JP4014043B2 - Integrated multi-plate heat exchanger - Google Patents

Integrated multi-plate heat exchanger Download PDF

Info

Publication number
JP4014043B2
JP4014043B2 JP2002364572A JP2002364572A JP4014043B2 JP 4014043 B2 JP4014043 B2 JP 4014043B2 JP 2002364572 A JP2002364572 A JP 2002364572A JP 2002364572 A JP2002364572 A JP 2002364572A JP 4014043 B2 JP4014043 B2 JP 4014043B2
Authority
JP
Japan
Prior art keywords
evaporator
absorber
core
plate
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002364572A
Other languages
Japanese (ja)
Other versions
JP2004197984A (en
Inventor
耐事 坂井
努 和田
隆行 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T.RAD CO., L T D.
Original Assignee
T.RAD CO., L T D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.RAD CO., L T D. filed Critical T.RAD CO., L T D.
Priority to JP2002364572A priority Critical patent/JP4014043B2/en
Publication of JP2004197984A publication Critical patent/JP2004197984A/en
Application granted granted Critical
Publication of JP4014043B2 publication Critical patent/JP4014043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0461Combination of different types of heat exchanger, e.g. radiator combined with tube-and-shell heat exchanger; Arrangement of conduits for heat exchange between at least two media and for heat exchange between at least one medium and the large body of fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、吸収冷凍機における吸収器,蒸発器または吸収器,蒸発器,過冷却器の組合せ一体型多板式熱交換器に関する。
【0002】
【従来の技術】
この種の一体型多板式熱交換器については、既に同じ出願人が先に出願した例がある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平10−232066号公報
【0004】
同特許文献1に開示されたものは、凹凸加工を施した2枚のプレートを互いに重ね合わせた素子を複数重ね合わせて形成された互いに別体の蒸発器コアと吸収器コアがさらに互いに重ね合わされ、両者間に仕切り板を介在させて1つのケーシング内に収容され一体に組み付けられた一体型多板式熱交換器である。
【0005】
【発明が解決しようとする課題】
蒸発器コアと吸収器コアをそれぞれ構成する素子すなわち重ね合わされるプレートが蒸発器コアと吸収器コアとでは別体であり、それぞれプレス加工などにより製造しなければならない。
【0006】
そのためプレートの成形時における材料歩留まりが良くない。
また蒸発器コアと吸収器コアをそれぞれ別に組立てるため組立工数が多くかかる。
【0007】
本願発明は、斯かる点に鑑みなされたもので、その目的とする処は、プレートの成形時における材料歩留まりが良く、組立工数を大幅に削減することができる一体型多板式熱交換器を供する点にある。
【0008】
【課題を解決するための手段及び作用効果】
上記目的を達成するために、本請求項1記載の発明は、吸収器と蒸発器からなる多板式熱交換器であって、吸収器側凹凸形状と蒸発器側凹凸形状を左右に一体に加工形成した1枚のプレートを2枚互いに重ね合わせて一体に形成した吸収器側素子と蒸発器側素子を複数重ね合わせ左右に吸収器コアと蒸発器コアが一体に構成され、前記吸収器側素子の内側の素子内空間が一方の熱伝達媒体を通す通路とし、同吸収器側素子の外側の素子外空間が他方の熱伝達媒体たる吸収液を通す通路として形成され、前記蒸発器側素子の内側の素子内空間が一方の熱伝達媒体を通す通路とし、同蒸発器側素子の外側の素子外空間が他方の熱伝達媒体を通す通路として形成され、前記一体に構成された吸収器コアと蒸発器コアがケーシングに収容されて、該吸収器コアの上方および該蒸発器コアの上方に各々貯留部が形成され、前記吸収器側素子および前記蒸発器側素子の各素子は、一対の板状体の上端部が互いに離れる方向に膨出して内側に連通空間が形成され、前記連通空間をなす板状体に、同連通空間を上方の貯留部に連通する複数列設された上側連通孔と下方の前記素子外空間に連通する複数列設された下側連通孔とが形成され、前記ケーシング内の下方空間が前記吸収器コア側と蒸発器コア側とに画成されそれぞれ熱伝達媒体溶液が貯留されている一体型多板式熱交換器とした。
【0009】
1枚のプレートに吸収器側凹凸形状と蒸発器側凹凸形状を左右に一体に加工形成するので、プレートの成形時における材料歩留まりが良い。
このプレートを2枚互いに重ね合わせて一体に形成した吸収器側素子と蒸発器側素子を複数重ね合わせ左右に吸収器コアと蒸発器コアが一体に構成されるので、組立工数が従来に比べ略半減する。
吸収器コアおよび蒸発器コアにおいて各貯留槽に溶液媒体を溜めると、各連通孔から均一で適量の溶液媒体を素子外空間に流出することが簡単にでき熱交換効率を向上させることができる。
【0010】
請求項2記載の発明は、請求項1記載の一体型多板式熱交換器において、前記プレートにおける吸収器側凹凸形状と蒸発器側凹凸形状とともに両形状間に断熱用のスリットを同時に加工形成したことを特徴とする。
【0011】
断熱用のスリットは、吸収器側凹凸形状と蒸発器側凹凸形状とともに同時に形成されるので、加工が簡単である。
断熱用のスリットにより吸収器コアと蒸発器コアの間の熱伝導が抑制される。
【0012】
請求項3記載の発明は、吸収器と過冷却器と蒸発器からなる多板式熱交換器であって、吸収器側凹凸形状と蒸発器側凹凸形状を左右に過冷却器半筒形状を中央に一体に加工形成した1枚のプレートを2枚互いに重ね合わせて一体に形成した吸収器側素子と過冷却器素子と蒸発器側素子を複数重ね合わせ吸収器コアと過冷却器コアと蒸発器コアが一体に構成され、前記吸収器側素子の内側の素子内空間が一方の熱伝達媒体を通す通路とし、同吸収器側素子の外側の素子外空間が他方の熱伝達媒体たる吸収液を通す通路として形成され、前記過冷却器素子の内側の筒状の素子内空間が冷媒液を通す通路とし、同過冷却器素子の外側の素子外空間が冷媒蒸気を通す通路として形成され、前記蒸発器側素子の内側の素子内空間が一方の熱伝達媒体を通す通路とし、同蒸発器側素子の外側の素子外空間が他方の熱伝達媒体を通す通路として形成され、前記一体に構成された吸収器コアと過冷却器コアと蒸発器コアがケーシングに収容されて、該吸収器コアの上方および該蒸発器コアの上方に各々貯留部が形成され、前記吸収器側素子および前記蒸発器側素子の各素子は、それぞれ一対の板状体の上端部が互いに離れる方向に膨出して内側に連通空間が形成され、前記連通空間をなす板状体に、同連通空間を上方の貯留部に連通する複数列設された上側連通孔と下方の前記素子外空間に連通する複数列設された下側連通孔とが形成され、前記ケーシング内の下方空間が前記吸収器コア側と蒸発器コア側とに画成されそれぞれ熱伝達媒体溶液が貯留されている一体型多板式熱交換器である。
【0013】
1枚のプレートに吸収器側凹凸形状と過冷却器半筒形状と蒸発器側凹凸形状を一体に加工形成するので、プレートの成形時における材料歩留まりが良い。
このプレートを2枚互いに重ね合わせて一体に形成した吸収器側素子と過冷却器素子と蒸発器側素子を複数重ね合わせ吸収器コアと過冷却器コアと蒸発器コアが一体に構成されるので、組立工数が従来に比べ大幅に削減される。
吸収器コアおよび蒸発器コアにおいて各貯留槽に溶液媒体を溜めると、各連通孔から均一で適量の溶液媒体を素子外空間に流出することが簡単にでき熱交換効率を向上させることができる。
【0014】
請求項4記載の発明は、請求項3記載の一体型多板式熱交換器において、前記プレートにおける吸収器側凹凸形状と過冷却器半筒形状と蒸発器側凹凸形状とともに前記吸収器側凹凸形状と過冷却器半筒形状との間および過冷却器半筒形状と蒸発器側凹凸形状との間にそれぞれ断熱用のスリットを同時に加工形成したことを特徴とする。
【0015】
断熱用のスリットは、吸収器側凹凸形状と蒸発器側凹凸形状とともに同時に形成されるので、加工が簡単である。
断熱用のスリットにより吸収器コアと過冷却器コアとの間の熱伝導および過冷却器コアと蒸発器コアとの間の熱伝導が抑制される。
【0016】
請求項5記載の発明は、請求項3または請求項4記載の一体型多板式熱交換器において、前記過冷却器素子の外側の素子外空間には冷却フィンが配設されていることを特徴とする。
【0017】
冷却フィンにより過冷却器コアにおける冷媒液の冷却効果を高めることができる。
【0020】
【発明の実施の形態】
以下本発明に係る一実施の形態について図1ないし図5に基づき説明する。
本実施の形態に係る一体型多板式熱交換器1のケーシング2の一部を省略して図示した斜視図を図1に示す。
【0021】
ケーシング2に収容された吸収器コア4と蒸発器コア5とは一体型であり、ケーシング2の前板2fと背板2bに挟まれて左右に配設されている。
前板2fを外した正面図を図2に示す。
【0022】
図2において左側に吸収器コア4、右側に蒸発器コア5が位置しており、ケーシング2の下方空間は、仕切り壁3によって吸収器側と蒸発器側に仕切られている。
吸収器コア4と蒸発器コア5とは一体に構成されており、同じ構造をしている。
【0023】
すなわち吸収器側凹凸形状と蒸発器側凹凸形状を左右に一体にプレス加工により成形した2枚のプレート6,7を互いに重ね合わせて一体に吸収器側素子4aと蒸発器側素子5aを形成し、この吸収器側素子4aと蒸発器側素子5aを複数重ね合わせて吸収器コア4と蒸発器コア5が一体に構成されている。
【0024】
プレート6,7の吸収器側凹凸形状と蒸発器側凹凸形状との間には上下方向に長尺の断熱用スリット8が形成されている。
吸収器側素子4aと蒸発器側素子5aを構成するプレート6,7は、それぞれ1枚のプレートをプレス加工して一体に成形するので、吸収器側素子4aと蒸発器側素子5aのプレートをそれぞれ加工成形するのに比べ、プレートの成形時における材料歩留まりが良い。
【0025】
プレート6,7は、互いに重ね合わされ、その周縁部および吸収器側凹凸形状と蒸発器側凹凸形状の間が断熱用スリット8の周縁部とともにろう付けにより水密に接合される(図3参照)。
【0026】
一体に構成される吸収器コア4と蒸発器コア5は同じ構造をしており、以下吸収器コア4について図3ないし図5に基づいて説明する。
【0027】
図4の縦断面図に図示するようにプレート6,7の凹凸形状は縦方向に連続した波形状が形成され、互いに接近したところで当接し、互いに離れたところに共通の素子内空間4bが形成され、各吸収器側素子4aの互いの間および吸収器側素子4aとケーシング2との間に素子外空間4cが形成される。
【0028】
各吸収器側素子4aの上端水平部の両端が上方へ延出されて上方に開いたコ字状の上端凹部4dが形成され、この上端凹部4dは、一対のプレート6,7の上端部が互いに離れる方向に膨出して内側に連通空間4eをなす閉断面形状が形成されている。
【0029】
この連通空間4eを有する上端凹部4dは、吸収器側素子4aの最大幅を有し、吸収器側素子4aを順次重ね合せるときに、上端凹部4dどうしが当接しろう付けにより互いに水密に接合される。
一対のプレート6,7の下端も同様の構造をしている。
【0030】
吸収器側素子4aにおける一対のプレート6,7の上下にそれぞれ対向して円孔が形成され、各吸収器側素子4aの円孔が連結されて共通の連通路4f,4gが形成され、同上下の連通路4f,4gは各素子内空間4bと連通している。
【0031】
こうして重ね合わされた吸収器側素子4aの前側と後側にケーシング2の前板2fと背板2bがそれぞれ当てがわれ、前板2fの上下に形成された円孔が連通路4f,4gと連結されるとともに、前板2fと後板2bの前後上部にそれぞれ最外側の各吸収器側素子4aの上端凹部4d,4dがろう付けにより水密に接合される。
【0032】
よって複数の吸収器側素子4aの上端凹部4dが順次重ね合わされて形成された上方に開口した断面コ字状の溝の前後を前板2fと後板2bの上部が塞ぐような形で上方に開口した貯留槽4hが形成されている。
なお前板2fと後板2bの前後下部と一対のプレート6,7の下端も同様の構造をしている。
【0033】
そして各プレート6,7の上端凹部4dの連通空間4eをなす部分に、上方の貯留槽4hと連通空間4eとを連通する上側連通孔4iが複数列設されるとともに、連通空間4eと下方の素子外空間4cとを連通する下側連通孔4jが複数列設されている。
【0034】
したがって貯留槽4gは、上側連通孔4iおよび下側連通孔4jにより連通空間4eを介して素子外空間4cと連通している。
また前板2fの上下に形成された円孔が連結される上下の連通路4f,4gは各素子内空間4bと連通している。
【0035】
吸収器コア4は、以上のような構造をしており、他方の蒸発器コア5も同様の構造で、同じプレート6,7の重ね合わせにより蒸発器側素子5aが形成され、蒸発器側素子5aが順次重ねられて蒸発器コア5が構成されている。
【0036】
したがって蒸発器コア5の貯留槽5hは、上側連通孔5iおよび下側連通孔5jにより連通空間5eを介して素子外空間5cと連通している。
また前板2fの上下に形成された円孔が連結される上下の連通路5f,5gは各素子内空間5bと連通している。
【0037】
なお吸収器コア4の上部の貯留槽4hおよび蒸発器コア5の上部の貯留槽5hの上方には、それぞれ媒体溶液を注入する注入パイプ9,10が設けられている。
【0038】
以上のような構造の一体型多板式熱交換器1において、吸収器コア4の上部の貯留槽4hには注入パイプ9により吸収液である濃度の高いLiBr水溶液が注入されて貯留され、蒸発器コア5の上部の貯留槽5hには注入パイプ10により水が注入され貯留される。
【0039】
吸収器コア4の貯留槽4hに貯留されたLiBr水溶液は、上側連通孔4iおよび下側連通孔4jにより連通空間4eを介して素子外空間4cに散布されてケーシング2の仕切り壁3により仕切られた下方空間の吸収器側に溜まる。
【0040】
蒸発器コア5は、上側連通孔5iおよび下側連通孔5jにより連通空間5eを介して素子外空間5cに散布されてケーシング2の下方空間の蒸発器側に溜まる。
【0041】
吸収器コア4の下側の連通路4gには約32度Cの水が供給され、素子内空間4bを通って約35度Cに加熱されて上側の連通路4fから排出され、蒸発器コア5の下側の連通路5gには約12度Cの水が供給され、素子内空間5bを通って約7度Cに冷却されて上側の連通路5fから排出される。
吸収器コア4と蒸発器コア5は間の断熱用スリット8により両者間の熱伝導が抑制されている。
【0042】
上記のように吸収器コア4の素子内空間4bを冷却水が流れ、蒸発器コア5の素子内空間5bを冷水が流れ、ケーシング2により密封し抽気された環境内で、吸収器コア4の貯留槽4hに貯留されたLiBr水溶液が素子外空間4cに散布されると、LiBr水溶液は内部を冷却水が流れる吸収器側素子4aに触れてケーシング2内の水分の吸収を促進する。
【0043】
そして蒸発器コア5の貯留槽5hに貯留された水が素子外空間5cに散布されることで、水の蒸発が促進され、吸収器側のLiBr水溶液に吸収される。
蒸発器側の水の蒸発の潜熱によって素子内空間5bを流れる冷水が冷却される。
【0044】
吸収器コア4および蒸発器コア5において各貯留槽4h,5hに溶液媒体を溜め各連通孔4j,5jから散布することで、均一で適量の溶液媒体を素子外空間に流出することが簡単にでき熱交換効率を向上させることができる。
【0045】
なお水分を吸収して薄くなったLiBr水溶液は再生器に回送されて、濃くなったLiBr水溶液が再び吸収器コア4の貯留槽4hに注入され、散布に供される。
【0046】
以上のような優れた作用効果を備える本一体型多板式熱交換器1は、プレート6,7を互いに重ね合わせて一体に形成した吸収器側素子4aと蒸発器側素子5aを複数重ね合わせ左右に吸収器コア4と蒸発器コア5が一体に構成されるので、組立工数を従来に比べ略半減することができる。
【0047】
次に過冷却器を備えた一体型多板式熱交換器31について図6ないし図8に基づき説明する。
本一体型多板式熱交換器31は、ケーシング32内に吸収器コア34と蒸発器コア35とともに過冷却器コア33が一体に構成されたものが収容されている。
【0048】
過冷却器コア33は、左側の吸収器コア34と右側の蒸発器コア35の間にあり、ケーシング32の下方空間は、底壁の中央が内方に膨出しさらに仕切り壁32aによって吸収器側と蒸発器側に仕切られている。
【0049】
吸収器コア34と蒸発器コア35と過冷却器コア33を構成する吸収器側素子34aと蒸発器側素子35aと過冷却器素子36aは、プレス加工により一体に成形した2枚のプレート36,37を互いに重ね合わせて形成する。
【0050】
プレート36,37は、吸収器側凹凸形状と蒸発器側凹凸形状を左右に、2条(2条に限らず1条または3条以上としてもよい)の過冷却器半筒形状を間に配した形状に1枚のプレートからプレス加工により一体に成形する。
したがってプレートの成形時における材料歩留まりが非常に良い。
【0051】
なおプレート36,37の吸収器側凹凸形状と過冷却器半筒形状との間および過冷却器半筒形状と蒸発器側凹凸形状との間には上下方向に長尺の断熱用スリット38,38が形成されている。
【0052】
プレート36,37は、互いに重ね合わされ、その周縁部および吸収器側凹凸形状と過冷却器半筒形状と蒸発器側凹凸形状の各間が断熱用スリット38,38の周縁部とともにろう付けにより水密に接合される(図7参照)。
【0053】
吸収器コア34と蒸発器コア35は、前記実施の形態の吸収器コア4と蒸発器コア5と同じ構造をしており、吸収器側素子34aと蒸発器側素子35aはそれぞれ素子内空間34b,35b、素子外空間34c,35c、連通空間34e,35e、上側連通路34f,35f、下側連通路34g,35g、貯留槽34h,35h、上側連通孔34i,35i、下側連通孔34j,35jを形成している。
【0054】
一方、過冷却器コア33の過冷却器素子33aは、プレート36,37の中央の2条の縦長過冷却器半筒形状が重ね合わされて上下方向に指向した2条の素子内通路33b,33cが形成されており、両素子内通路33b,33cは上下端が連結され、この上下連結部にそれぞれ円孔が形成され、順次重ねられた過冷却器素子33aの円孔が連なって上下の連通路33d,33eが構成されている。
【0055】
上下の連通路33d,33eは各過冷却器素子33aの2条の素子内通路33b,33cに連通している。
そして各過冷却器素子33aの互いの間には、図7および図8に図示するようにコルゲート状に屈曲形成された冷却フィン41が挟まれて介装されている。
【0056】
以上のような構造の一体型多板式熱交換器31において、吸収器コア34の貯留槽34hには注入パイプ39により吸収液であるDMI(1,3−ジメチル−2−イミダゾリジノン、C10O)溶液が注入されて貯留され、蒸発器コア35の貯留槽35hには注入パイプ40によりTFE(トリフルオロエタノール、CFCHOH)溶液が注入され貯留される。
【0057】
なお吸収器コア34の素子内空間34bと蒸発器コア35の素子内空間35bには、前記実施の形態と同じ水が流通する。
【0058】
そして過冷却器コア33のの下側の連通路33eには凝縮器から回送された約50度CのTFE溶液が供給されて、冷却フィン41により30度Cに効率良く冷却されて蒸発器コア35の貯留槽35hに注入される。
【0059】
吸収器コア34の貯留槽34hに貯留されたDMI溶液が素子外空間34cに散布されると、DMI溶液は内部を冷却水が流れる吸収器側素子34aに触れてケーシング32内のTFEの吸収を促進し、蒸発器コア35の貯留槽34hに貯留されたTFE溶液の散布によるTFEの蒸発を促し、蒸発の潜熱によって素子内空間5bを流れる冷水が効率良く冷却される。
【0060】
本一体型多板式熱交換器31は、プレート36,37を互いに重ね合わせて一体に形成した吸収器側素子34aと蒸発器側素子35aと過冷却器素子33aを複数重ね合わせ左右に吸収器コア34と蒸発器コア35、中央に過冷却コア33が一体に構成されるので、組立工数を従来に比べ大幅に削減することができる。
【図面の簡単な説明】
【図1】本願発明の一実施の形態に係る一体型多板式熱交換器のケーシングの一部を省略して図示した斜視図である。
【図2】同一体型多板式熱交換器のケーシングの前板を外した正面図である。
【図3】図2のIII−III線に沿った断面図である。
【図4】図2のIV−IV線に沿った断面図である。
【図5】図2のV−V線に沿った断面図である。
【図6】別の実施の形態に係る一体型多板式熱交換器のケーシングの前板を外した正面図である。
【図7】図6のVII−VII線に沿った断面図である。
【図8】図6のVIII−VIII線に沿った断面図である。
【符号の説明】
1…一体型多板式熱交換器、2…ケーシング、3…仕切り壁、
4…吸収器コア、4a…吸収器側素子、4b…素子内空間、4c…素子外空間、4d…上端凹部、4e…連通空間、4f,4g…連通路、4h…貯留槽、4i,4j…連通孔、
5…蒸発器コア、5a…吸収器側素子、5b…素子内空間、5c…素子外空間、5d…上端凹部、5e…連通空間、5f,5g…連通路、5h…貯留槽、5i,5j…連通孔、
6,7…プレート、8…断熱用スリット、9,10…注入パイプ、
31…一体型多板式熱交換器、32…ケーシング、32a…仕切り壁、
33…過冷却器コア、33a…過冷却器素子、33b,33c…素子内通路、33d,33e…連通路、
34…吸収器コア、34a…吸収器側素子、34b…素子内空間、34c…素子外空間、34d…上端凹部、34e…連通空間、34f,34g…連通路、34h…貯留槽、34i,34j…連通孔、
35…蒸発器コア、35a…吸収器側素子、35b…素子内空間、35c…素子外空間、35d…上端凹部、35e…連通空間、35f,35g…連通路、35h…貯留槽、35i,35j…連通孔、
36,37…プレート、38…断熱用スリット、39,40…注入パイプ、
41…冷却フィン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-plate heat exchanger integrated with an absorber, an evaporator or an absorber, an evaporator, and a supercooler in an absorption refrigerator.
[0002]
[Prior art]
As for this type of integrated multi-plate heat exchanger, there is an example in which the same applicant has already filed an application (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-232066
In the one disclosed in Patent Document 1, an evaporator core and an absorber core, which are formed by stacking a plurality of elements each having two concavo-convex processed plates stacked on each other, are further stacked on each other. The multi-plate heat exchanger is an integrated multi-plate heat exchanger that is housed in a single casing and assembled integrally with a partition plate interposed therebetween.
[0005]
[Problems to be solved by the invention]
The elements constituting the evaporator core and the absorber core, that is, the stacked plates are separate from the evaporator core and the absorber core, and must be manufactured by pressing or the like.
[0006]
Therefore, the material yield at the time of forming the plate is not good.
Moreover, since the evaporator core and the absorber core are separately assembled, it takes a lot of assembly steps.
[0007]
The present invention has been made in view of such a point, and the object of the present invention is to provide an integrated multi-plate heat exchanger that has a good material yield at the time of molding a plate and can greatly reduce the number of assembly steps. In the point.
[0008]
[Means for solving the problems and effects]
In order to achieve the above object, the invention described in claim 1 is a multi-plate heat exchanger composed of an absorber and an evaporator, and integrally processes the uneven shape on the absorber side and the uneven shape on the evaporator side on the left and right. A plurality of absorber-side elements and evaporator-side elements, which are integrally formed by superimposing two formed plates, are superposed on each other, and an absorber core and an evaporator core are integrally formed on the left and right. The inner space of the element is formed as a passage through which one heat transfer medium passes, and the outer space outside the element on the absorber side element is formed as a passage through which the absorption liquid as the other heat transfer medium passes. The inner element inner space is a passage through which one heat transfer medium passes, and the outer element outer space of the evaporator side element is formed as a passage through which the other heat transfer medium passes. evaporator core is accommodated in a casing, suction A reservoir is formed above the evaporator core and above the evaporator core, and each of the absorber-side element and the evaporator-side element bulges in a direction in which the upper ends of the pair of plate-like bodies are separated from each other. A plurality of rows communicating with the lower space outside the element and a plurality of upper communication holes provided in the plate-like body forming the communication space, and a plurality of upper communication holes communicating with the upper storage portion. An integrated multi-plate heat exchange in which a lower communication hole is formed , a lower space in the casing is defined on the absorber core side and the evaporator core side, and the heat transfer medium solution is stored respectively. It was a vessel.
[0009]
Since the absorber-side uneven shape and the evaporator-side uneven shape are integrally formed on the left and right sides on one plate, the material yield at the time of forming the plate is good.
The absorber core and the evaporator core are integrally formed on the left and right by superimposing a plurality of absorber side elements and evaporator side elements formed by superimposing two plates on each other. Cut in half.
When the solution medium is stored in each storage tank in the absorber core and the evaporator core, a uniform and appropriate amount of the solution medium can be easily discharged from each communicating hole to the space outside the element, and the heat exchange efficiency can be improved.
[0010]
The invention according to claim 2 is the integrated multi-plate heat exchanger according to claim 1, wherein a heat-insulating slit is simultaneously formed between the two shapes together with the absorber-side uneven shape and the evaporator-side uneven shape in the plate. It is characterized by that.
[0011]
Since the slit for heat insulation is formed simultaneously with the uneven shape on the absorber side and the uneven shape on the evaporator side, it is easy to process.
The heat conduction slit suppresses heat conduction between the absorber core and the evaporator core.
[0012]
The invention according to claim 3 is a multi-plate heat exchanger comprising an absorber, a supercooler, and an evaporator, wherein the absorber-side uneven shape and the evaporator-side uneven shape are on the left and right, and the subcooler half cylinder shape is in the center A plurality of absorber-side elements, supercooler elements, and evaporator-side elements, which are integrally formed by superimposing two plates that are integrally formed on each other, are superposed on each other. Absorber core, supercooler core, and evaporator The core is integrally formed, the element inner space inside the absorber side element serves as a passage for passing one heat transfer medium, and the element outer space outside the absorber side element serves as the other heat transfer medium. Formed as a passage through which the cylindrical element inner space inside the supercooler element is a passage through which the refrigerant liquid passes, and the element outer space outside the subcooler element is formed as a passage through which the refrigerant vapor passes, The element internal space inside the evaporator side element passes through one heat transfer medium. And a passage, the outside of the device outside the space of the evaporator-side element is formed as a passage through the other heat transfer medium, the absorber core and the subcooler core and evaporator core configured into the integral is housed in a casing Thus, reservoirs are respectively formed above the absorber core and above the evaporator core, and the upper end portions of the pair of plate-like bodies are connected to each other of the absorber-side element and the evaporator-side element. A plate-like body that bulges away in a direction to form a communication space and forms the communication space, and a plurality of rows of upper communication holes that communicate the communication space with an upper storage portion, and the lower element outer space. A plurality of rows of lower communication holes communicating with each other , a lower space in the casing is defined by the absorber core side and the evaporator core side, and the heat transfer medium solution is stored respectively. It is a body type multi-plate heat exchanger.
[0013]
Since the absorber-side uneven shape, the subcooler half-cylinder shape, and the evaporator-side uneven shape are integrally formed on one plate, the material yield at the time of forming the plate is good.
Since the absorber side element, the supercooler element, and the evaporator side element, which are formed by superimposing two plates on each other, are superposed, the absorber core, the supercooler core, and the evaporator core are integrally configured. As a result, the number of assembly steps is greatly reduced compared to the conventional one.
When the solution medium is stored in each storage tank in the absorber core and the evaporator core, a uniform and appropriate amount of the solution medium can be easily discharged from each communicating hole to the space outside the element, and the heat exchange efficiency can be improved.
[0014]
The invention according to claim 4 is the integrated multi-plate heat exchanger according to claim 3, wherein the absorber side uneven shape together with the absorber side uneven shape, the subcooler half tube shape, and the evaporator side uneven shape in the plate. Insulating slits are simultaneously formed between the subcooler half cylinder shape and between the supercooler half cylinder shape and the evaporator-side uneven shape.
[0015]
Since the slit for heat insulation is formed simultaneously with the uneven shape on the absorber side and the uneven shape on the evaporator side, it is easy to process.
The heat insulation slit suppresses heat conduction between the absorber core and the supercooler core and heat conduction between the supercooler core and the evaporator core.
[0016]
According to a fifth aspect of the present invention, in the integrated multi-plate heat exchanger according to the third or fourth aspect of the present invention, cooling fins are disposed in the element outer space outside the supercooler element. And
[0017]
The cooling effect of the refrigerant liquid in the supercooler core can be enhanced by the cooling fins.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment according to the present invention will be described with reference to FIGS.
The perspective view which abbreviate | omitted and illustrated one part of the casing 2 of the integrated multi-plate heat exchanger 1 which concerns on this Embodiment is shown in FIG.
[0021]
The absorber core 4 and the evaporator core 5 housed in the casing 2 are integrated, and are disposed on the left and right sides between the front plate 2f and the back plate 2b of the casing 2.
A front view with the front plate 2f removed is shown in FIG.
[0022]
In FIG. 2, the absorber core 4 is located on the left side and the evaporator core 5 is located on the right side, and the lower space of the casing 2 is partitioned by the partition wall 3 into the absorber side and the evaporator side.
The absorber core 4 and the evaporator core 5 are integrally formed and have the same structure.
[0023]
That is, the absorber-side element 4a and the evaporator-side element 5a are integrally formed by superimposing the two plates 6 and 7 formed by pressing the absorber-side uneven shape and the evaporator-side uneven shape integrally on the left and right. The absorber core 4 and the evaporator core 5 are integrally formed by overlapping a plurality of the absorber side elements 4a and the evaporator side elements 5a.
[0024]
Between the absorber-side uneven shape and the evaporator-side uneven shape of the plates 6, 7, a long heat-insulating slit 8 is formed in the vertical direction.
The plates 6 and 7 constituting the absorber-side element 4a and the evaporator-side element 5a are each integrally formed by pressing one plate, so the plates of the absorber-side element 4a and the evaporator-side element 5a are formed. Compared to processing and molding each, the material yield at the time of forming the plate is better.
[0025]
The plates 6 and 7 are overlapped with each other, and the peripheral portion and the absorber-side uneven shape and the evaporator-side uneven shape are joined together with the peripheral portion of the heat insulating slit 8 by water brazing (see FIG. 3).
[0026]
The absorber core 4 and the evaporator core 5 which are integrally configured have the same structure, and the absorber core 4 will be described below with reference to FIGS.
[0027]
As shown in the longitudinal sectional view of FIG. 4, the concave and convex shapes of the plates 6 and 7 are formed in a wave shape that is continuous in the vertical direction, abuts when approaching each other, and forms a common element internal space 4b away from each other. Thus, an element outer space 4 c is formed between the absorber side elements 4 a and between the absorber side element 4 a and the casing 2.
[0028]
Both ends of the upper end horizontal portion of each absorber-side element 4a are extended upward to form a U-shaped upper end recessed portion 4d opened upward, and the upper end recessed portion 4d is formed by the upper ends of the pair of plates 6 and 7 being A closed cross-sectional shape that bulges away from each other and forms a communication space 4e on the inside is formed.
[0029]
The upper end recess 4d having the communication space 4e has the maximum width of the absorber-side element 4a. When the absorber-side elements 4a are sequentially stacked, the upper end recesses 4d abut against each other and are joined to each other by brazing. The
The lower ends of the pair of plates 6 and 7 have the same structure.
[0030]
A pair of plates 6 and 7 in the absorber-side element 4a are respectively opposed to the upper and lower sides, and circular holes are formed, and the circular holes in each absorber-side element 4a are connected to form common communication paths 4f and 4g. The upper and lower communication passages 4f and 4g communicate with each element internal space 4b.
[0031]
The front plate 2f and the back plate 2b of the casing 2 are respectively applied to the front side and the rear side of the absorber side element 4a superposed in this way, and circular holes formed on the top and bottom of the front plate 2f are connected to the communication passages 4f and 4g. In addition, upper end recesses 4d and 4d of the outermost absorber-side elements 4a are joined to the front and rear upper parts of the front plate 2f and the rear plate 2b in a watertight manner by brazing.
[0032]
Therefore, the upper part of the front plate 2f and the upper part of the rear plate 2b are closed upward so as to block the front and back of the groove having a U-shaped cross section opened upward formed by sequentially overlapping the upper end recesses 4d of the plurality of absorber side elements 4a. An open storage tank 4h is formed.
The front and rear lower portions of the front plate 2f and the rear plate 2b and the lower ends of the pair of plates 6 and 7 have the same structure.
[0033]
In addition, a plurality of upper communication holes 4i for communicating the upper storage tank 4h and the communication space 4e are provided in a portion forming the communication space 4e of the upper end recess 4d of each of the plates 6 and 7, and the communication space 4e and the lower space are connected to each other. A plurality of lower communication holes 4j communicating with the element outer space 4c are provided in a plurality of rows.
[0034]
Accordingly, the storage tank 4g communicates with the element outer space 4c through the communication space 4e through the upper communication hole 4i and the lower communication hole 4j.
The upper and lower communication passages 4f and 4g to which the circular holes formed on the upper and lower sides of the front plate 2f are connected communicate with each element internal space 4b.
[0035]
The absorber core 4 has the above-described structure, and the other evaporator core 5 has the same structure. The evaporator-side element 5a is formed by overlapping the same plates 6 and 7, and the evaporator-side element is formed. The evaporator core 5 is configured by sequentially stacking 5a.
[0036]
Accordingly, the storage tank 5h of the evaporator core 5 communicates with the element outer space 5c through the communication space 5e through the upper communication hole 5i and the lower communication hole 5j.
The upper and lower communication paths 5f and 5g to which the circular holes formed on the upper and lower sides of the front plate 2f are connected communicate with the element internal spaces 5b.
[0037]
In addition, injection pipes 9 and 10 for injecting the medium solution are provided above the storage tank 4h above the absorber core 4 and the storage tank 5h above the evaporator core 5, respectively.
[0038]
In the integrated multi-plate heat exchanger 1 having the above-described structure, a high concentration LiBr aqueous solution as an absorbent is injected and stored in the storage tank 4h above the absorber core 4 through the injection pipe 9, and the evaporator Water is injected and stored in the storage tank 5 h above the core 5 through the injection pipe 10.
[0039]
The LiBr aqueous solution stored in the storage tank 4h of the absorber core 4 is sprayed to the external space 4c through the communication space 4e by the upper communication hole 4i and the lower communication hole 4j, and is partitioned by the partition wall 3 of the casing 2. Accumulate on the absorber side of the lower space.
[0040]
The evaporator core 5 is dispersed in the element outer space 5c through the communication space 5e by the upper communication hole 5i and the lower communication hole 5j, and accumulates on the evaporator side in the lower space of the casing 2.
[0041]
Water of about 32 degrees C is supplied to the lower communication path 4g of the absorber core 4, heated to about 35 degrees C through the element internal space 4b, and discharged from the upper communication path 4f. Water of about 12 degrees C is supplied to the lower communication path 5g of 5, and is cooled to about 7 degrees C through the element internal space 5b and discharged from the upper communication path 5f.
The heat absorption between the absorber core 4 and the evaporator core 5 is suppressed by a heat insulating slit 8 therebetween.
[0042]
As described above, the cooling water flows through the element inner space 4b of the absorber core 4 and the cold water flows through the element inner space 5b of the evaporator core 5, and is sealed by the casing 2 and is bleed. When the LiBr aqueous solution stored in the storage tank 4h is sprayed in the element outer space 4c, the LiBr aqueous solution touches the absorber side element 4a through which cooling water flows, and promotes the absorption of moisture in the casing 2.
[0043]
Then, the water stored in the storage tank 5h of the evaporator core 5 is dispersed in the element outer space 5c, whereby the evaporation of the water is promoted and absorbed by the LiBr aqueous solution on the absorber side.
The cold water flowing through the element inner space 5b is cooled by the latent heat of evaporation of water on the evaporator side.
[0044]
By storing the solution medium in the storage tanks 4h and 5h in the absorber core 4 and the evaporator core 5 and spraying them from the communication holes 4j and 5j, it is easy to allow a uniform and appropriate amount of the solution medium to flow out to the space outside the element. And heat exchange efficiency can be improved.
[0045]
The LiBr aqueous solution thinned by absorbing moisture is sent to the regenerator, and the thickened LiBr aqueous solution is again injected into the storage tank 4h of the absorber core 4 and used for spraying.
[0046]
In this integrated multi-plate heat exchanger 1 having the above-described excellent effects, a plurality of absorber-side elements 4a and evaporator-side elements 5a, which are integrally formed by superimposing the plates 6 and 7, are left and right. In addition, since the absorber core 4 and the evaporator core 5 are integrally formed, the number of assembling steps can be substantially halved as compared with the prior art.
[0047]
Next, an integrated multi-plate heat exchanger 31 equipped with a supercooler will be described with reference to FIGS.
The integrated multi-plate heat exchanger 31 accommodates a casing 32 in which a supercooler core 33 is integrally formed with an absorber core 34 and an evaporator core 35.
[0048]
The subcooler core 33 is located between the left absorber core 34 and the right evaporator core 35, and the lower space of the casing 32 is inflated inward at the center of the bottom wall and further separated by the partition wall 32a. And is divided on the evaporator side.
[0049]
The absorber-side element 34a, the evaporator-side element 35a, and the subcooler element 36a constituting the absorber core 34, the evaporator core 35, and the supercooler core 33 are composed of two plates 36, which are integrally formed by pressing. 37 are formed on top of each other.
[0050]
The plates 36 and 37 have two ridges on the absorber side and two ridges on the evaporator side, and two supercooler half cylinders (not limited to two but may be one or three or more). The formed shape is integrally formed by pressing from one plate.
Therefore, the material yield at the time of forming the plate is very good.
[0051]
Between the absorber-side irregular shape of the plates 36 and 37 and the subcooler half-cylinder shape and between the subcooler half-cylinder shape and the evaporator-side irregular shape, the heat insulating slit 38, which is long in the vertical direction, 38 is formed.
[0052]
The plates 36 and 37 are overlapped with each other, and the peripheral portion and the absorber-side uneven shape, the subcooler half tube shape, and the evaporator-side uneven shape are watertight together with the peripheral portions of the heat insulating slits 38 and 38 by brazing. (See FIG. 7).
[0053]
The absorber core 34 and the evaporator core 35 have the same structure as the absorber core 4 and the evaporator core 5 of the above embodiment, and the absorber-side element 34a and the evaporator-side element 35a are respectively in the element internal space 34b. 35b, element outer spaces 34c and 35c, communication spaces 34e and 35e, upper communication passages 34f and 35f, lower communication passages 34g and 35g, storage tanks 34h and 35h, upper communication holes 34i and 35i, lower communication holes 34j, 35j is formed.
[0054]
On the other hand, the subcooler element 33a of the supercooler core 33 is composed of two strip-shaped in-element passages 33b and 33c oriented in the vertical direction by overlapping the two vertical supercooler half cylinders in the center of the plates 36 and 37. The upper and lower ends of the passages 33b and 33c in both elements are connected to each other, and circular holes are formed in the upper and lower connecting portions. The circular holes of the supercooler elements 33a that are sequentially stacked are connected to each other. Passages 33d and 33e are formed.
[0055]
The upper and lower communication passages 33d and 33e communicate with the two element internal passages 33b and 33c of each subcooler element 33a.
Further, between the subcooler elements 33a, cooling fins 41 bent and formed in a corrugated shape as shown in FIGS. 7 and 8 are interposed.
[0056]
In the integrated multi-plate heat exchanger 31 having the above-described structure, DMI (1,3-dimethyl-2-imidazolidinone, C 5) , which is an absorption liquid, is supplied to the storage tank 34h of the absorber core 34 by the injection pipe 39. A H 10 N 2 O) solution is injected and stored, and a TFE (trifluoroethanol, CF 3 CH 2 OH) solution is injected and stored in the storage tank 35 h of the evaporator core 35 through the injection pipe 40.
[0057]
The same water as in the above-described embodiment flows in the element inner space 34b of the absorber core 34 and the element inner space 35b of the evaporator core 35.
[0058]
Then, the TFE solution of about 50 ° C. fed from the condenser is supplied to the lower communication passage 33e of the supercooler core 33, and is efficiently cooled to 30 ° C. by the cooling fins 41, and the evaporator core. It is injected into 35 storage tanks 35h.
[0059]
When the DMI solution stored in the storage tank 34h of the absorber core 34 is sprayed in the outer space 34c, the DMI solution touches the absorber-side element 34a through which cooling water flows and absorbs TFE in the casing 32. This promotes the evaporation of the TFE by spraying the TFE solution stored in the storage tank 34h of the evaporator core 35, and the cold water flowing through the element inner space 5b is efficiently cooled by the latent heat of evaporation.
[0060]
This integrated multi-plate heat exchanger 31 includes a plurality of absorber-side elements 34a, evaporator-side elements 35a, and supercooler elements 33a, which are integrally formed by superimposing plates 36 and 37 on each other. Since 34, the evaporator core 35, and the supercooling core 33 are integrally formed in the center, the number of assembling steps can be greatly reduced as compared with the prior art.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a part of a casing of an integrated multi-plate heat exchanger according to an embodiment of the present invention with a part thereof omitted.
FIG. 2 is a front view of the same-type multi-plate heat exchanger with a front plate removed.
3 is a cross-sectional view taken along line III-III in FIG.
4 is a cross-sectional view taken along line IV-IV in FIG.
5 is a cross-sectional view taken along line VV in FIG.
6 is a front view of a casing of an integrated multi-plate heat exchanger according to another embodiment with a front plate removed. FIG.
7 is a cross-sectional view taken along line VII-VII in FIG.
8 is a cross-sectional view taken along line VIII-VIII in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Integrated multi-plate heat exchanger, 2 ... Casing, 3 ... Partition wall,
4 ... absorber core, 4a ... absorber side element, 4b ... inside element space, 4c ... outside element space, 4d ... top recess, 4e ... communication space, 4f, 4g ... communication path, 4h ... reservoir, 4i, 4j ... communication hole,
5 ... Evaporator core, 5a ... Absorber side element, 5b ... Element inner space, 5c ... Element outer space, 5d ... Upper end recess, 5e ... Communication space, 5f, 5g ... Communication passage, 5h ... Storage tank, 5i, 5j ... communication hole,
6, 7 ... Plate, 8 ... Insulating slit, 9, 10 ... Injection pipe,
31 ... Integrated multi-plate heat exchanger, 32 ... Casing, 32a ... Partition wall,
33 ... Supercooler core, 33a ... Supercooler element, 33b, 33c ... Element internal passage, 33d, 33e ... Communication passage,
34 ... Absorber core, 34a ... Absorber side element, 34b ... Inner space, 34c ... Outer space, 34d ... Upper end recess, 34e ... Communication space, 34f, 34g ... Communication passage, 34h ... Reservoir, 34i, 34j ... communication hole,
35 ... Evaporator core, 35a ... Absorber side element, 35b ... Inner space, 35c ... Outer element space, 35d ... Upper end recess, 35e ... Communication space, 35f, 35g ... Communication passage, 35h ... Reservoir, 35i, 35j ... communication hole,
36, 37 ... Plate, 38 ... Insulating slit, 39, 40 ... Injection pipe,
41 ... Cooling fins.

Claims (5)

吸収器と蒸発器からなる多板式熱交換器であって、
吸収器側凹凸形状と蒸発器側凹凸形状を左右に一体に加工形成した1枚のプレートを2枚互いに重ね合わせて一体に形成した吸収器側素子と蒸発器側素子を複数重ね合わせ左右に吸収器コアと蒸発器コアが一体に構成され、
前記吸収器側素子の内側の素子内空間が一方の熱伝達媒体を通す通路とし、同吸収器側素子の外側の素子外空間が他方の熱伝達媒体たる吸収液を通す通路として形成され、
前記蒸発器側素子の内側の素子内空間が一方の熱伝達媒体を通す通路とし、同蒸発器側素子の外側の素子外空間が他方の熱伝達媒体を通す通路として形成され、
前記一体に構成された吸収器コアと蒸発器コアがケーシングに収容されて、該吸収器コアの上方および該蒸発器コアの上方に各々貯留部が形成され、
前記吸収器側素子および前記蒸発器側素子の各素子は、一対の板状体の上端部が互いに離れる方向に膨出して内側に連通空間が形成され、
前記連通空間をなす板状体に、同連通空間を上方の貯留部に連通する複数列設された上側連通孔と下方の前記素子外空間に連通する複数列設された下側連通孔とが形成され、
前記ケーシング内の下方空間が前記吸収器コア側と蒸発器コア側とに画成されそれぞれ熱伝達媒体溶液が貯留されていることを特徴とする一体型多板式熱交換器。
A multi-plate heat exchanger consisting of an absorber and an evaporator,
Absorber side element and evaporator side element are formed by superimposing absorber side element and evaporator side element which are formed by superimposing two sheets of one plate, which are formed by integrally processing the absorber side uneven shape and evaporator side uneven shape on both sides. The evaporator core and the evaporator core are configured integrally,
The inner element space inside the absorber side element is a passage through which one heat transfer medium passes, and the outer element space outside the absorber side element is formed as a passage through which the absorption liquid as the other heat transfer medium passes,
The inner element space inside the evaporator side element is a passage through which one heat transfer medium passes, and the outer element space outside the evaporator side element is formed as a passage through which the other heat transfer medium passes,
The integrally constructed absorber core and the evaporator core are accommodated in a casing , and storage portions are formed above the absorber core and above the evaporator core, respectively.
Each of the absorber-side element and the evaporator-side element is swelled in the direction in which the upper ends of the pair of plate-like bodies are separated from each other, and a communication space is formed inside,
The plate-like body forming the communication space has a plurality of rows of upper communication holes that communicate with the upper storage portion and a plurality of rows of lower communication holes that communicate with the lower space outside the element. Formed,
An integrated multi-plate heat exchanger characterized in that a lower space in the casing is defined on the absorber core side and the evaporator core side, and each stores a heat transfer medium solution.
前記プレートにおける吸収器側凹凸形状と蒸発器側凹凸形状とともに両形状間に断熱用のスリットを同時に加工形成したことを特徴とする請求項1記載の一体型多板式熱交換器。  The integrated multi-plate heat exchanger according to claim 1, wherein a slit for heat insulation is simultaneously formed between the two shapes together with the uneven shape on the absorber side and the uneven shape on the evaporator side of the plate. 吸収器と過冷却器と蒸発器からなる多板式熱交換器であって、
吸収器側凹凸形状と蒸発器側凹凸形状を左右に過冷却器半筒形状を中央に一体に加工形成した1枚のプレートを2枚互いに重ね合わせて一体に形成した吸収器側素子と過冷却器素子と蒸発器側素子を複数重ね合わせ吸収器コアと過冷却器コアと蒸発器コアが一体に構成され、
前記吸収器側素子の内側の素子内空間が一方の熱伝達媒体を通す通路とし、同吸収器側素子の外側の素子外空間が他方の熱伝達媒体たる吸収液を通す通路として形成され、
前記過冷却器素子の内側の筒状の素子内空間が冷媒液を通す通路とし、同過冷却器素子の外側の素子外空間が冷媒蒸気を通す通路として形成され、
前記蒸発器側素子の内側の素子内空間が一方の熱伝達媒体を通す通路とし、同蒸発器側素子の外側の素子外空間が他方の熱伝達媒体を通す通路として形成され、
前記一体に構成された吸収器コアと過冷却器コアと蒸発器コアがケーシングに収容されて、該吸収器コアの上方および該蒸発器コアの上方に各々貯留部が形成され、
前記吸収器側素子および前記蒸発器側素子の各素子は、それぞれ一対の板状体の上端部が互いに離れる方向に膨出して内側に連通空間が形成され、
前記連通空間をなす板状体に、同連通空間を上方の貯留部に連通する複数列設された上側連通孔と下方の前記素子外空間に連通する複数列設された下側連通孔とが形成され、
前記ケーシング内の下方空間が前記吸収器コア側と蒸発器コア側とに画成されそれぞれ熱伝達媒体溶液が貯留されていることを特徴とする一体型多板式熱交換器。
A multi-plate heat exchanger consisting of an absorber, a subcooler and an evaporator,
Absorber side uneven shape and evaporator side uneven shape on both sides and supercooler half-cylinder shape are integrally formed on the center by superposing the two plates on one side and the absorber side element integrally formed. A plurality of evaporator elements and evaporator side elements are superposed to form an absorber core, a supercooler core, and an evaporator core,
The inner element space inside the absorber side element is a passage through which one heat transfer medium passes, and the outer element space outside the absorber side element is formed as a passage through which the absorption liquid as the other heat transfer medium passes,
A cylindrical inner element space inside the supercooler element is a passage through which refrigerant liquid passes, and an outer element space outside the subcooler element is formed as a passage through which refrigerant vapor passes,
The inner element space inside the evaporator side element is a passage through which one heat transfer medium passes, and the outer element space outside the evaporator side element is formed as a passage through which the other heat transfer medium passes,
The integrally configured absorber core, supercooler core, and evaporator core are accommodated in a casing , and storage portions are formed above the absorber core and above the evaporator core, respectively.
Each of the absorber-side element and the evaporator-side element is swelled in the direction in which the upper ends of the pair of plate-like bodies are separated from each other, and a communication space is formed inside,
The plate-like body forming the communication space has a plurality of rows of upper communication holes that communicate with the upper storage portion and a plurality of rows of lower communication holes that communicate with the lower space outside the element. Formed,
An integrated multi-plate heat exchanger characterized in that a lower space in the casing is defined on the absorber core side and the evaporator core side, and each stores a heat transfer medium solution.
前記プレートにおける吸収器側凹凸形状と過冷却器半筒形状と蒸発器側凹凸形状とともに前記吸収器側凹凸形状と過冷却器半筒形状との間および過冷却器半筒形状と蒸発器側凹凸形状との間にそれぞれ断熱用のスリットを同時に加工形成したことを特徴とする請求項3記載の一体型多板式熱交換器。  Absorber side uneven shape, supercooler half tube shape and evaporator side uneven shape in the plate, and between the absorber side uneven shape and supercooler half tube shape and between the subcooler half tube shape and evaporator side uneven shape 4. The integrated multi-plate heat exchanger according to claim 3, wherein a slit for heat insulation is simultaneously formed between each of the shapes. 前記過冷却器素子の外側の素子外空間には冷却フィンが配設されていることを特徴とする請求項3または請求項4記載の一体型多板式熱交換器。  The integrated multi-plate heat exchanger according to claim 3 or 4, wherein cooling fins are disposed in an element outer space outside the supercooler element.
JP2002364572A 2002-12-17 2002-12-17 Integrated multi-plate heat exchanger Expired - Fee Related JP4014043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364572A JP4014043B2 (en) 2002-12-17 2002-12-17 Integrated multi-plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364572A JP4014043B2 (en) 2002-12-17 2002-12-17 Integrated multi-plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2004197984A JP2004197984A (en) 2004-07-15
JP4014043B2 true JP4014043B2 (en) 2007-11-28

Family

ID=32762353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364572A Expired - Fee Related JP4014043B2 (en) 2002-12-17 2002-12-17 Integrated multi-plate heat exchanger

Country Status (1)

Country Link
JP (1) JP4014043B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690532B2 (en) * 2010-09-10 2015-03-25 株式会社前川製作所 Shell and plate heat exchanger
JP5940895B2 (en) * 2012-06-04 2016-06-29 シャープ株式会社 Parallel flow type heat exchanger and air conditioner equipped with the same
DE102012107381B4 (en) * 2012-08-10 2022-04-07 Ttz Thermo Technik Zeesen Gmbh & Co. Kg Plate heat exchangers, in particular for absorption refrigeration systems
WO2016067551A1 (en) * 2014-10-30 2016-05-06 株式会社デンソー Stacked heat exchanger
JP6865934B2 (en) * 2018-07-18 2021-04-28 オリオン機械株式会社 Plate heat exchanger

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076304B (en) * 1980-05-26 1984-02-22 Univ Sydney Heat exchange (evaporator) device
JP3208161B2 (en) * 1991-10-31 2001-09-10 大阪瓦斯株式会社 Absorption / evaporator
JPH05264115A (en) * 1992-03-16 1993-10-12 Matsushita Electric Ind Co Ltd Absorption heat pump device
JPH102633A (en) * 1996-06-17 1998-01-06 Hitachi Ltd Liquid scattering apparatus for refrigerator
JP3871080B2 (en) * 1997-02-19 2007-01-24 株式会社ティラド Combined integrated multi-plate heat exchanger such as evaporator, absorber, subcooler, etc.
JPH1183350A (en) * 1997-09-17 1999-03-26 Honda Motor Co Ltd Heat exchanger and absorber of absorption air conditioner
JPH11337228A (en) * 1998-05-21 1999-12-10 Toyo Radiator Co Ltd Integration type heat exchanger combining evaporator, absorber and supercooler
JP2000337728A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Absorption type heat pump apparatus
JP2001012886A (en) * 1999-06-30 2001-01-19 Ebara Corp Liquid film type plate heat exchanger

Also Published As

Publication number Publication date
JP2004197984A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
EP1054225B1 (en) Plate type heat exchanger for three fluids and method of manufacturing the heat exchanger
US8122943B2 (en) Heat exchanger with heat storage
JP6115896B2 (en) Cold storage material container
WO2000052411A1 (en) Plate type heat exchanger
JP2007271197A (en) Absorption type refrigerating device
WO2000022364A1 (en) Plate type heat exchanger
KR20130096819A (en) Cold reserving heat exchanger
JP4014043B2 (en) Integrated multi-plate heat exchanger
CN109520330A (en) Heat exchanger and heat-exchange system
JP5829055B2 (en) Heat exchanger
JP3871096B2 (en) Combined integrated heat exchanger of evaporator, absorber and subcooler, and manufacturing method thereof
KR102477283B1 (en) Evaporator
JP2008106969A (en) Plate type heat exchanger
JP3292663B2 (en) Plate heat exchanger
KR102600972B1 (en) Heat exchanger
JP2002277090A (en) Plate type heat exchanger for absorption refrigerator
JP6927400B2 (en) Shell and plate heat exchanger
JP3423549B2 (en) Multi-plate heat exchanger
JP3856181B2 (en) Combined integrated heat exchanger of evaporator, absorber and supercooler, and method for producing the same
JPH10205915A (en) Absorption refrigerating machine
JP3501911B2 (en) Boiling cooling device
KR20190022093A (en) Evaporator
JP3952911B2 (en) Plate heat exchanger
KR20190022079A (en) Evaporator
JP2005061778A (en) Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees