JP4017851B2 - Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst - Google Patents

Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst Download PDF

Info

Publication number
JP4017851B2
JP4017851B2 JP2001309171A JP2001309171A JP4017851B2 JP 4017851 B2 JP4017851 B2 JP 4017851B2 JP 2001309171 A JP2001309171 A JP 2001309171A JP 2001309171 A JP2001309171 A JP 2001309171A JP 4017851 B2 JP4017851 B2 JP 4017851B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
rutile
catalyst
anatase
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001309171A
Other languages
Japanese (ja)
Other versions
JP2002331244A (en
Inventor
道雄 松村
照尚 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2001309171A priority Critical patent/JP4017851B2/en
Publication of JP2002331244A publication Critical patent/JP2002331244A/en
Application granted granted Critical
Publication of JP4017851B2 publication Critical patent/JP4017851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は新規な二酸化チタン触媒と、該触媒を用いた芳香族化合物の酸化方法及び酸素原子含有芳香族化合物の製造法に関する。
【0002】
【従来の技術】
芳香族化合物の酸化により得られる芳香族アルデヒドやキノン類などの酸素原子含有芳香族化合物(芳香族酸化生成物)は、有機合成化学品又はその中間原料等として有用な化合物である。芳香族化合物の酸化方法として、過酸化水素と硫酸鉄(II)、アスコルビン酸、エチレンジアミン四酢酸などの還元剤との組み合わせからなる試薬を用いる方法、過酸化水素と三フッ化ホウ素エーテラート、塩化アルミニウム、フッ化水素などの酸との組み合わせからなる試薬を用いる方法、有機過酸又は過酸化物とルイス酸との組み合わせからなる試薬を用いる方法などが知られている。しかし、これらの方法は一般に収率が低い、反応速度や反応の選択性が反応条件の影響を受けやすい等の欠点を有する。また、比較的高価な試薬や後処理が煩雑となる試薬を用いるため、工業的に有利な方法とは言えない。
【0003】
一方、半導体光触媒を用いて光エネルギーを化学エネルギーに変換し、これを有害物質の分解や有用な化合物の合成に利用する研究が精力的に行われている。この方法は、反応を室温付近で行うことができる、環境に対して温和である等の大きな利点を有しており、近年、芳香族化合物の酸化についても研究が進められている。例えば、特開2000−336051号公報には、二酸化チタン等の半導体光触媒の存在下、ナフタレン類を紫外線照射下で酸素酸化することを特徴とするヒドロキシナフタレン類の製造法が開示されている。しかし、この方法は、酸化反応生成物の収率や選択性の点で必ずしも十分満足できるものではない。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、芳香族化合物を効率よく酸化する上で有用な光触媒を提供することにある。
本発明の他の目的は、芳香族化合物を光照射下で効率よく酸化する方法を提供することにある。
本発明のさらに他の目的は、芳香族化合物を光照射下に酸化して対応する酸素原子含有芳香族化合物を効率よく製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、特定構造の二酸化チタン光触媒を用いると、芳香族化合物を効率よく酸化できることを見出し、本発明を完成した。
【0006】
すなわち、本発明は、粒子径100nm以上のルチル型二酸化チタン粒子の表面に比表面積30m 2 /g以上の二酸化チタン微粒子が分散担持されている担持型二酸化チタンの存在下、芳香族化合物を光照射下に分子状酸素及び/又は過酸化物により酸化して、対応する芳香族アルデヒド化合物及び/又はキノン類を生成させることを特徴とする酸素原子含有芳香族化合物の製造法を提供する。
ルチル型二酸化チタン粒子の表面に分散担持されている二酸化チタン微粒子と前記ルチル型二酸化チタン粒子との比率は、前者/後者(重量比)=0.1/99.9〜99.5/0.5程度が好ましい。
【0009】
【発明の実施の形態】
[担持型二酸化チタン触媒]
本発明の担持型二酸化チタン触媒の特徴は、ルチル型二酸化チタン粒子(以下、「粒子A」と称する場合がある)の表面に二酸化チタン微粒子(以下、「粒子B」と称する場合がある)が分散担持されている点にある。このような二酸化チタン触媒は、非担持型である通常のルチル型二酸化チタン、アナターゼ型二酸化チタンや、これらの単なる混合物と比較して、光触媒活性が著しく高い。
【0010】
発明者らのこれまでの研究によれば、ルチル型二酸化チタンはアナターゼ型二酸化チタンと比較して高い酸化力を示すが、粒子表面への酸素吸着量が一般的に少なく、還元側の反応である酸素への電子移動が非常に進行しにくいという欠点を有する。しかも、ルチル型二酸化チタンの伝導体の電位は−0.5V[対SCE(飽和カロメル電極)]であり、酸素の一電子還元の電位−0.56Vとの関係から、酸素への励起電子の移動過程が律速になっていると推測される。しかし、このようなルチル型二酸化チタンの表面に、アナターゼ型二酸化チタン等の二酸化チタン微粒子を担持すると、触媒の表面積が見かけ上増大し、酸素の吸着量が増加するため、酸素の還元反応(酸素への励起電子の移動)が大幅に促進され、これにより反応効率(触媒活性)が飛躍的に増大するものと考えられる。
【0011】
本発明の担持型二酸化チタン触媒において、前記粒子Aの粒子径は、二酸化チタン微粒子(粒子B)の担体として機能できる程度の大きさがあればよく、例えば100nm以上(100〜2000nm程度)、好ましくは150nm以上(150〜1000nm程度)である。前記粒子Bの粒子径は、担体としての粒子Aに担持できる範囲で適宜選択でき、例えば90nm以下(1〜90nm程度)、好ましくは70nm以下(例えば2〜70nm程度)である。また、粒子Bの比表面積は、好ましくは30m2/g以上(例えば、30〜200m2/g程度)、さらに好ましくは40m2/g以上(例えば、40〜150m2/g程度)である。粒子Bの比表面積が小さすぎると触媒活性が低下しやすい。粒子Bはアナターゼ型二酸化チタン微粒子、ルチル型二酸化チタン微粒子、及びこれらの混合物等の何れであってもよい。
【0012】
本発明の担持型二酸化チタン触媒において、前記粒子Bと粒子Aとの比率(前者/後者)が大きすぎると、粒子Bが担体である粒子Aの表面を覆って、粒子Aに励起光が有効に当たらなくなり、触媒活性が低下しやすくなる。また、逆に、粒子Bと粒子Aとの比率(前者/後者)が小さすぎると、吸着酸素量がさほど増大しないためか、触媒活性が低下しやすくなる。したがって、粒子Bと粒子Aとの比率(前者/後者)は、一般に、0.1/99.9〜99.5/0.5、好ましくは1/99〜95/5、さらに好ましくは2/98〜65/35、特に好ましくは5/95〜50/50(とりわけ15/85〜45/55)程度である。
【0013】
本発明の担持型二酸化チタン触媒は、例えば、担体として機能するルチル型二酸化チタンの粉末とその表面に分散担持させる二酸化チタンの粉末とを適当な溶媒中に入れ、所定時間超音波処理を施すことにより調製できる。なお、アナターゼ型二酸化チタンは、一般に1次粒子は非常に小さいものの、平均粒径10μm程度の大きな凝集体を形成しており、これをルチル型二酸化チタン粒子と共に超音波処理に付すと、アナターゼ型二酸化チタンの凝集体が解れて生成した1次粒子がルチル型二酸化チタン粒子上に分散担持される。
【0014】
前記超音波処理時に用いる溶媒としては、特に限定されず、例えば、ヘキサンなどの脂肪族炭化水素、シクロヘキサンなどの脂環式炭化水素、トルエンなどの芳香族炭化水素、塩化メチレンなどのハロゲン化炭化水素、ジエチルエーテルやテトラヒドロフランなどのエーテル類、アセトニトリルなどのニトリル、酢酸エチルなどのエステル、アセトンなどのケトン、N,N−ジメチルホルムアミドなどのアミド、水、及びこれらの混合溶媒などが例示できる。好ましい溶媒には、アセトニトリル等の極性溶媒、水、又はこれらの混合溶媒が含まれる。
【0015】
超音波処理の温度は、特に限定されないが、通常0〜100℃程度、好ましくは10〜50℃程度である。超音波処理の時間は、例えば10分以上(10〜120分程度)、好ましくは15分以上(15〜60分程度)である。超音波処理時間が短すぎると、ルチル型粒子上にアナターゼ型又はルチル型微粒子が分散担持された構造が形成されにくい。
【0016】
[芳香族化合物の酸化方法及び酸素原子含有芳香族化合物の製造法]
本発明の方法において、基質として用いる芳香族化合物としては、芳香族性の炭素環又は複素環を有し、且つ少なくとも1つの被酸化部位を有する化合物であれば特に限定されない。前記芳香族性の炭素環を有する化合物として、例えば、ベンゼン、ナフタレン、ビフェニル、インデン、インダン、テトラリン、2,2′−ビナフチル、アセナフテン、フルオレン、フェナントレン、アントラセン、トリフェニレン、ピレン、クリセン、ナフタセン、コロネンなどが挙げられる。また、芳香族性の複素環を有する化合物として、ピリジン、インドール、キノリンなどの含窒素化合物、フラン、ベンゾフランなどの含酸素化合物、チオフェン、ベンゾチオフェンなどの含硫黄化合物などが挙げられる。
【0017】
前記芳香族化合物における芳香族性炭素環又は複素環には、反応を阻害しない範囲で、置換基が結合していてもよい。該置換基として、例えば、ハロゲン原子、ヒドロキシル基、メルカプト基、置換オキシ基[例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ基などのアルコキシ基(好ましくはC1-4アルコキシ基);フェノキシ基などのアリールオキシ基;アセチルオキシ、プロピオニルオキシ基などのアシルオキシ基など]、置換チオ基(例えば、メチルチオ、エチルチオ基などのアルキルチオ基など)、カルボキシル基、置換オキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、プロピルオキシカルボニル基などのC1-4アルコキシ−カルボニル基など)、置換又は無置換カルバモイル基、アシル基(アセチル、プロピオニル、ベンゾイル基などのC2-11アシル基など)、シアノ基、ニトロ基、置換又は無置換アミノ基(例えば、アミノ基;N,N−ジメチルアミノ基などのN,N−ジC1-4アルキルアミノ基;N−アセチルアミノ基などのN−C2-11アシルアミノ基など)、アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t−ブチル基などのC1-4アルキル基など)、アルケニル基(例えば、ビニル基、アリル基などのC2-4アルケニル基など)、アルキニル基(例えば、エチニル基などのC2-4アルキニル基など)、シクロアルキル基(例えば、シクロペンチル、シクロヘキシル基などの3〜8員シクロアルキル基など)、アリール基(例えば、フェニル、ナフチル基などのC6-14アリール基など)などが挙げられる。
【0018】
また、前記芳香族化合物における芳香族性炭素環又は複素環には、非芳香族性の炭素環又は複素環が縮合していてもよい。このような非芳香族性の炭素環として、例えば、シクロペンタン環、シクロヘキサン環などの3〜8員シクロアルカン環などが挙げられる。非芳香族性の複素環としては、ピロリジン環、オキソラン環、チオラン環、ピペリジン環、テトラヒドロピラン環などの、窒素原子、酸素原子、硫黄原子から選択された少なくとも1つのヘテロ原子を1〜3個有する3〜8員の複素環などが例示される。
【0019】
本発明の方法において、前記担持型二酸化チタン触媒の使用量は、基質として用いる芳香族化合物100重量部に対して、例えば1〜100重量部、好ましくは5〜60重量部、さらに好ましくは10〜30重量部程度である。
【0020】
本発明の方法では、基質としての芳香族化合物を光照射下に分子状酸素及び/又は過酸化物で酸化する。照射する光としては、通常、390nm以下の紫外線が使用されるが、可視光線も使用できる。好ましい光の波長域は420nm以下(可視光線の一部及び紫外線)である。
【0021】
分子状酸素としては、純粋な酸素を用いてもよく、窒素、ヘリウム、アルゴン、二酸化炭素などの不活性ガスで希釈した酸素や空気を用いてもよい。分子状酸素の使用量は、基質として用いる芳香族化合物1モルに対して、例えば0.5モル以上、好ましくは1モル以上である。芳香族化合物に対して過剰モルの分子状酸素を用いることが多い。
【0022】
過酸化物としては、特に限定されず、ペルオキシド、ヒドロペルオキシド等の何れも使用できる。代表的な過酸化物として、過酸化水素、クメンヒドロペルオキシド、t−ブチルヒドロペルオキシド、トリフェニルメチルヒドロペルオキシド、t−ブチルペルオキシド、ベンゾイルペルオキシドなどが挙げられる。上記過酸化水素としては、純粋な過酸化水素を用いてもよいが、取扱性の点から、通常、適当な溶媒、例えば水に希釈した形態(例えば、30重量%過酸化水素水)で用いられる。過酸化物の使用量は、基質として用いる芳香族化合物1モルに対して、例えば0.1〜5モル程度、好ましくは0.3〜1.5モル程度である。
【0023】
本発明では、分子状酸素と過酸化物のうち一方のみを用いてもよいが、分子状酸素と過酸化物とを組み合わせることにより、反応速度が大幅に向上する場合がある。
【0024】
反応は、通常、溶媒存在下で行われる。該溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、リグロイン、石油エーテル等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン等の脂環式炭化水素;エチルエーテル、イソプロピルエーテル、テトラヒドロフラン等のエーテル類;酢酸エチル等のエステル類;、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリル等のニトリル類;N,N−ジメチルホルムアミド等の非プロトン性極性溶媒;酢酸等の有機酸;水;これらの混合溶媒などが挙げられる。
【0025】
反応温度は、反応速度及び反応選択性を考慮して適宜選択できるが、一般には−20℃〜100℃程度である。反応は室温付近で行われることが多い。反応はバッチ式、セミバッチ式、連続式などの何れの方法で行ってもよい。
【0026】
上記反応により、芳香族化合物から対応する酸化開裂生成物(例えば、芳香族アルデヒド化合物)、キノン類、ヒドロキシル基含有芳香族化合物などの酸素原子含有芳香族化合物などが生成する。例えば、ナフタレンからは2−ホルミルシンナムアルデヒド(酸化開裂生成物)、1,4−ナフトキノンなどが生成する。これらの生成物の生成割合(選択率)は、反応条件等を適宜選択することにより調整できる。
【0027】
反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により分離精製できる。また、二酸化チタン触媒は濾過により容易に分離でき、分離した触媒は、必要に応じて洗浄等の処理を施した後、リサイクル使用できる。
【0028】
【発明の効果】
本発明によれば、芳香族化合物を光照射下に効率よく酸化することができ、例えば、芳香族アルデヒド化合物やキノン類などの酸素原子含有芳香族化合物を生産効率よく製造できる。
【0029】
【実施例】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。反応生成物の分析及び同定は、キャピラリーガスクロマトグラフ、高速液体クロマトグラフ、GC−マススペクトル、及び核磁気共鳴スペクトルにより行った。二酸化チタンの比表面積は、Micromeritics社製の表面積測定装置「FlowSorb II 2300」を用いて測定した。
【0030】
実施例1
冷却管と酸素供給管を設置した内容積30mlの外部照射型反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=9/1となるようにはかりとり(総量0.015g)、これに、ナフタレン0.1g、アセトニトリル3.63g、水0.3gを加え、室温で超音波処理を30分間行った。
スターラーピースにより反応液を攪拌しながら、室温で、酸素ガスを2ml/minの流量で吹き込み、500W超高圧水銀ランプを用いて光照射を1時間行った。この時、光照射によるナフタレンの直接励起を避けるために340nm以下の光をカットするフィルターを通して光を照射した。また、二酸化チタン粉末をスターラーにより分散させながら光照射した。反応混合液を濾過し、濾液を高速液体クロマトグラフィーで定量分析した。その結果、2−ホルミルシンナムアルデヒドが6.9μmol、1,4−ナフトキノンが2.7μmol生成していた。
[2−ホルミルシンナムアルデヒドのスペクトルデータ]
1H−NMR(CDCl3)δ:6.67(1H,dd,J=16.1,7.8Hz),7.6−8.0(4H,m),8.58(1H,d,J=16.1Hz),9.81(1H,d,J=7.8Hz),10.23(1H,s)
MS(m/z):131(M+−29)
【0031】
実施例2
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=7/3となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが10.9μmol、1,4−ナフトキノンが2.2μmol生成していた。
【0032】
実施例3
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=5/5となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが15.1μmol、1,4−ナフトキノンが2.8μmol生成していた。
【0033】
実施例4
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=3/7となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが15.6μmol、1,4−ナフトキノンが3.7μmol生成していた。
【0034】
実施例5
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=1/9となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが15.7μmol、1,4−ナフトキノンが1.8μmol生成していた。
【0035】
実施例6
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=1/49となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが12.8μmol、1,4−ナフトキノンが0.9μmol生成していた。
【0036】
実施例7
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=1/98となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが10.1μmol、1,4−ナフトキノンが0.8μmol生成していた。
【0037】
実施例8
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=1/374となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが8.0μmol、1,4−ナフトキノンが0.75μmol生成していた。
【0038】
比較例1
冷却管と酸素供給管を設置した内容積30mlの外部照射型反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]を0.015gはかりとり、これに、ナフタレン0.1g、アセトニトリル3.63g、水0.3gを加えた。
スターラーピースにより反応液を攪拌しながら、室温で、酸素ガスを2ml/minの流量で吹き込み、500W超高圧水銀ランプを用いて光照射を1時間行った。この時、光照射によるナフタレンの直接励起を避けるために340nm以下の光をカットするフィルターを通して光を照射した。また、二酸化チタン粉末をスターラーにより分散させながら光照射した。反応混合液を濾過し、濾液を高速液体クロマトグラフィーで定量分析した。その結果、2−ホルミルシンナムアルデヒドが1.4μmol、1,4−ナフトキノンが0.75μmol生成していた。
【0039】
比較例2
冷却管と酸素供給管を設置した内容積30mlの外部照射型反応器に、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]を0.015gはかりとり、これに、ナフタレン0.1g、アセトニトリル3.63g、水0.3gを加えた。
スターラーピースにより反応液を攪拌しながら、室温で、酸素ガスを2ml/minの流量で吹き込み、500W超高圧水銀ランプを用いて光照射を1時間行った。この時、光照射によるナフタレンの直接励起を避けるために340nm以下の光をカットするフィルターを通して光を照射した。また、二酸化チタン粉末をスターラーにより分散させながら光照射した。反応混合液を濾過し、濾液を高速液体クロマトグラフィーで定量分析した。その結果、2−ホルミルシンナムアルデヒドが4.6μmol、1,4−ナフトキノンが0.4μmol生成していた。
【0040】
実施例9
反応器に、ルチル型二酸化チタン粉末[触媒学会参照触媒「JRC−TIO−3」、平均粒子径40nm、比表面積48.1m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、これらの比率が、前者/後者=7/3となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが22.3μmol、1,4−ナフトキノンが1.9μmol生成していた。
【0041】
実施例10
反応器に、ルチル型二酸化チタン粉末[触媒学会参照触媒「JRC−TIO−3」、平均粒子径:40nm、比表面積48.1m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、これらの比率が、前者/後者=5/5となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが16.4μmol、1,4−ナフトキノンが1.8μmol生成していた。
【0042】
実施例11
反応器に、ルチル型二酸化チタン粉末[触媒学会参照触媒「JRC−TIO−3」、平均粒子径40nm、比表面積48.1m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、これらの比率が、前者/後者=3/7となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが18.3μmol、1,4−ナフトキノンが2.3μmol生成していた。
【0043】
二酸化チタン触媒の粒子構造の解析
実施例5で調製した二酸化チタン触媒(超音波処理後の触媒)、実施例8で調製した二酸化チタン触媒(超音波処理後の触媒)、比較例1で用いた二酸化チタン触媒、比較例2で用いた二酸化チタン触媒の粒子像を走査型電子顕微鏡(SEM)により観察した。そのSEM写真を、それぞれ、図1〜図4に示す。
【図面の簡単な説明】
【図1】 実施例5で調製した二酸化チタン触媒(超音波処理後の触媒)の粒子構造を示す走査型電子顕微鏡写真である(写真の横方向の長さ=1092nmに相当)。
【図2】 実施例8で調製した二酸化チタン触媒(超音波処理後の触媒)の粒子構造を示す走査型電子顕微鏡写真である(写真の横方向の長さ=800nmに相当)。
【図3】 比較例1で用いた二酸化チタン触媒の粒子構造を示す走査型電子顕微鏡写真である(写真の横方向の長さ=1092nmに相当)。
【図4】 比較例2で用いた二酸化チタン触媒の粒子構造を示す走査型電子顕微鏡写真である(写真の横方向の長さ=1092nmに相当)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel titanium dioxide catalyst, a method for oxidizing an aromatic compound using the catalyst, and a method for producing an oxygen atom-containing aromatic compound.
[0002]
[Prior art]
Oxygen atom-containing aromatic compounds (aromatic oxidation products) such as aromatic aldehydes and quinones obtained by oxidation of aromatic compounds are useful compounds as organic synthetic chemicals or intermediate raw materials thereof. As a method for oxidizing aromatic compounds, a method using a reagent consisting of a combination of hydrogen peroxide and a reducing agent such as iron (II) sulfate, ascorbic acid, ethylenediaminetetraacetic acid, hydrogen peroxide and boron trifluoride etherate, aluminum chloride A method using a reagent comprising a combination with an acid such as hydrogen fluoride, a method using a reagent comprising an organic peracid or a combination of a peroxide and a Lewis acid, and the like are known. However, these methods generally have disadvantages such as low yield and reaction rate and reaction selectivity that are easily influenced by reaction conditions. In addition, it is not an industrially advantageous method because a relatively expensive reagent or a reagent that complicates post-treatment is used.
[0003]
On the other hand, vigorous research has been conducted to convert light energy into chemical energy using a semiconductor photocatalyst and to use it for decomposition of harmful substances and synthesis of useful compounds. This method has great advantages such that the reaction can be carried out near room temperature and is mild to the environment. In recent years, studies on oxidation of aromatic compounds have been conducted. For example, Japanese Patent Application Laid-Open No. 2000-336051 discloses a method for producing hydroxynaphthalenes, characterized by oxygen oxidation of naphthalenes under ultraviolet irradiation in the presence of a semiconductor photocatalyst such as titanium dioxide. However, this method is not always satisfactory in terms of the yield and selectivity of the oxidation reaction product.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a photocatalyst useful for efficiently oxidizing an aromatic compound.
Another object of the present invention is to provide a method for efficiently oxidizing an aromatic compound under light irradiation.
Still another object of the present invention is to provide a method for efficiently producing a corresponding oxygen atom-containing aromatic compound by oxidizing an aromatic compound under light irradiation.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that an aromatic compound can be efficiently oxidized when a titanium dioxide photocatalyst having a specific structure is used, and the present invention has been completed.
[0006]
That is, the present invention irradiates an aromatic compound in the presence of supported titanium dioxide in which titanium dioxide fine particles having a specific surface area of 30 m 2 / g or more are dispersed and supported on the surface of rutile titanium dioxide particles having a particle diameter of 100 nm or more. There is provided a method for producing an oxygen atom-containing aromatic compound characterized in that it is oxidized with molecular oxygen and / or peroxide to produce a corresponding aromatic aldehyde compound and / or quinones .
The ratio of the titanium dioxide fine particles dispersedly supported on the surface of the rutile type titanium dioxide particles and the rutile type titanium dioxide particles is the former / the latter (weight ratio) = 0.1 / 99.9 to 99.5 / 0.00. About 5 is preferable.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
[Supported titanium dioxide catalyst]
The supported titanium dioxide catalyst of the present invention is characterized in that fine particles of titanium dioxide (hereinafter sometimes referred to as “particle B”) are formed on the surface of rutile titanium dioxide particles (hereinafter sometimes referred to as “particle A”). It is in the point of being dispersedly supported. Such a titanium dioxide catalyst has remarkably high photocatalytic activity as compared with ordinary unsupported rutile type titanium dioxide, anatase type titanium dioxide, and a simple mixture thereof.
[0010]
According to the inventors' previous research, rutile-type titanium dioxide shows higher oxidizing power than anatase-type titanium dioxide, but the amount of oxygen adsorbed on the particle surface is generally small, and the reaction on the reduction side It has a drawback that electron transfer to certain oxygen is very difficult to proceed. In addition, the potential of the rutile titanium dioxide conductor is -0.5 V [vs SCE (saturated calomel electrode)], and from the relationship with the one-electron reduction potential of oxygen -0.56 V, the excitation electrons to oxygen It is presumed that the movement process is rate limiting. However, when titanium dioxide fine particles such as anatase titanium dioxide are supported on the surface of such a rutile type titanium dioxide, the surface area of the catalyst is apparently increased and the amount of oxygen adsorbed is increased. It is considered that the reaction efficiency (catalytic activity) is remarkably increased.
[0011]
In the supported titanium dioxide catalyst of the present invention, the particle diameter of the particle A may be a size that can function as a carrier for titanium dioxide fine particles (particle B), for example, 100 nm or more (about 100 to 2000 nm), preferably Is 150 nm or more (about 150 to 1000 nm). The particle diameter of the particle B can be appropriately selected within a range that can be supported on the particle A as a carrier, and is, for example, 90 nm or less (about 1 to 90 nm), preferably 70 nm or less (for example, about 2 to 70 nm). Further, the specific surface area of the particle B, and preferably 30 m 2 / g or more (e.g., about 30 to 200 m 2 / g), more preferably 40 m 2 / g or more (e.g., 40 to 150 m approximately 2 / g). If the specific surface area of the particles B is too small, the catalyst activity tends to decrease. The particles B may be any of anatase type titanium dioxide fine particles, rutile type titanium dioxide fine particles, and a mixture thereof.
[0012]
In the supported titanium dioxide catalyst of the present invention, if the ratio of the particle B to the particle A (the former / the latter) is too large, the particle B covers the surface of the particle A as a carrier, and excitation light is effective for the particle A. The catalytic activity tends to decrease. Conversely, if the ratio of the particles B to the particles A (the former / the latter) is too small, the amount of adsorbed oxygen does not increase so much, or the catalytic activity tends to decrease. Therefore, the ratio of the particle B to the particle A (the former / the latter) is generally 0.1 / 99.9 to 99.5 / 0.5, preferably 1/99 to 95/5, more preferably 2 / It is about 98 to 65/35, particularly preferably about 5/95 to 50/50 (especially 15/85 to 45/55).
[0013]
The supported titanium dioxide catalyst of the present invention is obtained, for example, by placing rutile titanium dioxide powder functioning as a carrier and titanium dioxide powder dispersed and supported on the surface in an appropriate solvent and subjecting it to ultrasonic treatment for a predetermined time. Can be prepared. Anatase-type titanium dioxide generally has very small primary particles but forms large aggregates with an average particle size of about 10 μm. When subjected to ultrasonic treatment together with rutile-type titanium dioxide particles, anatase-type titanium dioxide is formed. The primary particles generated by the dissolution of the titanium dioxide aggregate are dispersed and supported on the rutile titanium dioxide particles.
[0014]
The solvent used in the ultrasonic treatment is not particularly limited, and examples thereof include aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene, and halogenated hydrocarbons such as methylene chloride. Examples thereof include ethers such as diethyl ether and tetrahydrofuran, nitriles such as acetonitrile, esters such as ethyl acetate, ketones such as acetone, amides such as N, N-dimethylformamide, water, and mixed solvents thereof. Preferred solvents include polar solvents such as acetonitrile, water, or mixed solvents thereof.
[0015]
The temperature of the ultrasonic treatment is not particularly limited, but is usually about 0 to 100 ° C, preferably about 10 to 50 ° C. The sonication time is, for example, 10 minutes or more (about 10 to 120 minutes), preferably 15 minutes or more (about 15 to 60 minutes). When the ultrasonic treatment time is too short, it is difficult to form a structure in which anatase type or rutile type fine particles are dispersed and supported on rutile type particles.
[0016]
[Method for oxidizing aromatic compound and method for producing oxygen-containing aromatic compound]
In the method of the present invention, the aromatic compound used as a substrate is not particularly limited as long as it is a compound having an aromatic carbocyclic or heterocyclic ring and having at least one oxidizable site. Examples of the compound having an aromatic carbocycle include benzene, naphthalene, biphenyl, indene, indane, tetralin, 2,2′-binaphthyl, acenaphthene, fluorene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, coronene. Etc. Examples of the compound having an aromatic heterocyclic ring include nitrogen-containing compounds such as pyridine, indole and quinoline, oxygen-containing compounds such as furan and benzofuran, and sulfur-containing compounds such as thiophene and benzothiophene.
[0017]
A substituent may be bonded to the aromatic carbocycle or heterocycle in the aromatic compound as long as the reaction is not inhibited. Examples of the substituent include a halogen atom, a hydroxyl group, a mercapto group, and a substituted oxy group [for example, an alkoxy group such as methoxy, ethoxy, propoxy, isopropoxy, butoxy group (preferably a C 1-4 alkoxy group); phenoxy group Aryloxy groups such as; acyloxy groups such as acetyloxy and propionyloxy groups], substituted thio groups (such as alkylthio groups such as methylthio and ethylthio groups), carboxyl groups, substituted oxycarbonyl groups (such as methoxycarbonyl and ethoxy) C 1-4 alkoxy-carbonyl groups such as carbonyl and propyloxycarbonyl groups), substituted or unsubstituted carbamoyl groups, acyl groups (such as C 2-11 acyl groups such as acetyl, propionyl and benzoyl groups), cyano groups, nitro groups Group, substituted or unsubstituted Mino group (eg, amino group; N, N-diC 1-4 alkylamino group such as N, N-dimethylamino group; N—C 2-11 acylamino group such as N-acetylamino group), alkyl group (For example, C 1-4 alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl group, etc.), alkenyl group (eg, C 2-4 alkenyl group such as vinyl group, allyl group, etc.) Alkynyl group (for example, C 2-4 alkynyl group such as ethynyl group), cycloalkyl group (for example, 3-8 membered cycloalkyl group such as cyclopentyl, cyclohexyl group, etc.), aryl group (for example, phenyl, naphthyl group, etc.) And C 6-14 aryl groups).
[0018]
Further, the aromatic carbocyclic or heterocyclic ring in the aromatic compound may be condensed with a non-aromatic carbocyclic or heterocyclic ring. Examples of such non-aromatic carbocycles include 3- to 8-membered cycloalkane rings such as cyclopentane ring and cyclohexane ring. The non-aromatic heterocycle includes 1 to 3 heteroatoms selected from a nitrogen atom, an oxygen atom, and a sulfur atom, such as a pyrrolidine ring, an oxolane ring, a thiolane ring, a piperidine ring, and a tetrahydropyran ring. Examples thereof include a 3- to 8-membered heterocyclic ring.
[0019]
In the method of the present invention, the supported titanium dioxide catalyst is used in an amount of, for example, 1 to 100 parts by weight, preferably 5 to 60 parts by weight, more preferably 10 to 100 parts by weight of the aromatic compound used as the substrate. About 30 parts by weight.
[0020]
In the method of the present invention, an aromatic compound as a substrate is oxidized with molecular oxygen and / or peroxide under light irradiation. As light to irradiate, ultraviolet rays of 390 nm or less are usually used, but visible light can also be used. A preferable wavelength range of light is 420 nm or less (part of visible light and ultraviolet light).
[0021]
As molecular oxygen, pure oxygen may be used, or oxygen or air diluted with an inert gas such as nitrogen, helium, argon, or carbon dioxide may be used. The amount of molecular oxygen used is, for example, 0.5 mol or more, preferably 1 mol or more, with respect to 1 mol of the aromatic compound used as the substrate. Often molar excess of molecular oxygen is used relative to the aromatic compound.
[0022]
The peroxide is not particularly limited, and any of peroxide, hydroperoxide and the like can be used. Representative peroxides include hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, triphenylmethyl hydroperoxide, t-butyl peroxide, benzoyl peroxide, and the like. As the hydrogen peroxide, pure hydrogen peroxide may be used, but from the viewpoint of handleability, it is usually used in a form diluted with an appropriate solvent such as water (for example, 30% by weight hydrogen peroxide). It is done. The usage-amount of a peroxide is about 0.1-5 mol with respect to 1 mol of aromatic compounds used as a substrate, Preferably it is about 0.3-1.5 mol.
[0023]
In the present invention, only one of molecular oxygen and peroxide may be used, but the reaction rate may be significantly improved by combining molecular oxygen and peroxide.
[0024]
The reaction is usually performed in the presence of a solvent. Examples of the solvent include aliphatic hydrocarbons such as hexane, heptane, octane, ligroin and petroleum ether; alicyclic hydrocarbons such as cyclopentane, cyclohexane and cycloheptane; ethers such as ethyl ether, isopropyl ether and tetrahydrofuran. Esters such as ethyl acetate; nitriles such as acetonitrile, propionitrile, butyronitrile, and benzonitrile; aprotic polar solvents such as N, N-dimethylformamide; organic acids such as acetic acid; water; mixed solvents thereof Etc.
[0025]
Although reaction temperature can be suitably selected in view of reaction rate and reaction selectivity, it is generally about -20 ° C to 100 ° C. The reaction is often performed near room temperature. The reaction may be carried out by any method such as batch, semi-batch and continuous methods.
[0026]
By the above reaction, a corresponding oxidative cleavage product (for example, an aromatic aldehyde compound), a quinone, and an oxygen atom-containing aromatic compound such as a hydroxyl group-containing aromatic compound are generated from the aromatic compound. For example, 2-formylcinnamaldehyde (oxidative cleavage product), 1,4-naphthoquinone and the like are produced from naphthalene. The production ratio (selectivity) of these products can be adjusted by appropriately selecting reaction conditions and the like.
[0027]
The reaction product can be separated and purified by a separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination means combining these. Further, the titanium dioxide catalyst can be easily separated by filtration, and the separated catalyst can be recycled after being subjected to a treatment such as washing as necessary.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, an aromatic compound can be oxidized efficiently under light irradiation, for example, oxygen atom containing aromatic compounds, such as an aromatic aldehyde compound and quinones, can be manufactured efficiently.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. The analysis and identification of the reaction product were performed by capillary gas chromatograph, high performance liquid chromatograph, GC-mass spectrum, and nuclear magnetic resonance spectrum. The specific surface area of titanium dioxide was measured using a surface area measuring device “FlowSorb II 2300” manufactured by Micromeritics.
[0030]
Example 1
An anatase-type titanium dioxide powder [trade name “ST-01”, 100% anatase-type content, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter, in an external irradiation reactor with an internal volume of 30 ml provided with a cooling pipe and an oxygen supply pipe 7 nm, specific surface area 236 m 2 / g], rutile titanium dioxide powder [trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, ratio The surface area of 6.5 m 2 / g] was measured so that the ratio of anatase-type titanium dioxide and rutile-type titanium dioxide would be the former / the latter = 9/1 (total amount 0.015 g). 1 g, 3.63 g of acetonitrile, and 0.3 g of water were added, and sonication was performed at room temperature for 30 minutes.
While stirring the reaction solution with a stirrer piece, oxygen gas was blown at a flow rate of 2 ml / min at room temperature, and light irradiation was performed using a 500 W ultrahigh pressure mercury lamp for 1 hour. At this time, in order to avoid direct excitation of naphthalene by light irradiation, light was irradiated through a filter that cuts light of 340 nm or less. The titanium dioxide powder was irradiated with light while being dispersed with a stirrer. The reaction mixture was filtered, and the filtrate was quantitatively analyzed by high performance liquid chromatography. As a result, 6.9 μmol of 2-formylcinnamaldehyde and 2.7 μmol of 1,4-naphthoquinone were produced.
[Spectral data of 2-formylcinnamaldehyde]
1 H-NMR (CDCl 3 ) δ: 6.67 (1H, dd, J = 16.1, 7.8 Hz), 7.6-8.0 (4H, m), 8.58 (1H, d, J = 16.1 Hz), 9.81 (1H, d, J = 7.8 Hz), 10.23 (1H, s)
MS (m / z): 131 (M <+>- 29)
[0031]
Example 2
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter was 7/3 (total amount 0.015 g). As a result, 2-formylcinnamaldehyde was produced at 10.9 μmol and 1,4-naphthoquinone was produced at 2.2 μmol.
[0032]
Example 3
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 5/5 (total amount 0.015 g). As a result, 15.1 μmol of 2-formylcinnamaldehyde and 2.8 μmol of 1,4-naphthoquinone were produced.
[0033]
Example 4
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed, except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 3/7 (total amount 0.015 g). As a result, 15.6 μmol of 2-formylcinnamaldehyde and 3.7 μmol of 1,4-naphthoquinone were produced.
[0034]
Example 5
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 1/9 (total amount 0.015 g). As a result, 15.7 μmol of 2-formylcinnamaldehyde and 1.8 μmol of 1,4-naphthoquinone were produced.
[0035]
Example 6
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 1/49 (total amount 0.015 g). As a result, 12.8 μmol of 2-formylcinnamaldehyde and 0.9 μmol of 1,4-naphthoquinone were generated.
[0036]
Example 7
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 1/98 (total amount 0.015 g). As a result, 10.1 μmol of 2-formylcinnamaldehyde and 0.8 μmol of 1,4-naphthoquinone were generated.
[0037]
Example 8
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed, except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 1/374 (total amount 0.015 g). As a result, 8.0 μmol of 2-formylcinnamaldehyde and 0.75 μmol of 1,4-naphthoquinone were generated.
[0038]
Comparative Example 1
An anatase-type titanium dioxide powder [trade name “ST-01”, 100% anatase-type content, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter, in an external irradiation reactor with an internal volume of 30 ml provided with a cooling pipe and an oxygen supply pipe 7 nm, specific surface area 236 m 2 / g] was weighed out to 0.015 g, and 0.1 g of naphthalene, 3.63 g of acetonitrile, and 0.3 g of water were added thereto.
While stirring the reaction solution with a stirrer piece, oxygen gas was blown at a flow rate of 2 ml / min at room temperature, and light irradiation was performed using a 500 W ultrahigh pressure mercury lamp for 1 hour. At this time, in order to avoid direct excitation of naphthalene by light irradiation, light was irradiated through a filter that cuts light of 340 nm or less. The titanium dioxide powder was irradiated with light while being dispersed with a stirrer. The reaction mixture was filtered, and the filtrate was quantitatively analyzed by high performance liquid chromatography. As a result, 1.4 μmol of 2-formylcinnamaldehyde and 0.75 μmol of 1,4-naphthoquinone were generated.
[0039]
Comparative Example 2
To an external irradiation type reactor with an internal volume of 30 ml equipped with a cooling pipe and an oxygen supply pipe, rutile type titanium dioxide powder [trade name “NS-51”, rutile type (rutile type content 98.6%), Toho Titanium Co., Ltd. ), Average particle diameter 200 nm, specific surface area 6.5 m 2 / g] was weighed out to 0.015 g, and 0.1 g of naphthalene, 3.63 g of acetonitrile and 0.3 g of water were added thereto.
While stirring the reaction solution with a stirrer piece, oxygen gas was blown at a flow rate of 2 ml / min at room temperature, and light irradiation was performed using a 500 W ultrahigh pressure mercury lamp for 1 hour. At this time, in order to avoid direct excitation of naphthalene by light irradiation, light was irradiated through a filter that cuts light of 340 nm or less. The titanium dioxide powder was irradiated with light while being dispersed with a stirrer. The reaction mixture was filtered, and the filtrate was quantitatively analyzed by high performance liquid chromatography. As a result, 4.6 μmol of 2-formylcinnamaldehyde and 0.4 μmol of 1,4-naphthoquinone were generated.
[0040]
Example 9
In the reactor, rutile type titanium dioxide powder [Catalyst Society Reference Catalyst “JRC-TIO-3”, average particle size 40 nm, specific surface area 48.1 m 2 / g] and rutile type titanium dioxide powder [trade name “NS-51 ”Rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], the ratio of the former / the latter = 7/3 The same operation as in Example 1 was performed except that the weight was measured (total amount 0.015 g). As a result, 22.3 μmol of 2-formylcinnamaldehyde and 1.9 μmol of 1,4-naphthoquinone were produced.
[0041]
Example 10
In the reactor, rutile type titanium dioxide powder [Catalyst Society Reference Catalyst “JRC-TIO-3”, average particle size: 40 nm, specific surface area 48.1 m 2 / g] and rutile type titanium dioxide powder [trade name “NS- 51 ”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.5 m 2 / g], the ratio of the former / the latter = 5 / The same operation as in Example 1 was performed, except that the weight was 5 (total amount 0.015 g). As a result, 16.4 μmol of 2-formylcinnamaldehyde and 1.8 μmol of 1,4-naphthoquinone were produced.
[0042]
Example 11
In the reactor, rutile type titanium dioxide powder [Catalyst Society Reference Catalyst “JRC-TIO-3”, average particle size 40 nm, specific surface area 48.1 m 2 / g] and rutile type titanium dioxide powder [trade name “NS-51 ”Rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.5 m 2 / g], the ratio of the former / the latter = 3/7 The same operation as in Example 1 was performed except that the weight was measured (total amount 0.015 g). As a result, 18.3 μmol of 2-formylcinnamaldehyde and 2.3 μmol of 1,4-naphthoquinone were produced.
[0043]
Analysis of Titanium Dioxide Catalyst Particle Structure Titanium dioxide catalyst prepared in Example 5 (catalyst after sonication), titanium dioxide catalyst prepared in Example 8 (catalyst after sonication), and Comparative Example 1 The particle images of the titanium dioxide catalyst and the titanium dioxide catalyst used in Comparative Example 2 were observed with a scanning electron microscope (SEM). The SEM photographs are shown in FIGS.
[Brief description of the drawings]
1 is a scanning electron micrograph showing the particle structure of a titanium dioxide catalyst (catalyst after ultrasonic treatment) prepared in Example 5 (corresponding to a lateral length of the photograph = 1092 nm). FIG.
FIG. 2 is a scanning electron micrograph showing the particle structure of the titanium dioxide catalyst (catalyst after ultrasonic treatment) prepared in Example 8 (corresponding to a lateral length of the photograph = 800 nm).
FIG. 3 is a scanning electron micrograph showing the particle structure of the titanium dioxide catalyst used in Comparative Example 1 (corresponding to the horizontal length of the photograph = 1092 nm).
FIG. 4 is a scanning electron micrograph showing the particle structure of the titanium dioxide catalyst used in Comparative Example 2 (corresponding to the horizontal length of the photograph = 1092 nm).

Claims (2)

粒子径100nm以上のルチル型二酸化チタン粒子の表面に比表面積30mSpecific surface area of 30 m on the surface of rutile titanium dioxide particles with a particle diameter of 100 nm or more 22 /g以上の二酸化チタン微粒子が分散担持されている担持型二酸化チタンの存在下、芳香族化合物を光照射下に分子状酸素及び/又は過酸化物により酸化して、対応する芳香族アルデヒド化合物及び/又はキノン類を生成させることを特徴とする酸素原子含有芳香族化合物の製造法。In the presence of supported titanium dioxide in which titanium dioxide fine particles of / g or more are dispersed and supported, the aromatic compound is oxidized with molecular oxygen and / or peroxide under light irradiation, and the corresponding aromatic aldehyde compound and A method for producing an oxygen atom-containing aromatic compound characterized in that quinones are produced. ルチル型二酸化チタン粒子の表面に分散担持されている二酸化チタン微粒子と前記ルチル型二酸化チタン粒子との比率が、前者/後者(重量比)=0.1/99.9〜99.5/0.5である請求項1記載の酸素原子含有芳香族化合物の製造法The ratio of the titanium dioxide fine particles dispersedly supported on the surface of the rutile-type titanium dioxide particles to the rutile-type titanium dioxide particles is such that the former / the latter (weight ratio) = 0.1 / 99.9 to 99.5 / 0.0. The method for producing an oxygen atom-containing aromatic compound according to claim 1, which is 5.
JP2001309171A 2001-03-07 2001-10-04 Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst Expired - Fee Related JP4017851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309171A JP4017851B2 (en) 2001-03-07 2001-10-04 Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-63879 2001-03-07
JP2001063879 2001-03-07
JP2001309171A JP4017851B2 (en) 2001-03-07 2001-10-04 Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst

Publications (2)

Publication Number Publication Date
JP2002331244A JP2002331244A (en) 2002-11-19
JP4017851B2 true JP4017851B2 (en) 2007-12-05

Family

ID=26610805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309171A Expired - Fee Related JP4017851B2 (en) 2001-03-07 2001-10-04 Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst

Country Status (1)

Country Link
JP (1) JP4017851B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058250B2 (en) 2010-04-12 2017-01-11 日東電工株式会社 Particle-dispersed resin composition, particle-dispersed resin molded body, and production method thereof
CN102844273B (en) 2010-04-12 2016-03-02 日东电工株式会社 Ionic conductivity organo-mineral complexing particle, resin combination containing particle and ionic conductivity formed body

Also Published As

Publication number Publication date
JP2002331244A (en) 2002-11-19

Similar Documents

Publication Publication Date Title
Sabri et al. Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: facile synthesis and high photocatalytic performance
JP2615432B2 (en) Method for partial oxidation of hydrocarbons with gold-titanium oxide containing catalyst
Chatterjee et al. Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system
Khodja et al. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions
Soana et al. Titanium dioxide photocatalyzed oxygenation of naphthalene and some of its derivatives
Pavlik et al. Photocatalytic oxidations of lactams and N-acylamines
Xiao et al. Light switching of amine oxidation products from oximes to imines: Superior activity of plasmonic gold nanorods-loaded TiO2 (B) nanofibers under visible-near IR light
KR920000904B1 (en) Process for preparing a cycloalkanone and/or cycloalkanol
WO2003055600A1 (en) Catalysts comprising cyclic acylurea compounds and processes for production of organic compounds with the same
EP0695217B1 (en) Catalyst based on silica and titanium, and utilisation of said catalyst for the epoxydation of olefins
US7166751B2 (en) Method for manufacturing cycloalkanol and/or cycloalkanone
Zhang et al. TiO2 encapsulated Au nanostars as catalysts for aerobic photo-oxidation of benzyl alcohol under visible light
JP4628011B2 (en) Titanium oxide crystal, photocatalyst, and organic compound oxidation method
JP4017851B2 (en) Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst
Dabestani et al. Photochemistry of tetracene adsorbed on dry silica: products and mechanism
Ohno et al. TiO2-photocatalyzed oxidation of adamantane in solutions containing oxygen or hydrogen peroxide
Yu et al. Catalytic performance in phenol hydroxylation by hydrogen peroxide over a catalyst of V–Zr–O complex
JP2011001238A (en) Method for producing brookite-type titanium dioxide nanoparticle
JP4526273B2 (en) Carbon-doped titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst
Salavati et al. Sonocatalytic epoxidation of alkenes by vanadium-containing polyphosphomolybdate immobilized on multi-wall carbon nanotubes
JP2005270736A (en) Compound titanium dioxide catalyst, production method therefor and oxidation method for organic compound using the catalyst
JP2004516213A (en) Method for regenerating working solution in hydrogen peroxide production process
Julliard et al. Oxidation of methyl aromatic compounds by redox photosensitization
JP2005254085A (en) Surface-modified titanium oxide photocatalyst and method of oxidizing organic compound using it
JPH09208511A (en) Production of aromatic hydroxy compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees