JP4020194B2 - Obstacle detection device - Google Patents

Obstacle detection device Download PDF

Info

Publication number
JP4020194B2
JP4020194B2 JP2002324994A JP2002324994A JP4020194B2 JP 4020194 B2 JP4020194 B2 JP 4020194B2 JP 2002324994 A JP2002324994 A JP 2002324994A JP 2002324994 A JP2002324994 A JP 2002324994A JP 4020194 B2 JP4020194 B2 JP 4020194B2
Authority
JP
Japan
Prior art keywords
unit
receiving
noise code
pseudo
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002324994A
Other languages
Japanese (ja)
Other versions
JP2004155368A (en
Inventor
悟志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002324994A priority Critical patent/JP4020194B2/en
Publication of JP2004155368A publication Critical patent/JP2004155368A/en
Application granted granted Critical
Publication of JP4020194B2 publication Critical patent/JP4020194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、漏洩伝送路を利用した支障物検知装置に関し、特に、送信側漏洩伝送路から電波を放射し、受信側漏洩伝送路でその電波を受信することで、支障物を検知すると共に、支障物の位置及びその移動速度を特定する支障物検知装置に関するものである。
【0002】
【従来の技術】
従来、送信側漏洩伝送路から電波を放射し、受信側漏洩伝送路でその電波を受信することで、それら漏洩伝送路間に存在する支障物を検知する支障物検知装置が開示されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平10−95338号公報(図1)
【0004】
【発明が解決しようとする課題】
しかしながら、このような支障物検知装置を道路等に適用する場合、すなわち、上下線に分離された道路等など、平行に架設された送信側漏洩ケーブルと受信側漏洩ケーブルとの間の検知間隔が広い場合においては、受信電力を確保するために、検知エリアを分割して、送信側漏洩ケーブル及び受信側漏洩ケーブルをそれぞれ2組合計4本設置する必要があった。
【0005】
また、送信側漏洩ケーブル及び受信側漏洩ケーブルをそれぞれ2組設置する場合には、スペクトル拡散の微弱な受信レベルの変化を測定するため、同一帯域に設定することができなり、このため、隣接部の使用帯域は別周波数にする必要があった。
【0006】
また、送信側漏洩ケーブル及び受信側漏洩ケーブルを1組設置して幅の広い間隔をカバーする場合には、送信側漏洩ケーブルから出た電波が受信側漏洩ケーブルに十分な感度で受信するのに必要な送信電力は、間隔の距離に反比例で大きな電力が必要となるだけでなく、送信側漏洩ケーブルから出た電波が受信側漏洩ケーブル側と反対側には必要のない電波を放射してしまう問題点があった。
【0007】
さらに、送信側漏洩ケーブルと受信側漏洩ケーブル間が広くなれば成るほど、支障物の位置精度が劣化する問題点もあった。
【0008】
この発明は上記のような問題点を解消するためになされたもので、支障物の間隔の広い検知範囲をカバーする場合に2組の漏洩伝送路(合計4本)を架設する場合に比べて、漏洩伝送路の架設費用やメンテナンス費用を約3/4に低減させることができる支障物検知装置を得ることを目的とする。
【0009】
【課題を解決するための手段】
この発明に係る支障物検知装置は、送信側漏洩伝送路及び当該送信側漏洩伝送路を中心にしてその両側に各1本ずつ平行に架設された受信側漏洩伝送路からなる漏洩伝送路と、前記送信側漏洩伝送路端に設けられて、当該送信側漏洩伝送路に擬似雑音符号でスペクトル拡散された電波を送信する送信部と、前記受信側漏洩伝送路端にそれぞれ設けられて、前記送信部から前記送信側漏洩伝送路を通して前記送信側漏洩伝送路の両側に架設された前記各受信側漏洩伝送路へ向けて放射され前記各受信側漏洩伝送路上の位置に応じて遅延した電波を受信する受信部と、前記受信部により受信された前記遅延した電波の遅延時間と受信電波の電力レベルの時間的な変化に基づいて支障物の検知と位置特定及び移動速度を計測する計測手段とを備えたものである。
【0010】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。図1は、この発明の実施の形態に係る支障物検知装置を示す構成図である。図1に示す支障物検知装置は、送信側漏洩伝送路としての送信側漏洩ケーブル1を中心として、この送信側漏洩ケーブル1の両側に1対の受信側漏洩伝送路としての受信側漏洩ケーブル2a,2bが平行に架設されている。
【0011】
遅延時間測定部及び受信レベル比較部3は、受信部5a及び5bにより受信された電波の遅延時間と受信電波の電力レベルの時間的な変化に基づいて支障物の検知と位置特定及び移動速度を計測する計測手段をなすもので、送信側漏洩ケーブル1と受信側漏洩ケーブル2aまたは2bとの間の支障物の位置を特定するため、送信部4を介して送信側漏洩ケーブル1にスペクトル拡散された電波を送信し、当該電波が送信側漏洩ケーブル1を通して放射されることで、送信側漏洩ケーブル1と受信側漏洩ケーブル2aまたは2bとの間で移動している支障物である侵入者6に反射して受信側漏洩ケーブル2aまたは2bを伝わる電波を受信部5aまたは5bを介して受信し、受信された電波の遅延時間を計測すると共に、侵入者6が架設された漏洩ケーブル付近に近づくことで電波の電力レベルが変化するのを測定する。
【0012】
図2は、前記遅延時間測定部及び受信レベル比較部3の内部構成と送信部4及び受信部5a,5bの接続関係を示すブロック図である。図2に示すように、遅延時間測定部及び受信レベル比較部3は、疑似雑音(PN:Pseudo Noise、以下PNと称す)符号信号を生成するPN符号発生部3aと、このPN符号発生部3aから発生するPN符号信号を基にスペクトル拡散された信号を送信部4に出力する拡散回路部3bと、PN符号発生部3aから発生するPN符号信号を所定時間遅延させる遅延制御回路部3c及び3dと、この遅延制御回路部3c及び3dを介して遅延制御されたPN符号信号を基に受信部5a及び5bを介して増幅された受信スペクトル信号を逆拡散する逆拡散回路部3e及び3fと、この逆拡散回路部3e及び3fの出力に基づいて受信電力の電力レベルを一定時間毎に測定する受信電力測定部3g及び3hと、この受信電力測定部3g及び3hの出力に基づいて測定された電力レベルの時間的な比較を行う電力比較部3i及び3jとを備えている。
【0013】
次に、図2に示す構成に係る動作について説明する。PN符号発生部3aによりPN符号が生成され、拡散回路部3bによりスペクトル拡散を実施した後に、送信部4で増幅されて、送信側漏洩ケーブル1にスペクトル拡散された電波が送出される。また、1対の受信側漏洩ケーブル2a及び2bから戻ってきた受信スペクトル信号は、それぞれ受信部5a及び5bで増幅された後、送信信号を生成するためのPN符号信号の送出開始時刻より観測地点を伝播してくる距離(漏洩ケーブル上の位置)に応じた遅延時間を設定できる機能を有する遅延制御回路3c及び3dを介したPN符号信号に基づいて逆拡散回路部3e及び3fで逆拡散される。この逆拡散された信号に基づいて支障物としての侵入者6の経路を伝播してきた電波が検出される。
【0014】
すなわち、逆拡散回路部3e及び3fの出力は受信電力測定部3g及び3hに入力され、受信電力測定部3g及び3hは、逆拡散された信号の電力レベルを一定時間毎に測定する。一定時間毎に測定された電力レベルは、電力比較部3i及び3jに入力され、電力比較部3i及び3jは、一定時間毎に入力される電力レベルを記憶し、時間的に過去に入力された電力レベルと現在入力された電力レベルとを比較することで、支障物の有無を検知する。すなわち、観測地点において、支障物が伝播経路付近に近づいた場合、電力レベルが侵入前に比べて変化することで、例えばその電力レベル差が所定値以上となったとき、移動する支障物としての侵入者6を検知することができる。そして、平行に架設された送信側及び1対の受信側漏洩ケーブル間で支障物が移動することにより電力レベルが変化した電波が帰ってくるまでの遅延時間を計測することで、支障物の位置特定及び移動速度の計測が可能となる。
【0015】
従って、上記実施の形態によれば、間隔の広い検知範囲をカバーする場合に、架設する漏洩ケーブルとしては、送信側漏洩ケーブル1と1対の受信側漏洩ケーブル2a及び2bのみ備えればよいので、従来例のように2組の漏洩伝送路(合計4本)を架設する場合に比べて、漏洩伝送路の架設費用やメンテナンス費用を約3/4に低減させることができる。
【0016】
また、漏洩ケーブルとして、送信側漏洩ケーブルと受信側漏洩ケーブルを2組備える場合は、そのセンサ構成(遅延時間及び受信レベル比較部3)を2組備え、それぞれ違った周波数のスペクトル拡散帯域の2波が必要であったが、この発明のように送信側漏洩ケーブル1を共用することにより、必要なスペクトル拡散の帯域は1波分で同じ区域をカバーすることが出来る。
【0017】
さらに、従来例のように、1組で広い間隔をカバーする場合よりも、少ない送信電力で済むとともに不要な方向に電波を放射することがないので、電波の有効利用が図れる。また、送受信間隔を半分にできることから、支障物の検出位置精度を向上させることができる。
【0018】
【発明の効果】
以上のように、この発明によれば、スペクトル拡散を用いた支障物検知装置において、1本の送信側漏洩伝送路の両側に1対の受信側漏洩伝送路を平行に架設することで、同じ領域の範囲を監視する場合において、2組のセンサを設置するのに比べて、電波の有効利用が図れ、しかも支障物検知の精度が上がるとともに、伝送路の架設作業やメンテナンス作業を3/4にすることができるものである。
【図面の簡単な説明】
【図1】 この発明の実施の形態に係る支障物検知装置を示す構成図である。
【図2】 遅延時間測定部及び受信レベル比較部3の内部構成と送信部4及び受信部5a,5bの接続関係を示すブロック図である。
【符号の説明】
1 送信側漏洩ケーブル、2a,2b 受信側漏洩ケーブル、3 遅延時間及び受信レベル比較部、3a PN符号発生部、3b 拡散回路部、3c,3d 遅延制御回路部、3e,3f 逆拡散回路部、3g,3h 受信電力測定部、3i,3j 電力比較部、4 送信部、5a,5b 受信部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an obstacle detection device using a leaky transmission line, and in particular, radiates a radio wave from a transmission-side leaky transmission line and detects the obstacle by receiving the radio wave on a reception-side leaky transmission line, The present invention relates to an obstacle detection device that specifies the position of an obstacle and its moving speed.
[0002]
[Prior art]
Conventionally, there has been disclosed an obstacle detection device that detects an obstacle existing between leaky transmission paths by radiating radio waves from a transmission leaking transmission path and receiving the radio waves on a reception leaking transmission path ( For example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-95338 (FIG. 1)
[0004]
[Problems to be solved by the invention]
However, when such an obstacle detection device is applied to a road or the like, that is, a detection interval between a transmission side leakage cable and a reception side leakage cable laid in parallel, such as a road separated into vertical lines, etc. In a wide case, in order to secure received power, it was necessary to divide the detection area and install a total of four transmission side leakage cables and two reception side leakage cables.
[0005]
In addition, when two sets of transmission side leakage cables and reception side leakage cables are installed, it is possible to set the same band to measure a weak change in reception level of spread spectrum. It was necessary to use a different frequency band.
[0006]
In addition, when one set of transmission side leakage cable and reception side leakage cable is installed to cover a wide interval, radio waves emitted from the transmission side leakage cable are received with sufficient sensitivity by the reception side leakage cable. The required transmission power not only requires a large amount of power in inverse proportion to the distance of the interval, but the radio wave emitted from the transmission side leakage cable radiates unnecessary radio waves on the opposite side of the reception side leakage cable side. There was a problem.
[0007]
Furthermore, there is a problem that the position accuracy of the obstacle deteriorates as the distance between the transmission side leakage cable and the reception side leakage cable becomes wider.
[0008]
The present invention was made to solve the above problems, and compared to the case where two sets of leaky transmission lines (a total of four lines) are installed when covering a wide detection range of obstacles. An object of the present invention is to obtain an obstacle detection device capable of reducing the installation cost and maintenance cost of a leaky transmission line to about 3/4.
[0009]
[Means for Solving the Problems]
Obstacle detection device according to the present invention, a leaky transmission line consisting of the transmission-side leaky transmission line and receiving-side leaky transmission path on both sides around the said transmitting side leaky transmission line in parallel with bridged by one each , Provided at the end of the transmission side leaky transmission path, each transmitting side transmitting a radio wave spectrum-spread with a pseudo-noise code to the transmission side leaky transmission path, and provided at each end of each reception side leaky transmission path, Radio waves that are radiated from the transmitting unit through the transmitting-side leaky transmission line toward the receiving-side leaky transmission lines that are installed on both sides of the transmitting-side leaky transmission line and delayed according to the positions on the receiving-side leaky transmission lines a receiving unit for receiving, measuring means for measuring the detection and localization and the moving speed of the obstacle on the basis of the temporal change of the delay time of the received radio wave the delayed radio wave received power level by the receiving unit And with It is intended.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an obstacle detection device according to an embodiment of the present invention. The obstacle detection device shown in FIG. 1 has a reception side leakage cable 2a as a pair of reception side leakage transmission paths on both sides of the transmission side leakage cable 1 around a transmission side leakage cable 1 as a transmission side leakage transmission path. , 2b are installed in parallel.
[0011]
The delay time measurement unit and the reception level comparison unit 3 detect obstacles based on the temporal change in the delay time of the radio waves received by the reception units 5a and 5b and the power level of the received radio waves, and determine the position and the moving speed. This is a measuring means for measuring and is spread in the transmission side leakage cable 1 via the transmission unit 4 in order to specify the position of the obstacle between the transmission side leakage cable 1 and the reception side leakage cable 2a or 2b. The intruder 6 is an obstacle moving between the transmission side leakage cable 1 and the reception side leakage cable 2a or 2b by transmitting the received radio wave and radiating the radio wave through the transmission side leakage cable 1. The radio wave reflected and transmitted through the receiving side leakage cable 2a or 2b is received via the receiving unit 5a or 5b, the delay time of the received radio wave is measured, and the intruder 6 is installed. Mode radio wave power level approaches the near cable measured from changing.
[0012]
FIG. 2 is a block diagram showing the internal configuration of the delay time measurement unit and the reception level comparison unit 3 and the connection relationship between the transmission unit 4 and the reception units 5a and 5b. As shown in FIG. 2, the delay time measurement unit and the reception level comparison unit 3 include a PN code generation unit 3a that generates a pseudo noise (PN) code signal, and the PN code generation unit 3a. A spread circuit unit 3b for outputting a spectrum-spread signal based on the PN code signal generated from the PN code signal to the transmitter 4, and delay control circuit units 3c and 3d for delaying the PN code signal generated from the PN code generator 3a for a predetermined time And despreading circuit units 3e and 3f for despreading the received spectrum signal amplified through the receiving units 5a and 5b based on the PN code signal delay-controlled through the delay control circuit units 3c and 3d, Based on the outputs of the despreading circuit units 3e and 3f, the received power measuring units 3g and 3h that measure the power level of the received power at regular intervals, and the outputs of the received power measuring units 3g and 3h And a power comparing unit 3i and 3j to perform temporal comparison of the measured power level are.
[0013]
Next, the operation according to the configuration shown in FIG. 2 will be described. A PN code is generated by the PN code generation unit 3a, spread spectrum is performed by the spreading circuit unit 3b, and then amplified by the transmission unit 4 and transmitted to the transmitting-side leakage cable 1 as a spectrum spread radio wave. The received spectrum signals returned from the pair of receiving side leakage cables 2a and 2b are amplified by the receiving units 5a and 5b, respectively, and then observed from the transmission start time of the PN code signal for generating a transmission signal. Is despread by the despreading circuit units 3e and 3f based on the PN code signal via the delay control circuits 3c and 3d having a function of setting the delay time according to the distance (position on the leaky cable) The Based on the despread signal, the radio wave propagating through the route of the intruder 6 as an obstacle is detected.
[0014]
That is, the outputs of the despreading circuit units 3e and 3f are input to the received power measuring units 3g and 3h, and the received power measuring units 3g and 3h measure the power level of the despread signal at regular intervals. The power level measured every fixed time is input to the power comparison units 3i and 3j, and the power comparison units 3i and 3j store the power level input every fixed time and are input in the past in time. The presence or absence of an obstacle is detected by comparing the power level with the currently input power level. That is, when an obstacle nears the propagation path at the observation point, the power level changes compared to before the intrusion, so that, for example, when the difference in power level exceeds a predetermined value, The intruder 6 can be detected. And the position of the obstacle is measured by measuring the delay time until the radio wave whose power level has changed due to the obstacle moving between the transmitting side and the pair of receiving side leakage cables installed in parallel. Specific and moving speed can be measured.
[0015]
Therefore, according to the above-described embodiment, when covering a wide detection range, it is only necessary to provide the transmission side leakage cable 1 and the pair of reception side leakage cables 2a and 2b as the leakage cable to be installed. As compared with the case of installing two sets of leaky transmission lines (four in total) as in the conventional example, the installation cost and maintenance cost of the leaky transmission lines can be reduced to about 3/4.
[0016]
In addition, when two sets of transmission side leakage cables and reception side leakage cables are provided as leakage cables, two sets of sensor configurations (delay time and reception level comparison unit 3) are provided, each having a spread spectrum band of 2 at different frequencies. Although a wave was necessary, by sharing the transmitting side leakage cable 1 as in the present invention, the necessary spectrum spread band can cover the same area with one wave.
[0017]
Furthermore, as in the conventional example, less transmission power is required and radio waves are not radiated in unnecessary directions than when a single set covers a wide interval, so that radio waves can be effectively used. Moreover, since the transmission / reception interval can be halved, the detection position accuracy of the obstacle can be improved.
[0018]
【The invention's effect】
As described above, according to the present invention, in the obstacle detection device using spread spectrum, a pair of reception-side leaky transmission lines are installed in parallel on both sides of one transmission-side leaky transmission line. When monitoring the range of an area, it is possible to use radio waves more effectively than when two sets of sensors are installed, and the accuracy of obstacle detection is increased. It can be made.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an obstacle detection device according to an embodiment of the present invention.
FIG. 2 is a block diagram illustrating an internal configuration of a delay time measurement unit and a reception level comparison unit 3 and a connection relationship between a transmission unit 4 and reception units 5a and 5b.
[Explanation of symbols]
1 transmission side leakage cable, 2a, 2b reception side leakage cable, 3 delay time and reception level comparison unit, 3a PN code generation unit, 3b spreading circuit unit, 3c, 3d delay control circuit unit, 3e, 3f despreading circuit unit, 3g, 3h Received power measuring unit, 3i, 3j Power comparing unit, 4 transmitting unit, 5a, 5b receiving unit.

Claims (2)

送信側漏洩伝送路及び当該送信側漏洩伝送路を中心にしてその両側に各1本ずつ平行に架設された受信側漏洩伝送路からなる漏洩伝送路と、
前記送信側漏洩伝送路端に設けられて、当該送信側漏洩伝送路に擬似雑音符号でスペクトル拡散された電波を送信する送信部と、
前記受信側漏洩伝送路端にそれぞれ設けられて、前記送信部から前記送信側漏洩伝送路を通して前記送信側漏洩伝送路の両側に架設された前記各受信側漏洩伝送路へ向けて放射され前記各受信側漏洩伝送路上の位置に応じて遅延した電波を受信する受信部と、
前記受信部により受信された前記遅延した電波の遅延時間と受信電波の電力レベルの時間的な変化に基づいて支障物の検知と位置特定及び移動速度を計測する計測手段と
を備えた支障物検知装置。
A leaky transmission path including the transmission-side leaky transmission line and receiving-side leaky transmission path on both sides around the said transmitting side leaky transmission line in parallel with bridged by each one,
A transmitter that is provided at an end of the transmission-side leakage transmission path, and transmits a radio wave spectrum-spread with a pseudo-noise code to the transmission-side leakage transmission path;
Provided at each receiving-side leaky transmission line end, and radiated from the transmitting unit through the transmitting-side leaky transmission line toward the receiving-side leaky transmission lines installed on both sides of the transmitting-side leaky transmission line. A receiving unit that receives radio waves delayed according to the position on each receiving side leakage transmission path;
Detection and localization and detection of an obstacle and a measuring means for measuring a moving speed of the obstacle on the basis of the temporal change of the power level of the delay time and receiving radio waves of radio waves the delayed received by the receiving unit apparatus.
請求項1に記載の支障物検知装置において、
前記計測手段は、
疑似雑音符号信号を生成する疑似雑音符号発生部と、
前記疑似雑音符号発生部で生成される疑似雑音符号信号を基にスペクトル拡散された信号を出力する拡散回路部と、
前記疑似雑音符号発生部で生成される疑似雑音符号信号を所定時間遅延させる遅延制御回路部と、
前記遅延制御回路部を介して遅延制御された疑似雑音符号信号を基に受信スペクトル信号を逆拡散する逆拡散回路部と、
前記逆拡散回路部の出力に基づいて受信電力の電力レベルを一定時間毎に測定する受信電力測定部と、
前記受信電力測定部の出力に基づいて電力レベルの時間的な比較を行う電力比較部と
を備えたことを特徴とする支障物検知装置。
In the obstacle detection device according to claim 1,
The measuring means includes
A pseudo noise code generator for generating a pseudo noise code signal;
A spreading circuit unit that outputs a spectrum-spread signal based on the pseudo-noise code signal generated by the pseudo-noise code generation unit;
A delay control circuit unit that delays the pseudo noise code signal generated by the pseudo noise code generation unit for a predetermined time;
A despreading circuit unit that despreads a received spectrum signal based on a pseudo-noise code signal that is delay-controlled through the delay control circuit unit;
A received power measuring unit that measures the power level of received power at regular intervals based on the output of the despreading circuit unit;
An obstacle detection apparatus comprising: a power comparison unit that performs temporal comparison of power levels based on the output of the received power measurement unit.
JP2002324994A 2002-11-08 2002-11-08 Obstacle detection device Expired - Lifetime JP4020194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324994A JP4020194B2 (en) 2002-11-08 2002-11-08 Obstacle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324994A JP4020194B2 (en) 2002-11-08 2002-11-08 Obstacle detection device

Publications (2)

Publication Number Publication Date
JP2004155368A JP2004155368A (en) 2004-06-03
JP4020194B2 true JP4020194B2 (en) 2007-12-12

Family

ID=32804364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324994A Expired - Lifetime JP4020194B2 (en) 2002-11-08 2002-11-08 Obstacle detection device

Country Status (1)

Country Link
JP (1) JP4020194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344880A (en) * 2013-05-24 2013-10-09 南京泰通科技有限公司 Leaky cable/antenna feeder real-time monitoring apparatus and working method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667237B2 (en) * 2005-12-28 2011-04-06 三菱電機株式会社 Intruder detection device
JP4587953B2 (en) * 2005-12-28 2010-11-24 三菱電機株式会社 Intruder detection system
JP2010151517A (en) * 2008-12-24 2010-07-08 Mitsubishi Electric Engineering Co Ltd Obstacle-monitoring device
CN102900468A (en) * 2012-09-07 2013-01-30 苏州科云物联科技有限公司 Pedestrian detecting device for mining
CN108768457A (en) * 2018-04-27 2018-11-06 广州杰赛科技股份有限公司 Multi-system access platform leaks detection method, device and the leakage cable detecting system of cable
EP3626965A1 (en) * 2018-09-21 2020-03-25 Siemens Gamesa Renewable Energy A/S Object position and/or speed and/or size and/or direction detection device for a wind turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344880A (en) * 2013-05-24 2013-10-09 南京泰通科技有限公司 Leaky cable/antenna feeder real-time monitoring apparatus and working method thereof

Also Published As

Publication number Publication date
JP2004155368A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3703689B2 (en) Obstacle detection device and obstacle detection system
JP2942923B2 (en) Random pulse type radar device
JP4020194B2 (en) Obstacle detection device
RU2012158127A (en) CONFIGURATION UNIT AND METHOD FOR CONFIGURING A PRESENT DETECTION SENSOR
JP3878103B2 (en) Intrusion detection device
JP4046274B2 (en) Intruder and obstacle detection device
JP4460698B2 (en) Ranging method and apparatus
JP4097131B2 (en) Obstacle detection device
JP4459584B2 (en) Radar apparatus and distance calculation method
JP4128896B2 (en) Intrusion detection device
JP2004163157A (en) Trouble object sensing device
JPH10105878A (en) Traffic signal controller
KR101144527B1 (en) Apparatus for measuring short distance using overlap-based css system and distance measuring method using the same
JP2005106470A5 (en)
RU2001109620A (en) METHOD FOR DETERMINING COORDINATES OF A RADIO EMISSION SOURCE AND A RADAR STATION FOR ITS IMPLEMENTATION
JP2003054406A (en) Fail-from-platform detecting device
JP2981888B1 (en) Vehicle position detection device
JP4038413B2 (en) Obstacle detection device
JP3999472B2 (en) Vehicle object detection device
JP2957712B2 (en) Ultrasonic ranging device
RU2223601C2 (en) Device for detecting noise-immune short-wave communication channels
KR102457747B1 (en) Radar based rear detection system, and method of rear detection thereof
KR101929821B1 (en) Rf distance measuring apparatus using adaptive thresholds based on target type and method thereof
JP2787144B2 (en) Underwater position measuring device
JP4014096B2 (en) Obstacle detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4020194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term