and high-pressure refrigerant does not flow into both the refrigerator and the freezer in the initial stage of stopping the compressor, the temperature of the best cooled evaporator immediately before the compressor stops. The rise can be prevented, and the temperature rise in each cabinet can be efficiently suppressed. At the same time, the pressure on the high-pressure side and the low-pressure side is balanced to the same pressure via the evaporator circuit for the refrigerator when starting up the compressor, so that the torque applied to the compressor at the start-up can be minimized. It becomes possible to prevent starting failure due to insufficient torque.
[0118]
  Claim 2The invention described inClaim 1In this invention, the cooling room cooling fan is operated for a predetermined time at the start of cooling in the freezer compartment, and the evaporation of the refrigerant staying in the freezing room evaporator is promoted. Since the refrigerant can be smoothly supplied to the compressor, it is possible to prevent the refrigerant circulation shortage at the start of cooling in the refrigerator compartment and to improve the cooling efficiency. Moreover, the refrigerant | coolant filling amount in a system can be reduced by efficient refrigerant | coolant supply, and the safety | security at the time of a leak can be improved even when the natural refrigerant | coolant which is a combustible refrigerant | coolant is used.
[0119]
  Claim 3The invention described inClaim 2When the temperature detecting means of the evaporator for the freezer compartment is detected to be higher than the predetermined temperature by the temperature detecting means for the freezer compartment during the refrigerator cooling mode, It is possible to detect whether all the refrigerant that has accumulated in the freezer evaporator has been supplied to the compressor side, and the operation time of the freezer fan can be shortened, so It is possible to minimize the temperature rise in the freezer compartment.
[0120]
  Claim 4The invention described inAny one of Claim 1 to Claim 3In the invention described in (2), switching between the refrigerator compartment cooling mode and the freezer compartment cooling mode is performed at a temperature lower than the set temperature in the currently cooling chamber or after the maximum cooling time set for each cooling mode has elapsed. It becomes possible to cool each chamber efficiently and efficiently without biasing under the use conditions.
[0124]
  Claim 5The invention described inAny one of Claims 1-4In the invention described in the above, when both the refrigerator compartment and the freezer compartment detect the set temperature or higher while the compressor is stopped, the cooling is started from the refrigerator compartment cooling mode. Therefore, it is possible to minimize the refrigerant staying in the refrigerator and improve the efficiency of cooling in the refrigerator compartment.
[0125]
  Claim 6The invention described inAny one of Claims 1-5In the invention described in the above, the apparatus has a defrost heater for defrosting the freezer evaporator, and after defrosting the freezer evaporator by the defrost heater, starts from the freezer cooling mode. The temperature rise in the freezer compartment due to defrosting can be minimized and the freshness of frozen foods such as ice cream can be improved.
[0126]
  Claim 7The invention described inAny one of Claims 1-6In the invention described in the above, cooling is started from the cold room cooling mode when the power is turned on, and it is possible to minimize the refrigerant remaining in the freezer evaporator during the first cooling room cooling after the power is turned on. It is possible to improve the cooling room cooling efficiency.
[0127]
  Claim 8The invention described inAny one of Claims 1-7In the invention described in item 1, a hydrocarbon is used as a refrigerant in the refrigeration cycle, and it is possible to provide a refrigerator capable of suppressing global warming and having improved cooling efficiency.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a first embodiment of a refrigerator according to the present invention.
FIG. 2 is a time chart of the refrigerator according to the embodiment.
FIG. 3 is a time chart of a second embodiment of a refrigerator according to the present invention.
FIG. 4 is a time chart of Embodiment 3 of a refrigerator according to the present invention.
FIG. 5 is a time chart showing another example of the refrigerator according to the embodiment;
FIG. 6 is a time chart of a refrigerator according to a fourth embodiment of the present invention.
FIG. 7 is a time chart showing another example of the refrigerator according to the embodiment;
FIG. 8 is a time chart of Embodiment 5 of the refrigerator according to the present invention.
FIG. 9 is a time chart of a refrigerator according to a sixth embodiment of the present invention.
FIG. 10 is a time chart of a seventh embodiment of the refrigerator according to the present invention.
FIG. 11 is a cross-sectional view of a conventional refrigerator
[Explanation of symbols]
1 Compressor
2 Condenser
3 Three-way valve
4 First capillary
5 Refrigerating room evaporator
6 Second capillary
7 Freezer compartment evaporator
8 Check valve
9 Cold room
10 Freezer room
11 Fan for cold room
12 Freezer compartment fan
13 First Suction
14 Second Suction
15 Compressor suction pipe
16 Compressor discharge pipe
17 Machine room
18 Refrigerator
19 Refrigeration cycle
C1 control means
TH1, TH2, TH3 Temperature detection means

Claims (8)

圧縮機と、凝縮器と、流路切替手段である三方弁と、第一のキャピラリと、冷蔵室用蒸発器と、第二のキャピラリと、冷凍室用蒸発器と、逆止弁と、冷蔵室冷却用ファンと、冷凍室冷却用ファンとを備えた冷蔵室と冷凍室とを有する冷蔵庫において、前記冷蔵室に前記冷蔵室用蒸発器を、前記冷凍室に前記冷凍室用蒸発器をそれぞれ並列に配設し、前記三方弁により冷媒の流れを冷蔵室用蒸発器と冷凍室用蒸発器に切り替え、前記冷蔵室と前記冷凍室を交互に冷却するものであり、前記冷蔵室の温度と前記冷凍室の温度が共に設定温度以下を検出すると前記圧縮機を停止すると共に前記三方弁を全閉とし、各庫内温度の何れか一方が設定温度以上を検知すると前記三方弁を前記冷蔵室用蒸発器側に開としたのち所定時間経過後、前記圧縮機を起動させることを特徴とする冷蔵庫。  Compressor, condenser, three-way valve as flow path switching means, first capillary, refrigerator for refrigerator, second capillary, evaporator for freezer, check valve, refrigerator In a refrigerator having a refrigeration room and a freezing room provided with a room cooling fan and a freezing room cooling fan, the refrigerating room evaporator is provided in the refrigerating room, and the freezing room evaporator is provided in the freezing room, respectively. It is arranged in parallel, and the flow of the refrigerant is switched between the refrigerator for the refrigerator compartment and the evaporator for the freezer compartment by the three-way valve, and the refrigerator compartment and the refrigerator compartment are alternately cooled, and the temperature of the refrigerator compartment When both the freezing chamber temperatures are detected to be lower than the set temperature, the compressor is stopped and the three-way valve is fully closed, and when any one of the internal temperatures is detected to be higher than the set temperature, the three-way valve is set to the refrigerator compartment. After a predetermined time has elapsed after opening to the evaporator side, the compressor is Refrigerator, characterized in that to the dynamic. 冷蔵室冷却開始時、所定時間、冷凍室冷却用ファンを運転することを特徴とする請求項1に記載の冷蔵庫。2. The refrigerator according to claim 1 , wherein the freezer cooling fan is operated for a predetermined time at the start of cooling in the refrigerator compartment. 冷蔵室冷却モード中に冷凍室用蒸発器の温度検知手段が冷凍室の温度検知手段より所定温度以上高いことを検知すると、所定時間内であっても冷凍室冷却用ファンを停止させることを特徴とする請求項2に記載の冷蔵庫。When it is detected that the temperature detecting means of the freezer evaporator is higher than the temperature detecting means of the freezer during the refrigerating room cooling mode, the freezer cooling fan is stopped even within a predetermined time. The refrigerator according to claim 2 . 冷蔵室冷却モードと冷凍室冷却モードの切替は、現在冷却を行っている庫内の設定温度以下または各冷却モード毎に設定した最大冷却時間経過後に行うことを特徴とする請求項1から請求項3のいずれか一項に記載の冷蔵庫。Switching of the refrigerating compartment cooling mode and the freezer compartment cooling mode, claim from claim 1, characterized in that after a maximum cooling time set in the setting temperature or less, or the cooling mode each in the refrigerator being currently cooling The refrigerator according to any one of 3 . 圧縮機停止中に冷蔵室および冷凍室が共に設定温度以上を検知した場合、冷蔵室冷却モードから冷却を開始することを特徴とする請求項1から請求項4のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein when both the refrigerator compartment and the freezer compartment detect a set temperature or higher while the compressor is stopped, cooling is started from the refrigerator compartment cooling mode. . 冷凍室用蒸発器を除霜する除霜ヒータを有し、前記除霜ヒータにより前記冷凍室用蒸発器を除霜した後は、冷凍室冷却モードから開始することを特徴とする請求項1から請求項5のいずれか一項に記載の冷蔵庫。The freezer compartment evaporator has a defrosting heater for defrosting, said after defrosting the evaporator for the freezing chamber by the defrosting heater, claim 1, characterized in that starting from the freezer compartment cooling mode The refrigerator as described in any one of Claims 5 . 電源投入時は冷蔵室冷却モードから冷却を開始することを特徴とする請求項1から請求項6のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 6, wherein the cooling is started from the refrigerator cooling mode when the power is turned on. 冷凍サイクルの冷媒として、炭化水素を用いたことを特徴とする請求項1から請求項7のいずれか一項に記載の冷蔵庫。The refrigerator according to any one of claims 1 to 7, wherein a hydrocarbon is used as a refrigerant of the refrigeration cycle.
JP2002013901A 2002-01-23 2002-01-23 refrigerator Expired - Fee Related JP4021209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013901A JP4021209B2 (en) 2002-01-23 2002-01-23 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013901A JP4021209B2 (en) 2002-01-23 2002-01-23 refrigerator

Publications (2)

Publication Number Publication Date
JP2003214748A JP2003214748A (en) 2003-07-30
JP4021209B2 true JP4021209B2 (en) 2007-12-12

Family

ID=27650749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013901A Expired - Fee Related JP4021209B2 (en) 2002-01-23 2002-01-23 refrigerator

Country Status (1)

Country Link
JP (1) JP4021209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194324A1 (en) * 2017-04-17 2018-10-25 Samsung Electronics Co., Ltd. Refrigeration cycle device and three-way flow rate control valve
CN109751722A (en) * 2018-12-20 2019-05-14 珠海格力电器股份有限公司 A kind of air conditioning control device, air-conditioning and its control method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324042B1 (en) * 2007-03-12 2013-11-01 호시자키 덴키 가부시키가이샤 Cooling storage
EP2124000A4 (en) * 2007-03-12 2011-03-09 Hoshizaki Electric Co Ltd Cooling storage building and method of operating the same
CN101943510B (en) * 2010-08-12 2012-05-02 合肥晶弘电器有限公司 Electronic defrosting system having refrigerating chamber stopping function
JP6211832B2 (en) * 2013-06-28 2017-10-11 東芝ライフスタイル株式会社 refrigerator
CN113970214B (en) * 2020-07-22 2023-05-09 海信冰箱有限公司 Refrigerator defrosting method and refrigerator
WO2022199845A1 (en) * 2021-03-26 2022-09-29 Electrolux Appliances Aktiebolag Refrigerator with a variable speed compressor and a method for controlling the compressor speed

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194324A1 (en) * 2017-04-17 2018-10-25 Samsung Electronics Co., Ltd. Refrigeration cycle device and three-way flow rate control valve
US10634262B2 (en) 2017-04-17 2020-04-28 Samsung Electronics Co., Ltd. Refrigeration cycle device and three-way flow rate control valve
CN109751722A (en) * 2018-12-20 2019-05-14 珠海格力电器股份有限公司 A kind of air conditioning control device, air-conditioning and its control method
CN109751722B (en) * 2018-12-20 2020-09-22 珠海格力电器股份有限公司 Air conditioner control device, air conditioner and control method thereof

Also Published As

Publication number Publication date
JP2003214748A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP5575192B2 (en) Dual refrigeration equipment
US6598410B2 (en) Refrigerator with a plurality of parallel refrigerant passages
WO2014024837A1 (en) Cascade refrigeration equipment
JP4178646B2 (en) refrigerator
JP4021209B2 (en) refrigerator
JP2013092291A (en) Refrigerator and freezer device
JP3576040B2 (en) Cooling systems and refrigerators
JP2000121178A (en) Cooling cycle and refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP6447165B2 (en) Refrigeration equipment
US20140284024A1 (en) Method for controlling refrigerator
JP2006125843A (en) Cooling cycle and refrigerator
JP2005016777A (en) Refrigerator
JP2018096632A (en) Refrigerant circuit system, control device and control method
JP4284789B2 (en) refrigerator
JP2005337677A (en) Refrigerator
JP2005265267A (en) Refrigerator
JP2018076991A (en) Operation method of refrigerator
US20140284025A1 (en) Refrigerator
JPH11224371A (en) Controller for vending machine
JP2005164198A (en) Refrigerator
JP2004116841A (en) Refrigerator
JP5162930B2 (en) refrigerator
JP2012255601A (en) Refrigerator-freezer
JP3626950B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4021209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees