JP4019590B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4019590B2
JP4019590B2 JP2000014198A JP2000014198A JP4019590B2 JP 4019590 B2 JP4019590 B2 JP 4019590B2 JP 2000014198 A JP2000014198 A JP 2000014198A JP 2000014198 A JP2000014198 A JP 2000014198A JP 4019590 B2 JP4019590 B2 JP 4019590B2
Authority
JP
Japan
Prior art keywords
layer
crystal
type
layer made
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000014198A
Other languages
Japanese (ja)
Other versions
JP2001203217A (en
Inventor
健 目黒
俊一 皆川
淳一 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000014198A priority Critical patent/JP4019590B2/en
Publication of JP2001203217A publication Critical patent/JP2001203217A/en
Application granted granted Critical
Publication of JP4019590B2 publication Critical patent/JP4019590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bipolar Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヘテロバイポーラトランジスタ等の半導体装置に関する。
【0002】
【従来の技術】
従来、ヘテロバイポーラトランジスタ(HBT)のエミッタ層やベース層に着目して、各層の結晶性やその界面を改善することにより、電流増幅率βを向上させる試みが行われてきた。従って、ベース層よりも下にあるコレクタ層やサブコレクタ層について、これら各層の結晶性と電流増幅率βとの関係についてはあまりよく研究されていなかった。
【0003】
【発明が解決しようとする課題】
ところで、最近になってサブコレクタ層のドーピング濃度が電流増幅率βにかなりの影響を与えることが分かってきた。HBTのような縦構造のデバイスでは配線を引き出すための電極の面積がかなり制限される。このため、十分に低いコンタクト抵抗を得るためには、サブコレクタ層をかなり高濃度にn型ドーピングする必要がある。
【0004】
しかしながら、ドーピング濃度が3×1018cm-3を超えると、極端に電流増幅率βが低下するという問題があった。
【0005】
そこで、本発明の目的は、上記課題を解決し、サブコレクタ層に3×1018cm-3を超えてドーパントをドーピングしても電流増幅率βが低下しない半導体装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明の半導体装置は、GaAs基板上に、金属電極とのオーミックコンタクトを形成するn型のGaAs結晶からなるサブコレクタ層と、ベース層から電子を引き抜くn型のGaAs結晶からなるコレクタ層と、電子の流れを制御するp型のGaAs結晶か、InGaAs結晶か、あるいはAlGaAs結晶からなるベース層と、ベース層に対してヘテロ接合を形成し、電子をベース層に注入し、ベース層からの正孔の注入を抑止するn型の伝導を示すAlGaAs結晶からなるエミッタ層と、金属電極とオーミックコンタクトを形成するn型のInGaAs結晶からなるエミッタコンタクト層とが順次形成された半導体装置において、サブコレクタ層のドーピング濃度が3×10 18 cm −3 以上であり、かつ上記サブコレクタ層と上記コレクタ層との間に、厚さが少なくとも1nm以上のAlAs層を設けたものである。
【0007】
本発明の半導体装置は、GaAs基板上に、金属電極とのオーミックコンタクトを形成するn型の伝導を示すGaAs結晶からなるサブコレクタ層と、ベース層から電子を引き抜くn型のGaAs結晶からなるコレクタ層と、電子の流れを制御するp型のGaAs結晶か、InGaAs結晶か、あるいはAlGaAs結晶からなるベース層と、ベース層に対してヘテロ接合を形成し、電子をベース層に注入し、ベース層からの正孔の注入を抑止するn型のInGaP結晶からなるエミッタ層と、金属電極とオーミックコンタクトを形成するn型のInGaAs結晶からなるエミッタコンタクト層とが順次形成された半導体装置において、サブコレクタ層のドーピング濃度が3×10 18 cm −3 以上であり、かつ上記サブコレクタ層と上記コレクタ層との間に、厚さが少なくとも1nm以上のAlAs層を設けたものである。
【0010】
本発明によれば、半導体装置のサブコレクタ層とコレクタ層との間にAlAs層を設けることにより、サブコレクタ層に3×1018cm-3を超えてドーパントをドーピングしても電流増幅率βが低下することがない。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0012】
本発明の半導体装置は、GaAs基板上に、金属電極とのオーミックコンタクトを形成するn型のGaAs結晶からなるサブコレクタ層と、ベース層から電子を引き抜くn型のGaAs結晶からなるコレクタ層と、電子の流れを制御するp型のGaAs結晶、InGaAs結晶か、あるいはAlGaAs結晶からなるベース層と、ベース層に対してヘテロ接合を形成し、電子をベース層に注入し、ベース層からの正孔の注入を抑止するn型のAlGaAs結晶か、あるいはInGaP結晶からなるエミッタ層と、金属電極とオーミックコンタクトを形成するn型のInGaAs結晶からなるエミッタコンタクト層とが順次形成された半導体装置において、サブコレクタ層と上記コレクタ層との間に、厚さが少なくとも1nm以上のAlAs層を設けたものである。この結果、サブコレクタ層に3×1018cm−3を超えてドーパントをドーピングしても電流増幅率βが低下することがない。
【0013】
【実施例】
図1は本発明の半導体装置としてのHBTエピタキシャルウェハの一実施例を示す構造図である。
【0014】
このHBTエピタキシャルウェハは、厚さ約600μmの半絶縁性(S.I)GaAs基板1の上に、厚さ約500nmのn+ GaAs層(サブコレクタ層、Si濃度5×1018cm-3)2、厚さ約5nmのAlAs層3、厚さ約500nmのn- GaAs層(コレクタ層、Si濃度2×1016cm-3)4、厚さ約70nmのp+ GaAs層(ベース層、C濃度4×1019cm-3)5、nAlx Ga1-x As層(x=0.3、Si濃度5×1017cm-3)6、厚さ約50nmのnAlx Ga1-x Asグレーデット層(x=0.3→0、Si濃度5×1017→5×1018cm-3)7、厚さ約100nmのn+ GaAs層(Si濃度5×1018cm-3)8、厚さ約50nmのn+ Iny Ga1-y Asグレーデット層(y=0→0.5、Se濃度1×1019→4×1019cm-3)9及び厚さ約50nmのn+ Iny Ga1-y As層(y=0.5、Se濃度4×1019cm-3)10を順次形成したものである。
【0015】
このHBTエピタキシャルウェハは、サブコレクタ層2とコレクタ層4との間に厚さ5nmのAlAs層3が形成された構造となっている点に特徴がある。本発明のエピタキシャルウェハの構造と、従来のエピタキシャルウェハの構造(AlAs層が無い点以外図1に示した構造と同様である。)とで電流増幅率βのサブコレクタ層2のドーピング濃度依存性を比較するため、両者共サブコレクタ層のドーピング濃度を変えたサンプルを作製した。
【0016】
プロセスによりエミッタサイズ100μm角の評価HBTを作製し、エミッタの電流密度103 A/cm2 での電流増幅率βを比較した。
【0017】
図2はサブコレクタのドーピング濃度と電流増幅率βとの関係を示す図であり、横軸がサブコレクタのドーピング濃度軸であり、縦軸が電流増幅率β軸である。
【0018】
同図より、従来品ではサブコレクタ層のキャリア濃度3×1018cm-3を超えたあたりから電流増幅率βが低下していくが、本発明品ではサブコレクタ層のキャリア濃度が3×1018cm-3を超えても電流増幅率βが低下せず一定で、かつ高い電流増幅率βを保っていることが分かる。
【0019】
電流増幅率βと信頼性とには関係があり、同じ構造の場合電流増幅率βが高いほど、信頼性が向上することが分かっている。したがって、本発明により高濃度にドーピングされたサブコレクタ層を有する構造でも電流増幅率βを大幅に向上させることが可能になり、素子の信頼性の向上もかなり期待できると言える。
【0020】
なぜ電流増幅率βが改善されるのかは明らかではないが、高濃度にドーピングされたサブコレクタ層中には何らかの結晶欠陥が発生するものと考えられ、この層の上にAlAs層を成長させることで結晶欠陥がそれより上のベース層やエミッタへ伝搬するのを防止すると考えられる。
【0021】
次にAlAs層3の厚さについて述べる。
【0022】
図3はAlAs層の厚さと電流増幅率βとの関係を示す図であり、横軸がAlAs厚さ軸であり、縦軸が電流増幅率β軸である。
【0023】
サブコレクタ層2のドーピング濃度は5×1018cm-3とした。AlAs層3が無いと電流増幅率βは110程度であるが、AlAs層3の厚さが1nmになると電流増幅率βの向上が見られ、AlAsの厚さが5nmで電流増幅率βが150となり、以降AlAs膜厚が厚くなっても電流増幅率βは変わらず150程度であった。本実施例ではAlAs層3の厚さの上限については求めることができなかったが、あまり厚くなると、AlAs層3の電気抵抗が無視できなくなるので、電流増幅率βが低下するものと考えられる。
【0024】
次にAlAs層3のキャリアタイプについて述べる。
【0025】
本実施例ではAlAs層3はアンドープのものを用いたが、n型やp型にドーピングしたものでも同様の効果があった。但し、p型のものはあまり厚くなるとpn接合により電気抵抗が生じ、電流増幅率βを低下させると考えられる。
【0026】
次にサブコレクタ層2のドーパントについて述べる。
【0027】
本実施例ではn型のドーパントにSiを用いたが、Seでも同様な現象が生じ、サブコレクタ層2とコレクタ層4との間にAlAs層3を挿入することにより、電流増幅率βの改善が見られた。
【0028】
AlAs層3の挿入位置について述べる。
【0029】
本実施例では、サブコレクタ層2とコレクタ層4との間にAlAs層3を挿入した場合について説明したが、サブコレクタ層2より上、かつベース層5より下であれば効果がある。例えばコレクタ層4の途中にAlAs層3を入れた場合にも同様の改善効果があった。
【0030】
また、AlAs層3の代わりに高混晶(混晶比0.5以上)のAlGaAs層を用いても効果が認められたが、AlAs層に比べてその効果は小さかった。
【0031】
以上において本発明によれば、高濃度にドーピングされた十分に抵抗の小さいサブコレクタ層を有するHBTにおいて、電流増幅率βと信頼性を改善したHBT及びそのエピタキシャルウェハを提供することができる。
【0032】
【発明の効果】
以上要するに本発明によれば、次のような優れた効果を発揮する。
【0033】
サブコレクタ層に3×1018cm-3を超えてドーパントをドーピングしても電流増幅率βが低下しない半導体装置の提供を実現することができる。
【図面の簡単な説明】
【図1】本発明の半導体装置としてのHBTエピタキシャルウェハの一実施例を示す構造図である。
【図2】サブコレクタのドーピング濃度と電流増幅率βとの関係を示す図である。
【図3】AlAs層の厚さと電流増幅率βとの関係を示す図である。
【符号の説明】
1 S.IGaAs基板(基板)
2 n+ GaAs層(サブコレクタ層)
3 AlAs層
4 n- GaAs層(コレクタ層)
5 p+ GaAs層(ベース層)
6 nAlx Ga1-x As層
7 nAlx Ga1-x Asグレーデット層
8 n+ GaAs層
9 n+ Iny Ga1-y Asグレーデット層
10 n+ Iny Ga1-y As層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device such as a heterobipolar transistor.
[0002]
[Prior art]
Conventionally, attention has been paid to the emitter layer and base layer of a heterobipolar transistor (HBT), and attempts have been made to improve the current amplification factor β by improving the crystallinity of each layer and its interface. Therefore, regarding the collector layer and sub-collector layer below the base layer, the relationship between the crystallinity of each layer and the current amplification factor β has not been well studied.
[0003]
[Problems to be solved by the invention]
Recently, it has been found that the doping concentration of the subcollector layer has a considerable influence on the current amplification factor β. In a device having a vertical structure such as HBT, the area of the electrode for drawing out the wiring is considerably limited. For this reason, in order to obtain a sufficiently low contact resistance, the subcollector layer needs to be n-type doped at a considerably high concentration.
[0004]
However, when the doping concentration exceeds 3 × 10 18 cm −3 , there is a problem that the current amplification factor β extremely decreases.
[0005]
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a semiconductor device in which the current amplification factor β does not decrease even if a dopant is doped in a subcollector layer exceeding 3 × 10 18 cm −3 .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a semiconductor device according to the present invention includes an n-type GaAs that extracts an electron from a base layer and a subcollector layer made of an n-type GaAs crystal that forms an ohmic contact with a metal electrode on a GaAs substrate. A heterojunction is formed with the base layer made of a collector layer made of crystal, a p-type GaAs crystal that controls the flow of electrons, an InGaAs crystal, or an AlGaAs crystal, and electrons are injected into the base layer. Then, an emitter layer made of an AlGaAs crystal exhibiting n-type conduction that suppresses injection of holes from the base layer and an emitter contact layer made of an n-type InGaAs crystal forming an ohmic contact with the metal electrode are sequentially formed. and the semiconductor device, and the doping concentration of the subcollector layer is 3 × 10 18 cm -3 or more, or Between the subcollector layer and the collector layer, in which thickness is provided at least 1nm or more AlAs layers.
[0007]
The semiconductor device of the present invention includes a sub-collector layer made of GaAs crystal showing n-type conduction and forming an ohmic contact with a metal electrode on a GaAs substrate, and a collector made of n-type GaAs crystal that draws electrons from the base layer. A heterojunction is formed with the base layer made of a p-type GaAs crystal, InGaAs crystal, or AlGaAs crystal that controls the flow of electrons, and the base layer, and electrons are injected into the base layer. In a semiconductor device in which an emitter layer made of an n-type InGaP crystal that suppresses the injection of holes from and an emitter contact layer made of an n-type InGaAs crystal that forms an ohmic contact with a metal electrode are sequentially formed. doping concentration of the layer is not less 3 × 10 18 cm -3 or more, and the subcollector layer and the Between the collector layer, in which thickness is provided at least 1nm or more AlAs layers.
[0010]
According to the present invention, by providing the AlAs layer between the subcollector layer and the collector layer of the semiconductor device, the current amplification factor β can be obtained even if the subcollector layer is doped with a dopant exceeding 3 × 10 18 cm −3. Will not drop.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0012]
The semiconductor device of the present invention includes a subcollector layer made of n-type GaAs crystal that forms an ohmic contact with a metal electrode on a GaAs substrate, a collector layer made of n-type GaAs crystal that extracts electrons from the base layer, A heterojunction is formed with a base layer made of p-type GaAs crystal, InGaAs crystal, or AlGaAs crystal that controls the flow of electrons, and electrons are injected into the base layer. In a semiconductor device in which an emitter layer made of n-type AlGaAs crystal or InGaP crystal that suppresses injection of silicon and an emitter contact layer made of n-type InGaAs crystal that forms an ohmic contact with a metal electrode are sequentially formed. between the collector layer and the collector layer has a thickness of at least 1nm or more AlAs layer It is those provided. As a result, the current amplification factor β does not decrease even if the sub-collector layer is doped with dopant exceeding 3 × 10 18 cm −3 .
[0013]
【Example】
FIG. 1 is a structural view showing an embodiment of an HBT epitaxial wafer as a semiconductor device of the present invention.
[0014]
This HBT epitaxial wafer has an n + GaAs layer (subcollector layer, Si concentration 5 × 10 18 cm −3 ) having a thickness of about 500 nm on a semi-insulating (SI) GaAs substrate 1 having a thickness of about 600 μm. 2. AlAs layer 3 having a thickness of about 5 nm, n GaAs layer (collector layer, Si concentration 2 × 10 16 cm −3 ) 4 having a thickness of about 500 nm, p + GaAs layer having a thickness of about 70 nm (base layer, C Concentration 4 × 10 19 cm −3 ) 5, nAl x Ga 1-x As layer (x = 0.3, Si concentration 5 × 10 17 cm −3 ) 6, nAl x Ga 1-x As having a thickness of about 50 nm Graded layer (x = 0.3 → 0, Si concentration 5 × 10 17 → 5 × 10 18 cm −3 ) 7, n + GaAs layer (Si concentration 5 × 10 18 cm −3 ) 8 having a thickness of about 100 nm , n + in y Ga 1- y As graded layer having a thickness of about 50nm (y = 0 → 0.5, Se concentration Sequentially forming a × 10 19 → 4 × 10 19 cm -3) 9 and a thickness of about 50nm n + In y Ga 1- y As layer (y = 0.5, Se concentration 4 × 10 19 cm -3) 10 It is a thing.
[0015]
This HBT epitaxial wafer is characterized in that it has a structure in which an AlAs layer 3 having a thickness of 5 nm is formed between the sub-collector layer 2 and the collector layer 4. The dependence of the current amplification factor β on the doping concentration of the subcollector layer 2 between the structure of the epitaxial wafer of the present invention and the structure of the conventional epitaxial wafer (similar to the structure shown in FIG. 1 except that there is no AlAs layer). In order to compare the two, samples were prepared in which the doping concentration of the subcollector layer was changed in both cases.
[0016]
An evaluation HBT having an emitter size of 100 μm square was produced by the process, and the current amplification factor β at the emitter current density of 10 3 A / cm 2 was compared.
[0017]
FIG. 2 is a graph showing the relationship between the sub-collector doping concentration and the current amplification factor β, where the horizontal axis is the sub-collector doping concentration axis, and the vertical axis is the current amplification factor β-axis.
[0018]
From the figure, the current amplification factor β decreases from the point where the carrier concentration of the subcollector layer exceeds 3 × 10 18 cm −3 in the conventional product, but in the product of the present invention, the carrier concentration of the subcollector layer is 3 × 10 6. It can be seen that even when the value exceeds 18 cm −3 , the current amplification factor β does not decrease and is constant and maintains a high current amplification factor β.
[0019]
It is known that there is a relationship between the current amplification factor β and the reliability, and in the case of the same structure, the higher the current amplification factor β, the higher the reliability. Therefore, it can be said that the current amplification factor β can be greatly improved even in the structure having the sub-collector layer doped at a high concentration according to the present invention, and the reliability of the element can be expected to be considerably improved.
[0020]
It is not clear why the current amplification factor β is improved, but it is considered that some crystal defects are generated in the highly doped subcollector layer, and an AlAs layer is grown on this layer. Therefore, it is considered that the crystal defects are prevented from propagating to the base layer and the emitter above the crystal defects.
[0021]
Next, the thickness of the AlAs layer 3 will be described.
[0022]
FIG. 3 is a diagram showing the relationship between the thickness of the AlAs layer and the current amplification factor β. The horizontal axis is the AlAs thickness axis, and the vertical axis is the current amplification factor β axis.
[0023]
The doping concentration of the subcollector layer 2 was 5 × 10 18 cm −3 . Without the AlAs layer 3, the current amplification factor β is about 110. However, when the thickness of the AlAs layer 3 is 1 nm, the current amplification factor β is improved. When the AlAs thickness is 5 nm, the current amplification factor β is 150. Thereafter, even when the AlAs film thickness is increased, the current amplification factor β remains unchanged at about 150. In this example, the upper limit of the thickness of the AlAs layer 3 could not be obtained. However, if the thickness is too large, the electric resistance of the AlAs layer 3 cannot be ignored, and it is considered that the current amplification factor β decreases.
[0024]
Next, the carrier type of the AlAs layer 3 will be described.
[0025]
In this embodiment, the undoped AlAs layer 3 was used, but the same effect was obtained even when doped n-type or p-type. However, if the p-type is too thick, an electrical resistance is generated by the pn junction, which is considered to decrease the current amplification factor β.
[0026]
Next, the dopant of the subcollector layer 2 will be described.
[0027]
In this embodiment, Si is used for the n-type dopant, but the same phenomenon occurs even with Se. By inserting the AlAs layer 3 between the subcollector layer 2 and the collector layer 4, the current amplification factor β is improved. It was observed.
[0028]
The insertion position of the AlAs layer 3 will be described.
[0029]
In this embodiment, the case where the AlAs layer 3 is inserted between the sub-collector layer 2 and the collector layer 4 has been described. However, it is effective if it is above the sub-collector layer 2 and below the base layer 5. For example, the same improvement effect was obtained when the AlAs layer 3 was placed in the middle of the collector layer 4.
[0030]
In addition, although an effect was recognized even when an AlGaAs layer having a high mixed crystal (mixed crystal ratio of 0.5 or more) was used instead of the AlAs layer 3, the effect was small as compared with the AlAs layer.
[0031]
As described above, according to the present invention, it is possible to provide an HBT having an improved current amplification factor β and reliability, and an epitaxial wafer thereof, in an HBT having a sub-collector layer with a sufficiently small resistance doped at a high concentration.
[0032]
【The invention's effect】
In short, according to the present invention, the following excellent effects are exhibited.
[0033]
It is possible to provide a semiconductor device in which the current amplification factor β does not decrease even if the sub-collector layer is doped with a dopant exceeding 3 × 10 18 cm −3 .
[Brief description of the drawings]
FIG. 1 is a structural view showing an embodiment of an HBT epitaxial wafer as a semiconductor device of the present invention.
FIG. 2 is a diagram showing a relationship between a doping concentration of a subcollector and a current amplification factor β.
FIG. 3 is a diagram showing the relationship between the thickness of an AlAs layer and the current amplification factor β.
[Explanation of symbols]
1 S.M. IGaAs substrate (substrate)
2 n + GaAs layer (subcollector layer)
3 AlAs layer 4 n GaAs layer (collector layer)
5 p + GaAs layer (base layer)
6 nAl x Ga 1 -x As layer 7 nAl x Ga 1 -x As graded layer 8 n + GaAs layer 9 n + In y Ga 1 -y As graded layer 10 n + In y Ga 1 -y As layer

Claims (2)

GaAs基板上に、金属電極とのオーミックコンタクトを形成するn型のGaAs結晶からなるサブコレクタ層と、ベース層から電子を引き抜くn型のGaAs結晶からなるコレクタ層と、電子の流れを制御するp型のGaAs結晶か、InGaAs結晶か、あるいはAlGaAs結晶からなるベース層と、該ベース層に対してヘテロ接合を形成し、電子を上記ベース層に注入し、上記ベース層からの正孔の注入を抑止するn型のAlGaAs結晶からなるエミッタ層と、金属電極とオーミックコンタクトを形成するn型のInGaAs結晶からなるエミッタコンタクト層とが順次形成された半導体装置において、上記サブコレクタ層のドーピング濃度が3×10 18 cm −3 以上であり、かつ上記サブコレクタ層と上記コレクタ層との間に、厚さが少なくとも1nm以上のAlAs層を設けたことを特徴とする半導体装置。A sub-collector layer made of n-type GaAs crystal that forms an ohmic contact with a metal electrode on a GaAs substrate, a collector layer made of n-type GaAs crystal that draws electrons from the base layer, and p that controls the flow of electrons A heterojunction is formed with a base layer made of a GaAs crystal, InGaAs crystal, or AlGaAs crystal, and electrons are injected into the base layer, and holes are injected from the base layer. In a semiconductor device in which an emitter layer made of n-type AlGaAs crystal to be suppressed and an emitter contact layer made of n-type InGaAs crystal forming an ohmic contact with a metal electrode are sequentially formed , the doping concentration of the subcollector layer is 3 and a × 10 18 cm -3 or more, and between the subcollector layer and the collector layer , Wherein a thickness is provided at least 1nm or more AlAs layers. GaAs基板上に、金属電極とのオーミックコンタクトを形成するn型のGaAs結晶からなるサブコレクタ層と、ベース層から電子を引き抜くn型のGaAs結晶からなるコレクタ層と、電子の流れを制御するp型の伝導を示すGaAs結晶か、InGaAs結晶か、あるいはAlGaAs結晶からなるベース層と、該ベース層に対してヘテロ接合を形成し、電子を上記ベース層に注入し、上記ベース層からの正孔の注入を抑止するn型のInGaP結晶からなるエミッタ層と、金属電極とオーミックコンタクトを形成するn型のInGaAs結晶からなるエミッタコンタクト層とが順次形成された半導体装置において、上記サブコレクタ層のドーピング濃度が3×10 18 cm −3 以上であり、かつ上記サブコレクタ層と上記コレクタ層との間に、厚さが少なくとも1nm以上のAlAs層を設けたことを特徴とする半導体装置。A sub-collector layer made of n-type GaAs crystal that forms an ohmic contact with a metal electrode on a GaAs substrate, a collector layer made of n-type GaAs crystal that draws electrons from the base layer, and p that controls the flow of electrons A heterojunction is formed with a base layer made of GaAs crystal, InGaAs crystal, or AlGaAs crystal exhibiting type conduction, and electrons are injected into the base layer, and holes from the base layer are injected. In a semiconductor device in which an emitter layer made of n-type InGaP crystal that suppresses injection of silicon and an emitter contact layer made of n-type InGaAs crystal that forms an ohmic contact with a metal electrode are sequentially formed , doping of the subcollector layer concentration is not less 3 × 10 18 cm -3 or more, and the subcollector layer and the collector Wherein a while, the thickness is provided with at least 1nm or more AlAs layers with.
JP2000014198A 2000-01-20 2000-01-20 Semiconductor device Expired - Fee Related JP4019590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014198A JP4019590B2 (en) 2000-01-20 2000-01-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014198A JP4019590B2 (en) 2000-01-20 2000-01-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2001203217A JP2001203217A (en) 2001-07-27
JP4019590B2 true JP4019590B2 (en) 2007-12-12

Family

ID=18541687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014198A Expired - Fee Related JP4019590B2 (en) 2000-01-20 2000-01-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4019590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936618B2 (en) 2002-04-19 2007-06-27 住友化学株式会社 Thin film semiconductor epitaxial substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001203217A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
EP0541971B1 (en) A graded bandgap single-crystal emitter heterojunction bipolar transistor
US4959702A (en) Si-GaP-Si heterojunction bipolar transistor (HBT) on Si substrate
EP0504925B1 (en) Multilayer base heterojunction device
CN101243555B (en) Method for making a heterojunction bipolar transistor
US5349201A (en) NPN heterojunction bipolar transistor including antimonide base formed on semi-insulating indium phosphide substrate
CA2529595C (en) Heterostructure bipolar transistor
US5571732A (en) Method for fabricating a bipolar transistor
JP2002270615A (en) Heterojunction bipolar transistor having improved emitter-base junction, and method for manufacturing the transistor
US6768141B2 (en) Heterojunction bipolar transistor (HBT) having improved emitter-base grading structure
CN100365825C (en) Bipolar transistor
JP4019590B2 (en) Semiconductor device
JP3945303B2 (en) Heterojunction bipolar transistor
Masuda et al. Novel self-aligned sub-micron emitter InP/InGaAs HBT's using T-shaped emitter electrode
EP0384113A2 (en) Multilayer base heterojunction biopolar transistor
JPS63200567A (en) Hetero junction bipolar transistor and manufacture thereof
Hsin et al. Electron saturation velocity of GaInP deduced in a GaInP/GaAs/GaInP double heterojunction bipolar transistor
Yalon et al. A Degenerately Doped $\hbox {In} _ {0.53}\hbox {Ga} _ {0.47}\hbox {As} $ Bipolar Junction Transistor
JPH11121461A (en) Hetero junction bipolar transistor
JP2770583B2 (en) Method of manufacturing collector-top heterojunction bipolar transistor
JP2803147B2 (en) Bipolar transistor
Mohammad et al. Effect of base doping gradients on the electrical performance of AlGaAs/GaAs heterojunction bipolar transistors
Yi et al. InP-based AllnAs/GaAs 0.51 Sb 0.49/GaInAs single heterojunction bipolar transistor for high-speed and RF wireless applications
Scott et al. Molecular beam deposition of low-resistance polycrystalline InAs
JP2001035859A (en) Heterojunction bipolar transistor
Hartmann et al. InGaP/GaAs carbon-doped heterostructures for heterojunction bipolar transistors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees