JP4013329B2 - Laminate and glass laminate for window - Google Patents

Laminate and glass laminate for window Download PDF

Info

Publication number
JP4013329B2
JP4013329B2 JP13984398A JP13984398A JP4013329B2 JP 4013329 B2 JP4013329 B2 JP 4013329B2 JP 13984398 A JP13984398 A JP 13984398A JP 13984398 A JP13984398 A JP 13984398A JP 4013329 B2 JP4013329 B2 JP 4013329B2
Authority
JP
Japan
Prior art keywords
layer
thickness
glass
oxide
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13984398A
Other languages
Japanese (ja)
Other versions
JPH1134216A (en
Inventor
昌史 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP13984398A priority Critical patent/JP4013329B2/en
Publication of JPH1134216A publication Critical patent/JPH1134216A/en
Application granted granted Critical
Publication of JP4013329B2 publication Critical patent/JP4013329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens

Description

【0001】
【発明の属する技術分野】
本発明は積層体に関し、特に、低放射性を有するため高断熱性を有するとともに、穏やかな外観色調を有し、かつその外観色調が、入射角度を変えても変化が少ない積層体に関する。特に、Low−Eガラス(Low Emissivity Glass)に関する。
【0002】
【従来の技術】
北海道等の寒冷地においては、断熱空気層を介して2枚のガラスを積層した構造の複層ガラスが窓ガラスとして用いられている。この複層ガラスは、室外からは太陽光を取り入れるとともに、室内から室外への熱の放射を遮断して、室内の保温性の向上と暖房負荷の軽減に有効なものである。
【0003】
近年、さらに保温性および断熱性能の向上を目的として、図3に示す、2枚のガラス基板31aおよび31bを、周辺部32を密封して、ガラス基板31aと31bの間に断熱空気層33を形成するように積層した複層ガラスにおいて、室内側のガラス基板31bの断熱空気層33側に低放射性被膜34を配設してなるガラスとして、Low−Eガラスと呼ばれる高断熱性を有するガラスを使用した積層体が利用されるようになってきている。このガラス積層体は、太陽光に含まれる波長0.3〜2.0μm程度の光線を透過させて、室内に太陽光を取り入れる一方、断熱空気層によって室内側から室外側へ熱の伝導を遮断する作用において、低放射性被膜34の低い放射性能によって、保温性および断熱性能を向上させることができるものである。
【0004】
ところで、寒冷地ほどの室内の暖房を必要としない地方、例えば、関東地方以西の温暖な地方で用いられる窓ガラスにおいては、室内から室外への熱の放射を遮断するよりも、むしろ室外から室内への熱の流入を遮断するとともに、室外からの太陽光による室内雰囲気の加熱を抑制し、冷房効率を向上させることが求められている。さらに、ビル用、住宅用等の窓ガラスだけでなく、自動車、電車等の車両用窓ガラスにおいても、外観、車室内の居住性、外部視認性等の向上を目的として、大面積化しており、そのため、同様に、室内雰囲気の加熱を抑制することが求められている。
【0005】
そこで、図4に示すとおり、前記図3に示す積層体と同様に、2枚のガラス基板41aおよび41bを、周辺部42を密封して、ガラス基板41aと41bの間に断熱空気層43を形成するように積層した複層ガラスにおいて、室外側のガラス基板41aの断熱空気層43の側に低放射性被膜44を有するLow−Eガラスを使用した積層体が用いられるようになってきている。
【0006】
これらの積層体に用いられるLow−Eガラスとしては、ガラス基板上に、高い赤外反射特性を有する層と、高い可視光線透過率を有する透明誘電体層とを、順次積層して形成した各種のものが、提案されている。これらの複層構造のLow−Eガラスにおいては、赤外線反射特性を有する膜として、Agを主成分とする膜が用いられ、透明誘電体膜としては、ZnO、SnO2 、TiO2 等の酸化物膜、あるいはSiNx 等の窒化物膜が用いられる。
【0007】
しかし、前記の複層構造のLow−Eガラスをガラス基板として用いるガラス積層体は、Low−E膜による光の干渉効果によって色調を表現しているため、ガラス基板側から見た反射光の色調が、入射角度による変化が大きいものであった。そのため、例えば、このガラス積層体からなる窓ガラスを装着した建物を正面から見た場合と、角度を変えて斜めから見た場合とでは、異なる色調に見え、外観が変化して見える不都合があった。
【0008】
このような不都合を改良するために、いくつかの提案がなされている。
例えば、特開平7−165442号公報には、第1誘電物質層、赤外線反射特性を有する金属を基にした第1層、第2誘電物質層、赤外線反射特性を有する金属を基にした第2層、および第3誘電物質層を連続して堆積させた透明な基材であって、金属を基にした第1層の厚さを、金属を基にした第2層の厚さの約50〜80%とする透明な基材が提案されている。
【0009】
また、特表平8−500061号公報には、
(a) 約275Åを超えない厚さで基材の表面に塗布された抗−反射性金属酸化物からなるベースコート、
(b) 前記ベースコートの上に塗布された第1の反射性金属層、
(c) 前記第1の反射性金属層の上に塗布さてた抗−反射性金属酸化物からなる中間層、
(d) 前記中間の抗−反射性層の上に塗布された第2の反射性金属層、および
(e) 前記第2の反射性金属層の上に保持された金属酸化物からなる外側の抗−反射特性層
からなる、表面上の塗膜を有する基材からなる塗布基材が提案されている。
【0010】
また、特開平8−304601号公報では、
▲1▼60〜75nmの光学的厚さを有し、基体に隣接した透明誘電非吸収剤材料の第1層、
▲2▼9〜11nmの幾何学的厚さを有する銀または銀合金の第1層、
▲3▼135〜170nmの光学的厚さを有する透明誘電非吸収剤材料の第2層、
▲4▼12〜15nmの幾何学的厚さを有する銀または銀合金の第2層、
▲5▼45〜65nmの光学的厚さを有する透明誘電非吸収剤材料の第3層
を担持する面を有し、被覆基体が、70%より大なる視感透過率TLC、47%未満のソーラーフアクターFs、及び12%以下の対向面に対する反射法線での色の純度を示すことを特徴とする被覆基体が提案されている。
【0011】
また、特表平4−500184号公報では、誘電材料でできた第1層と、部分反射材料でできた第2層と、誘電材料でできた第3層と、部分反射材料でできた第4層と、誘電材料でできた第5層とを有し、前記第1、第3、及び第5の誘電材料層の各々が、屈折率が1.7から2.7までの範囲内にあるほぼ透明な誘電材料から成り、前記第1及び第5の層は、前記第3層の光学的厚さの33%乃至45%のほぼ同じ光学的厚さを有する、可視反射がほぼ無色の太陽光制御用層状コーテイングが提案されている。
【0012】
また、特開平8−104547号公報では、ガラス板上に、このガラス板側から順に、第1層として金属酸化物膜、第2層としてAgを主成分とする膜、第3層として金属酸化物膜、第4層としてAgを主成分とする膜、第5層として金属酸化物膜が、必要に応じて第6層として保護膜が形成されてなる断熱ガラスにおいて、前記金属酸化物膜が前記第1層、第3層または第5層の層全体として酸化錫及び酸化亜鉛のいずれか一方または双方を主成分とする1または2以上の層からなり、前記第3層の厚さが65nm以上80nm以下、前記第2層の厚さが7nm以上11nm未満、前記第4層の厚さが11nmを越えて14nm以下である断熱ガラスが提案されている。
【0013】
さらに、特開平8−239245号公報では、ガラス基板上に多層系をスパッタ被覆されたスパッタ被覆ガラス製品において、前記ガラ基板から外側へ向かって、a)約300〜550Åの厚さをもつSi3 4 の層と、
b)約7Åまたはこれ未満の厚さをもつニッケルまたはニクロムの層と、
c)約70〜130Åの厚さをもつ銀の層と、
d)約7Åまたはこれ未満の厚さをもつニッケルまたはニクロムの層と、
e)約700〜1100Åの厚さをもつSi3 4 の層と、
f)約7Åまたはこれ未満の厚さをもつニッケルまたはニクロムの層と、
g)約70〜190Åの厚さをもつ銀の層と、
h)約7Åまたはこれ未満の厚さをもつニッケルまたはニクロムの層と、
i)約350〜700Åの厚さをもつSi3 4 の層
とを含む多層系を有するスパッタ被覆ガラス製品が提案されている。
【0014】
しかしながら、これら従来の多層構造の積層体または材料は、外側から見た反射色調が入射角度に応じて変化する特性、即ち反射色調の入射角度依存性の改善という点では未だ十分なものではなかった。
【0015】
【発明が解決しようとする課題】
そこで、本発明の目的は、穏やかな外観色調を有し、かつ基体側から見た反射光の色調が、入射角度を変えても変化が少ない積層体を提供することにある。
また、本発明の別な目的は、高断熱性を有するとともに、穏やかな外観色調を有し、かつ基体側から見た反射光の色調が、入射角度を変えても変化が少ない窓用ガラス積層体を提供することにある。
【0016】
【課題を解決するための手段】
本発明は、前記課題を解決するために、基体と、該基体上に、基体側から、順次、酸化物からなる第1層、Agを主成分とする金属からなる第2層、酸化物からなる第3層、Agを主成分とする金属からなる第4層、および酸化物からなる第5層とを有し、第1層の厚さが第5層の厚さの60〜90%である積層体を提供するものである。
【0017】
入射角度による反射色調の変化を少なくするために、第2層と第4層の厚さの比を調整することは、特開平7−165442号公報等にも既に提案されているが、前記の通り、未だ十分な効果を得るには至っていなかった。そこで、本発明者は、第2層と第4層の厚さの比だけでなく、第1層と第5層の酸化物からなる層の厚さの比に注目し、鋭意検討を行った。そこで、図2に示す通り、正面から見た場合(入射角度0度付近)にほぼ同じ反射色調(図中では、CIE色度座標上でのxの値が0.305、yの値が0.343程度)を示し、それぞれ第1層の酸化物の膜厚が第5層の酸化物の膜厚よりも薄い積層板と、第1層の酸化物の膜厚が第5層の酸化物の膜厚よりも薄い積層板とについて、入射角度による反射色調の変化を比較した。図2から明らかなように、第1層の厚さが第5層の厚さよりも薄い場合(図中のAの曲線)の方が、入射角度による反射色調の変化が小さくなることを知見した。この知見に基づいて、第1層の酸化物からなる層の厚さを、第5層の厚さよりも薄くすれば、入射角度による反射色調の変化が小さい積層体を得ることを見出し、本発明を想到するに至った。
【0018】
以下、本発明の積層体について、詳細に説明する。
本発明の積層体は、図1に一例を示すとおり、基本的に、基体11上に、基体側から、順次、第1層1、第2層2、第3層3、第4層4及び第5層5を有するものである。
【0019】
本発明の積層体において、基体は特に制限されず、例えば、ガラス基板等が挙げられる。本発明の積層体を建築用や車両用の窓ガラス用途に用いる場合は、ガラス基板としては、ソ−ダライムガラスが一般的に用いられる。
【0020】
本発明の積層体において、基体上に配設される第1層、第2層の上層に配設される第3層、および第4層の上層に配設される第5層としては、特に制限されず、この種の積層体に常用されるいずれの酸化物材料からなるものでもよい。この第1層、第3層及び第5層の具体例として、建築用や車両用の窓ガラスの被覆材料として頻繁に使用される材料である、Sn、ZnおよびTiからなる群から選ばれる少なくとも1種の金属の酸化物を含む層が挙げられる。特に、第1層、第3層および第5層としては、各層の上層に形成されるAgを主成分とする金属からなる第2層または第4層が安定的に形成される点、および該第2層または第4層が高い結晶性を有しながら形成される点から、Znの酸化物を含む層が好ましい。
【0021】
また、Znの酸化物を含む層としては、層内の内部応力が低下し、基体との密着性の良好な層が得られることから、ZnOを主成分として含み、Sn、Al、Cr、Ti、Si、B、MgおよびGaから選ばれる少なくとも1種の金属元素を含む層が、特に好ましい。ZnOを主成分として含み、特に、ZnOとAlを含む層またはZnOとSnを含む層が、各層の上層に形成されるAgを主成分とする金属からなる第2層または第4層との相性がよい。さらに、ZnOとAlを含む層は、Alが安価な材料であり、かつ層の成膜速度が大きいため、有用である。また、Snは比較的安価な材料である点で、好ましい。
【0022】
本発明において、Znの酸化物からなる層が、ZnOと前記の金属元素を含む層である場合、これらの金属元素の含有割合は、1〜10at%が好ましく、特に2〜6at%であるのが好ましい。これらの金属元素の含有割合が多すぎると、各層の上層に形成されるAgを主成分とする金属からなる第2層または第4層の安定化に必要なZnの酸化物の結晶性が低下する傾向にある。
【0023】
本発明の積層体において、第1層、第3層および第5層は、同じ成分または組成からなる層であってもよいし、異なる成分および組成からなる層であってもよい。また、第1層、第3層、および第5層のそれぞれの層は、複数の酸化物層が積層された構造のものであってもよい。例えば、第1層が、ZnOとSnO2 からなる多層構造の層であってもよい。また、すべての酸化物層を同じ材料で形成することは、インライン型スパッタリング装置を用いて、マルチパス法によって、各層を形成する場合に、ターゲット数を節約できること等の点で有利である。
【0024】
また、本発明の積層体において、第1層の上層に配設される第2層、および第3層の上層に配設される第4層は、Agを主成分とする金属からなる層であり、Agのみからなる層、または、Agを主成分とし、他の金属元素、例えば、Pd、Au、Cu等の他の金属元素を含む層である。第2層または第4層が、Agと他の金属元素を含む場合、他の金属元素の含有割合は、Agと他の金属元素との総量に対して、0.3〜10at%であることが好ましい。他の金属元素が0.3at%未満ではAgの安定化の効果が低下し、また10at%超でも再び安定化の効果が低下する。特に、本発明において、第2層または第4層が、他の金属元素として、Pdを含む層であると、化学的耐久性に優れた層を形成することができるため、好ましい。Pdを含有すると、Ag原子の不動化、すなわちAgのマイグレーションの低減を図ることができる。このAgとPdとからなる層において、Pdの添加量が多くなると成膜速度が低下し、可視光線透過率も低下し、逆に放射率が上昇して、Low−E膜としては好ましくないものとなる。そのため、Pdの添加量は、5.0at%以下が適当である。また、Pdの添加量が増加すると、第2層または第4層形成時の材料費が著しく増加するので、0.5〜2.0at%程度の範囲が適正である。
【0025】
本発明の積層体において、第2層および第4層は、同じ成分または組成からなる層であってもよいし、異なる成分および組成からなる層であってもよい。また、第2層および第4層のそれぞれの層は、複数の金属層が積層された構造の層であってもよい。例えば、第2層は、AgとPdとからなる多層構造の層であってもよい。
【0026】
また、本発明の積層体において、Agを主成分とする金属からなる層と、酸化物からなる層との界面、例えば、第1層と第2層との界面、第2層と第3層との界面、第3層と第4層との界面、第4層と第5層との界面に、Agを主成分とする金属からなる層の安定化を図るため、金属薄膜または窒化物膜からなるバリアー層(Agを主成分とする金属からなる層の酸化を防止する層)を配設してもよい。特に、第2層と第3層との界面、および/または第4層と第5層との界面にバリア−層を配設した本発明の積層体は、Agを主成分とする金属からなる層(第2層または第4層)の上に、酸化物からなる層(第3層または第5層)を、酸素を含む雰囲気中で積層する際に、雰囲気中の酸素により、Agを主成分とする金属からなる層が酸化されることを防止できる点で、有効である。
【0027】
バリアー層を形成する金属薄膜または窒化物膜としては、Ti、Zn、Ta、NiCr、SiNx を主成分とする膜が好適である。その膜厚は、1〜5nmが好ましい。1nmより薄いと、バリアー層としての働きを充分に示さず、逆に5nmより厚いと積層体の可視光線透過率が低下し、また、色調に影響が出るなどの不具合が生じる。ここで、SiNx 膜が完全な透明窒化物膜であれば、その膜厚は5nmを超えてもよい。
【0028】
また、本発明の積層体において、第5層の上に、さらにオーバーコート層を積層してもよい。オーバーコート層としては、Siを含有するSnO2 層が形成されることが好ましい。Siを含有するSnO2 層は、ZnOを主成分とする層との相性がよく、界面で強い密着性が得られるたあめ、有効である。
Siを含有するSnO2 層におけるSnとSiの総量に対するSiの含有割合は、5〜95at%であることが好ましい。特に、30〜90at%、さらには40〜90at%が好ましい。
【0029】
オーバーコート層は、水の侵入を防止する機能(耐水性)を向上させるものである。SnO2 にSiが添加されると、形成される膜が結晶質から非晶質構造となり緻密な膜となる。Siの割合が少なすぎると、膜の耐湿性が低下する。また、膜が非晶質から結晶質に近づき、膜表面の平滑性がなくなる。また、Siの割合が多くなりすぎると、直流スパッタリング法で成膜する際に、アーキングが発生しやすくなり、生産性が低下する。
このSiを含有するSnO2 層の膜厚は、特に限定されないが、耐水性および耐擦傷性を向上させるためには、5nm程度以上必要であり、膜厚が増加するにつれて、耐水性や耐擦傷性が向上する。層の厚さの上限は特にないが、20nmあれば充分な性能が得られる。
【0030】
本発明の積層体において、第1層の厚さは、第5層の厚さの60〜90%である。第1層の厚さが第5層の厚さの60%未満であると、両方の膜厚差が大きくなり過ぎて、無彩色に近い穏やかな反射色調を示す積層体が得られない。また、第1層の厚さが第5層の厚さの90%を超える厚さであると、第1層の酸化物と第5層の酸化物の膜厚がほぼ同程度となり、入射角度を変えても反射色調の変化が少ない積層体を得ることができない。
【0031】
また、本発明の積層体において、第1層の厚さを、第5層の厚さの60〜90%にするとともに、第2層の厚みを、第4層の厚みの、50〜90%にすることにより、入射角度による反射色調の変化を低減する効果を、さらに顕著なものとすることができるため、好ましい。
また、本発明の積層体においては、第1層、第3層および第5層の光学的厚さの和が300nm以下と比較的薄い場合は、第1層の厚さを、第5層の厚さの60〜90%とするとともに、第3層の厚さを、第1層の厚さの300%以上にすることにより、入射角度による反射色調の変化を低減する効果を、さらに顕著なものとすることができるため好ましい。
【0032】
本発明の積層体の第1の好ましい態様として、第1層〜第5層の厚さは、それぞれ、前記第1層の光学的厚さが32nm〜41nm、第2層の幾何学的厚さが6nm〜9nm、第3層の光学的厚さが113nm〜145nm、第4層の幾何学的厚さが8nm〜12nm、かつ第5層の光学的厚さが45nm〜60nmである構成が挙げられる。各層の厚さがこれらの範囲にある積層体は、無彩色に近い穏やかな反射色調を有し、その基体側からの反射色調が入射角度を変えても変化が小さいという特性を示す。また、Low−Eガラスに本来要求される、高い断熱性、建物や車両用の窓ガラスとして実用上支障のない適度の可視光透過率と可視光反射率を有し、さらに遮熱性能にも優れている。
【0033】
本発明の積層体の第2の好ましい態様としては、第1層〜第5層の厚さが、それぞれ、第1層の光学的厚さが41nm〜50nm、第2層の幾何学的厚さが6nm〜9nm、第3層の光学的厚さが150nm〜177nm、第4層の幾何学的厚さが11nm〜15nm、かつ第5層の光学的厚さが62nm〜74nmである構成が挙げられる。この構成では、第1層、第3層、第4層および第5層の厚みが、前記の構成のものより厚いため、第1層、第3層および第5層の厚みが変動した場合の、色調の変化が前記の構成のものより小さいため、安定して製造ができる点で好ましい。
【0034】
本発明の積層体の第3の好ましい態様としては、第1層〜第5層の厚さが、それぞれ、第1層の光学的厚さが63nm〜71nm、第2層の幾何学的厚さが6nm〜9nm、第3層の光学的厚さが165nm〜187nm、第4層の幾何学的厚さが10nm〜14nm、かつ第5層の光学的厚さが72nm〜82nmである構成が挙げられる。
この構成では、第1層、第3層および第5層の厚みが、第2の好ましい態様よりもさらに厚くなっており、第1層、第3層および第5層の厚みが変動した場合の、色調の変化が前記の構成のものよりさらに小さいため、安定して製造ができる。また、第3層の厚さを第1層の厚さの300%以上にしなくても、無彩色に近い穏やかな反射色調を有し、その基体側からの反射色調が入射角度を変えても変化が比較的小さいという特性を示す。
【0035】
本発明の積層体の製造は、表面を清浄化処理した基体に、金属、合金、化合物等からなる層を形成するための常用の方法に従って、第1層から第5層までを、順次、形成することによって行うことができる。これらの層の形成方法は、特に限定されず、蒸着法、CVD法、スパッタリング法などを用いることができる。特に、窓ガラス等の大面積の基体に対しては、膜厚の均一性を容易に制御でき、生産性にも優れるという点で、直流スパッタリング法が有効である。
【0036】
また、本発明は、複数枚のガラス基板が、それぞれ断熱空気層を介して積層されてなる窓用ガラス積層体であって、少なくとも1つのガラス基板が本発明の積層体である窓用ガラス積層体を提供するものである。本発明の積層体は、窓用ガラス積層体の室外側に配置され、第1層〜第5層を有する面を断熱空気層の側になるように配置される。
本発明の窓用ガラス積層体は、高断熱性を有するとともに、無彩色に近い穏やかな色調を有し、かつ室外側から見た反射光の色調が、入射角度を変えても変化が少ないため、建築物、車両等の窓ガラスとして好適である。例えば、図4の構成を有するガラス積層体において、基体41aとして、本発明の積層体を用いたものは、高断熱性を有するとともに、無彩色に近い穏やかな室外反射色調を有し、かつその反射色調が、入射角度を変えても変化が少ないものである。
【0037】
【実施例】
以下に、本発明の実施例および比較例によって、本発明をより具体的に説明する。
【0038】
(実施例1)
ブラシを使用した機械的な研磨洗浄、界面活性剤による洗浄、純粋によるすすぎを順次行って、表面を洗浄処理した、厚み3mmのソーダライムガラス板を、スパッタリング装置内にセットし、下記厚さの5層を順次形成して、ガラス積層体を製造した。
第1層 18.5nm(光学厚さ 37nm)
第2層 7.5nm
第3層 66nm(光学厚さ 132nm)
第4層 9.5nm
第5層 27nm(光学厚さ 54nm)
第1層、第3層および第5層として、Alを5at%含有するZnターゲットを用い、酸素ガスとアルゴンガスの混合ガス雰囲気中(酸素/アルゴンの比は、10/1)で、圧力2.2mtorr、投入電力2.0W/cm2 の条件でスパッタリングを行って、ZnOを主成分とし、Alを含有する層を形成した。
また、第2層および第4層として、Pdを1at%含むAgターゲットを用いて、アルゴンガス雰囲気中で、圧力2.0mtorr、投入電力0.86W/cm2 の条件でスパッタリングを行って、Agを主成分とし、Pdを含有する層を形成した。
【0039】
さらに、第3層および第5層を形成する前に、第2層と第4層の金属膜の酸化を防止するために、Alを5at%含有するZnターゲットを用い、アルゴンガス雰囲気中で、圧力2.0mtorr、投入電力0.2W/cm2 の条件でスパッタリングを行って、第2層と第3層の界面、第4層と第5層の界面に、ZnとAlの金属からなるバリアー層(約3nmの膜厚)を形成した。このバリア−層は、最終的には第3層および第5層と同じ酸化物層となった。
【0040】
得られたガラス積層体のガラス面側からの反射色調を、日本分光工業株式会社製のART−25GTを用いて、380nm〜780nmの波長範囲で、入射角度0°、20°、40°および60°において測定した。
この測定において、入射角度0°および60°における反射色調(CIE色度座標図における座標値)は、下記のとおりであった。
入射角度0°の場合 (0.2986、0.3455)
入射角度60°の場合 (0.3025、0.3278)
入射角度0°の場合の座標値が表わす色調は、完全な無色ではなく、僅かに緑味を帯びた色調である。但し、この緑味を帯びた色調が人間の目に好印象を与え、外観色調が穏やかであると感じられる。
また、入射角度が0°の場合と、60°の場合を比較すると、xの値の変化量が+0.0039、yの値の変化量が−0.0177であった。
【0041】
(実施例2)
膜厚を変えた以外は、実施例1と同様にして、下記厚さの5層を順次形成して、ガラス積層体を製造した。
第1層 24nm(光学厚さ 48nm)
第2層 7.5nm
第3層 81.5nm(光学厚さ 163nm)
第4層 13nm
第5層 32nm(光学厚さ 64nm)
得られたガラス積層体のガラス面側からの反射色調を、実施例1と同様の方法で測定した。
この測定結果において、入射角度0°および60°における反射色調(CIE色度座標図における座標値)は、下記のとおりであった。
入射角度0°の場合 (0.3001、0.3492)
入射角度60°の場合 (0.3029、0.3377)
入射角度0°の場合の反射色調は、実施例1と同様に、穏やかな色調を呈していた。
また、入射角度が0°の場合と、60°の場合を比較すると、xの値の変化量が+0.0028、yの値の変化量が−0.0115であった。
【0042】
(実施例3)
膜厚を変えた以外は、実施例1と同様にして、下記厚さの5層を順次形成して、ガラス積層体を製造した。
第1層 34nm(光学厚さ 68nm)
第2層 7.5nm
第3層 88nm(光学厚さ 176nm)
第4層 11.5nm
第5層 38nm(光学厚さ 76nm)
得られたガラス積層体のガラス面側からの反射色調を、実施例1と同様の方法で測定した。
【0043】
この測定結果において、入射角度0°および60°における反射色調(CIE色度座標図における座標値)は、下記のとおりであった。
入射角度0°の場合 (0.2980、0.3435)
入射角度60°の場合 (0.3020、0.3280)
入射角度0°の場合の反射色調は、実施例1と同様に、穏やかな色調を呈していた。
また、入射角度が0°の場合と、60°の場合を比較すると、xの値の変化量が+0.0040、yの値の変化量が−0.0155であった。
【0044】
(比較例1)
膜厚を変えた以外は、実施例1と同様にして、下記厚さの5層を順次形成して、ガラス積層体を製造した。
第1層 27.5nm(光学厚さ 55nm)
第2層 7.5nm
第3層 56nm(光学厚さ 112nm)
第4層 9.5nm
第5層 23nm(光学厚さ 46nm)
【0045】
得られたガラス積層体のガラス面側からの反射色調を、実施例1と同様の方法で測定した。
この測定結果において、入射角度0°および60°における反射色調(CIE色度座標図における座標値)は、下記のとおりであった。
入射角度0°の場合 (0.3005、0.3427)
入射角度60°の場合 (0.3137、0.3268)
入射角度が0°の場合と、60°の場合を比較すると、xの値の変化量が+0.0132、yの値の変化量が−0.0159であった。
【0046】
本発明の実施例および比較例における各層の膜厚の測定は、Arイオンビームによるスパッタエッチングを併用したX線光電子分光法(XPS)を用い、表面から深さ方向の分析を行うことにより実施した。この測定では、Arイオンビームによるスパッタエッチング時間が表面からの深さ、つまり膜厚に対応する。そして、各層のスパッタエッチング時間は、深さ方向プロファイルにおけるXPSピーク強度の立ち上がりおよび立ち下がりでの最大強度の50%となるスパッタエッチング時間の差で定義した。スパッタエッチング時間から膜厚への換算は膜厚が既知でかつ膜構成が同じ標準試料を用い作成した検量線により求めた。使用したXPS分光装置は、PHI製Quantum2000 であり、X線モノクロメータで単色化した15kV、20WのAlKα線をX線源とした。X線ビームは、試料表面に垂直に入射させ、ビーム径は100μmの条件で試料表面の100μmの微小領域を測定した。また、X線光電子の検出角は45°であり、帯電の影響を避けるため、電子シャワーとArイオンシャワーを併用し帯電補正を行った。スパッタエッチングのためのArイオンビームは、加速電圧1.0keV、電流密度37nA/mm2 であり、エネルギー分布の均一化と中性粒子の除去のため5°屈折させ、試料表面に対し45°の入射角で照射した。
【0047】
実施例の場合も比較例の場合も、入射角度60°の場合は0°の場合に比較して、xの値が増加し、yの値が減少している。CIE色度座標上でこの変化は赤味を帯びる方向である。入射角度が0°の場合は緑味を帯びた穏やかな色調であるので、その色調が赤味を帯びてしまうと反射色調の変化が特に強く感じられてしまう。このため、このxの値の増加量と、yの値の減少量は小さい程良い。
本発明の実施例は比較例に比べてxの値の変化量が小さい、すなわち、赤味が抑えられている。その結果、入射角度を変えても反射色調変化が小さいという印象を与えることができる。
本発明のガラス積層体における基体側からの反射色調に関しては、入射角度0°でのxの値(CIE色度座標図におけるx座標)と60°でのxの値との差の絶対値が、0.01以下であることが好ましく、特に、0.005以下であることが好ましい。
【0048】
(実施例4)
実施例1のガラス積層体を用い、6mmの断熱空気層を介して別の3mmソーダライムガラスと複層ガラス化し、窓用ガラス積層体(以下、積層体Aという)を作製した。一方、6mmの断熱空気層を12mmとした以外は、前記と同様にして窓用ガラス積層体(以下、積層体Bという)を作製した。
実施例1のガラス積層体の放射率の測定値から、その熱貫流率を計算したところ、積層体Aでは2.5、積層体Bでは1.7であった。このことから、これらの窓用ガラス積層体は高い断熱性を有していることが確認できた。
また、反射色調(図3における31a側からの反射色調)については、複層ガラス化することにより白味が強くなったが、穏やかな色調である緑味は十分に認められた。さらに、斜めから見た場合の反射色調の変化は、複層ガラス化しても影響はなく、実施例1の単板の場合と同様の良好な結果であった。また、反対側からの反射色調(図4における41a側からの反射色調)についても前記と同様であった。
【0049】
【発明の効果】
本発明の積層体は、無彩色に近い穏やかな反射色調を有し、かつ基体側から見た反射光の色調が、入射角度を変えても変化が少ないものである。
また、本発明の窓用ガラス積層体は、高断熱性を有するとともに、無彩色に近い穏やかな反射色調を有し、かつ基体側から見た反射光の色調が、入射角度を変えても変化が少ないものである。
そのため、本発明の積層体および窓用ガラス積層体は、その特長を活かして、建築物、車両等の窓ガラス用のガラス基材に好適に用いることができる。
【図面の簡単な説明】
【図1】 本発明の積層体の一例の断面図。
【図2】 ガラス積層体について、ガラス面側からの反射色調を入射角度を変えて測定した結果を示す図。
【図3】 Low−Eガラスを用いたガラス積層体の例を示す模式断面図。
【図4】 Low−Eガラスを用いたガラス積層体の他の例を示す模式断面図。
【符号の説明】
1 酸化物からなる第1層
2 Agを主成分とする金属からなる第2層
3 酸化物からなる第3層
4 Agを主成分とする金属からなる第4層
5 酸化物からなる第5層
11 基体
31a ガラス基板
31b ガラス基板
32 周縁部
33 断熱空気層
34 低反射性被膜
41a ガラス基板
41b ガラス基板
42 周縁部
43 断熱空気層
44 低放射性被膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminate, and more particularly, to a laminate having low heat radiation and high heat insulation, a mild appearance color tone, and a slight change in appearance color tone even when the incident angle is changed. In particular, it relates to Low-E glass (Low Emissivity Glass).
[0002]
[Prior art]
In cold districts such as Hokkaido, double-glazed glass having a structure in which two sheets of glass are laminated via an insulating air layer is used as a window glass. This double-glazed glass is effective in improving indoor heat retention and reducing heating load by taking in sunlight from the outside and blocking heat radiation from the inside to the outside.
[0003]
In recent years, for the purpose of further improving heat retention and heat insulation performance, the two glass substrates 31a and 31b shown in FIG. 3 are sealed at the peripheral portion 32, and the heat insulation air layer 33 is formed between the glass substrates 31a and 31b. In the multi-layer glass laminated so as to be formed, a glass having a high heat insulating property called Low-E glass is used as a glass in which the low radiation coating 34 is disposed on the heat insulating air layer 33 side of the glass substrate 31b on the indoor side. The laminated body used has come to be used. This glass laminate transmits light with a wavelength of about 0.3 to 2.0 μm contained in sunlight and incorporates sunlight into the room, while blocking heat conduction from the indoor side to the outdoor side by means of a heat insulating air layer. In this function, the low radiation performance of the low radiation coating 34 can improve the heat retention and heat insulation performance.
[0004]
By the way, in a window glass used in a region that does not require room heating as in a cold region, for example, in a temperate region west of the Kanto region, rather than blocking heat radiation from the room to the room, There is a need to improve the cooling efficiency by blocking the flow of heat into the room and suppressing the heating of the indoor atmosphere by sunlight from the outside. Furthermore, not only building and housing window glass, but also window glass for vehicles such as automobiles and trains, the area has been increased for the purpose of improving appearance, comfort in the cabin, and external visibility. Therefore, similarly, it is required to suppress heating of the indoor atmosphere.
[0005]
Therefore, as shown in FIG. 4, similarly to the laminate shown in FIG. 3, the two glass substrates 41a and 41b are sealed at the peripheral portion 42, and the heat insulating air layer 43 is formed between the glass substrates 41a and 41b. In the multi-layer glass laminated so as to be formed, a laminated body using Low-E glass having a low radiation coating 44 on the heat insulating air layer 43 side of the outdoor glass substrate 41a has been used.
[0006]
As Low-E glass used for these laminates, various layers formed by sequentially laminating a layer having high infrared reflection characteristics and a transparent dielectric layer having high visible light transmittance on a glass substrate. Have been proposed. In these Low-E glasses having a multilayer structure, a film mainly composed of Ag is used as a film having infrared reflection characteristics, and ZnO and SnO are used as transparent dielectric films. 2 TiO 2 Oxide film such as SiN x A nitride film such as is used.
[0007]
However, the glass laminate using the low-E glass having the multi-layer structure as a glass substrate expresses the color tone by the light interference effect of the Low-E film, so the color tone of the reflected light viewed from the glass substrate side. However, the change due to the incident angle was large. For this reason, for example, there are inconveniences when the building with the window glass made of this glass laminate is viewed from the front and when the building is viewed from a different angle, and the appearance changes. It was.
[0008]
In order to improve such an inconvenience, some proposals have been made.
For example, JP-A-7-165442 discloses a first dielectric material layer, a first layer based on a metal having infrared reflection characteristics, a second dielectric material layer, and a second layer based on a metal having infrared reflection characteristics. A transparent substrate on which a layer and a third dielectric material layer are successively deposited, wherein the thickness of the first layer based on the metal is about 50 times the thickness of the second layer based on the metal. A transparent base material of ˜80% has been proposed.
[0009]
Also, in Japanese translation of PCT publication No. 8-500061,
(a) a base coat comprising an anti-reflective metal oxide applied to the surface of the substrate with a thickness not exceeding about 275 mm;
(b) a first reflective metal layer applied over the base coat;
(c) an intermediate layer made of an anti-reflective metal oxide coated on the first reflective metal layer;
(d) a second reflective metal layer applied over the intermediate anti-reflective layer; and
(e) an outer anti-reflective layer comprising a metal oxide retained on the second reflective metal layer
There has been proposed a coated substrate made of a substrate having a coating film on the surface.
[0010]
In Japanese Patent Laid-Open No. 8-304601,
(1) a first layer of a transparent dielectric non-absorbent material having an optical thickness of 60-75 nm and adjacent to the substrate;
(2) A first layer of silver or a silver alloy having a geometric thickness of 9 to 11 nm,
(3) a second layer of a transparent dielectric non-absorbent material having an optical thickness of 135 to 170 nm,
(4) A second layer of silver or a silver alloy having a geometric thickness of 12 to 15 nm,
(5) A third layer of a transparent dielectric non-absorbent material having an optical thickness of 45 to 65 nm
The coated substrate has a luminous transmittance TLC of greater than 70%, a solar factor Fs of less than 47% and a color purity in reflection normal to the facing surface of less than 12%. A coated substrate characterized by this is proposed.
[0011]
In Japanese Laid-Open Patent Publication No. 4-500184, a first layer made of a dielectric material, a second layer made of a partially reflective material, a third layer made of a dielectric material, and a first layer made of a partially reflective material. 4 layers and a fifth layer made of a dielectric material, each of the first, third and fifth dielectric material layers having a refractive index in the range of 1.7 to 2.7. Made of a substantially transparent dielectric material, wherein the first and fifth layers have substantially the same optical thickness of 33% to 45% of the optical thickness of the third layer, and are substantially colorless in visible reflection A layered coating for solar control has been proposed.
[0012]
Japanese Patent Laid-Open No. 8-104547 discloses a metal oxide film as a first layer, a film mainly composed of Ag as a second layer, and a metal oxide as a third layer in this order from the glass plate side. In a heat insulating glass in which a material film, a film mainly composed of Ag as a fourth layer, a metal oxide film as a fifth layer, and a protective film as a sixth layer are formed as necessary, the metal oxide film is The first layer, the third layer, or the fifth layer as a whole is composed of one or more layers mainly composed of one or both of tin oxide and zinc oxide, and the thickness of the third layer is 65 nm. There has been proposed a heat insulating glass in which the thickness of the second layer is 7 nm or more and less than 11 nm and the thickness of the fourth layer is more than 11 nm and 14 nm or less.
[0013]
Further, in JP-A-8-239245, in a sputter-coated glass product in which a multilayer system is sputter-coated on a glass substrate, a) Si having a thickness of about 300 to 550 mm from the glass substrate to the outside. Three N Four Layer of
b) a nickel or nichrome layer having a thickness of about 7 mm or less;
c) a silver layer having a thickness of about 70-130 mm;
d) a nickel or nichrome layer having a thickness of about 7 mm or less;
e) Si having a thickness of about 700-1100 mm Three N Four Layer of
f) a nickel or nichrome layer having a thickness of about 7 mm or less;
g) a silver layer having a thickness of about 70 to 190 mm;
h) a nickel or nichrome layer having a thickness of about 7 mm or less;
i) Si having a thickness of about 350 to 700 mm Three N Four Layer of
Sputter-coated glass products having a multilayer system containing:
[0014]
However, these conventional multilayer structures or materials have not yet been satisfactory in terms of improving the reflection color tone as seen from the outside according to the incident angle, that is, improving the dependency of the reflected color tone on the incident angle. .
[0015]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a laminate having a gentle appearance color tone and having little change in the color tone of reflected light viewed from the substrate side even when the incident angle is changed.
Another object of the present invention is to provide a glass laminate for windows that has high heat insulation properties, has a gentle appearance color tone, and the color tone of reflected light viewed from the substrate side is small even when the incident angle is changed. To provide a body.
[0016]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a base, a first layer made of an oxide, a second layer made of a metal containing Ag as a main component, and an oxide on the base in order from the base side. A third layer, a fourth layer made of a metal mainly composed of Ag, and a fifth layer made of an oxide, and the thickness of the first layer is 60 to 90% of the thickness of the fifth layer A laminate is provided.
[0017]
In order to reduce the change in reflection color tone due to the incident angle, adjusting the ratio of the thicknesses of the second layer and the fourth layer has already been proposed in Japanese Patent Laid-Open No. 7-165442. As you can see, it still hasn't achieved a sufficient effect. Therefore, the present inventor has intensively studied not only the ratio of the thicknesses of the second layer and the fourth layer but also the ratio of the thicknesses of the oxides of the first layer and the fifth layer. . Therefore, as shown in FIG. 2, when viewed from the front (near incident angle 0 degree), the reflection color tone is almost the same (in the figure, the value of x on the CIE chromaticity coordinates is 0.305, and the value of y is 0. .. 343), and the thickness of the first layer oxide is smaller than the thickness of the fifth layer oxide, and the thickness of the first layer oxide is the fifth layer oxide. The change in reflection color tone according to the incident angle was compared with the laminated plate having a thickness smaller than the above. As is clear from FIG. 2, it was found that the change in the reflected color tone with the incident angle becomes smaller when the thickness of the first layer is thinner than the thickness of the fifth layer (A curve in the figure). . Based on this knowledge, it has been found that if the thickness of the first oxide layer is made thinner than that of the fifth layer, it is possible to obtain a laminate having a small change in reflection color tone depending on the incident angle. I came up with the idea.
[0018]
Hereinafter, the laminate of the present invention will be described in detail.
As shown in FIG. 1, the laminated body of the present invention basically has a first layer 1, a second layer 2, a third layer 3, a fourth layer 4, The fifth layer 5 is provided.
[0019]
In the laminate of the present invention, the substrate is not particularly limited, and examples thereof include a glass substrate. When the laminate of the present invention is used for architectural or vehicle window glass, soda lime glass is generally used as the glass substrate.
[0020]
In the laminate of the present invention, as the first layer disposed on the substrate, the third layer disposed on the second layer, and the fifth layer disposed on the fourth layer, It is not limited, and any oxide material commonly used for this type of laminate may be used. As specific examples of the first layer, the third layer, and the fifth layer, at least selected from the group consisting of Sn, Zn, and Ti, which is a material frequently used as a coating material for window glass for buildings and vehicles. A layer containing one kind of metal oxide can be given. In particular, as the first layer, the third layer, and the fifth layer, the second layer or the fourth layer made of a metal mainly composed of Ag formed on the upper layer of each layer is stably formed, and the A layer containing a Zn oxide is preferable because the second layer or the fourth layer is formed while having high crystallinity.
[0021]
In addition, since the internal stress in the layer is reduced and a layer having good adhesion to the substrate is obtained as the layer containing the oxide of Zn, ZnO is contained as a main component, and Sn, Al, Cr, Ti A layer containing at least one metal element selected from Si, B, Mg and Ga is particularly preferable. Compatibility with the second or fourth layer containing ZnO as a main component, in particular, a layer containing ZnO and Al or a layer containing ZnO and Sn, which is formed on the upper layer of each layer and is made of a metal containing Ag as a main component. Is good. Furthermore, a layer containing ZnO and Al is useful because Al is an inexpensive material and the layer deposition rate is high. Sn is preferable because it is a relatively inexpensive material.
[0022]
In the present invention, when the layer made of an oxide of Zn is a layer containing ZnO and the above metal element, the content ratio of these metal elements is preferably 1 to 10 at%, particularly 2 to 6 at%. Is preferred. When the content ratio of these metal elements is too large, the crystallinity of the oxide of Zn required for stabilizing the second layer or the fourth layer made of a metal mainly composed of Ag formed in the upper layer of each layer is lowered. Tend to.
[0023]
In the laminate of the present invention, the first layer, the third layer, and the fifth layer may be layers composed of the same component or composition, or may be layers composed of different components and compositions. In addition, each of the first layer, the third layer, and the fifth layer may have a structure in which a plurality of oxide layers are stacked. For example, the first layer is made of ZnO and SnO. 2 It may be a layer having a multilayer structure. In addition, forming all oxide layers with the same material is advantageous in that the number of targets can be saved when each layer is formed by a multi-pass method using an in-line sputtering apparatus.
[0024]
In the laminate of the present invention, the second layer disposed on the first layer and the fourth layer disposed on the third layer are layers made of a metal mainly composed of Ag. Yes, it is a layer made of only Ag or a layer containing Ag as a main component and other metal elements such as Pd, Au and Cu. When the second layer or the fourth layer contains Ag and another metal element, the content ratio of the other metal element is 0.3 to 10 at% with respect to the total amount of Ag and the other metal element. Is preferred. If the other metal element is less than 0.3 at%, the effect of stabilizing Ag is lowered, and if it exceeds 10 at%, the effect of stabilizing is lowered again. In particular, in the present invention, it is preferable that the second layer or the fourth layer is a layer containing Pd as another metal element because a layer excellent in chemical durability can be formed. When Pd is contained, the Ag atoms can be immobilized, that is, the migration of Ag can be reduced. In the layer composed of Ag and Pd, when the amount of Pd added is increased, the film formation rate is decreased, the visible light transmittance is also decreased, and the emissivity is increased, which is not preferable as a Low-E film. It becomes. Therefore, the addition amount of Pd is suitably 5.0 at% or less. Moreover, since the material cost at the time of forming the second layer or the fourth layer increases remarkably when the addition amount of Pd increases, the range of about 0.5 to 2.0 at% is appropriate.
[0025]
In the laminate of the present invention, the second layer and the fourth layer may be layers composed of the same component or composition, or may be layers composed of different components and composition. In addition, each of the second layer and the fourth layer may be a layer having a structure in which a plurality of metal layers are stacked. For example, the second layer may be a layer having a multilayer structure made of Ag and Pd.
[0026]
In the laminate of the present invention, an interface between a layer made of a metal containing Ag as a main component and a layer made of an oxide, for example, an interface between a first layer and a second layer, a second layer and a third layer. A metal thin film or a nitride film in order to stabilize a layer made of a metal containing Ag as a main component at the interface between the first layer, the third layer and the fourth layer, and the fourth layer and the fifth layer. A barrier layer made of (a layer that prevents oxidation of a layer made of a metal containing Ag as a main component) may be disposed. In particular, the laminate of the present invention in which a barrier layer is disposed at the interface between the second layer and the third layer and / or the interface between the fourth layer and the fifth layer is made of a metal containing Ag as a main component. When a layer made of an oxide (third layer or fifth layer) is laminated in an atmosphere containing oxygen on the layer (second layer or fourth layer), Ag is mainly contained by oxygen in the atmosphere. This is effective in that the layer made of the metal as a component can be prevented from being oxidized.
[0027]
As the metal thin film or nitride film forming the barrier layer, Ti, Zn, Ta, NiCr, SiN x The film | membrane which has as a main component is suitable. The film thickness is preferably 1 to 5 nm. When the thickness is less than 1 nm, the function as a barrier layer is not sufficiently exhibited. On the other hand, when the thickness is more than 5 nm, the visible light transmittance of the laminate is lowered and the color tone is affected. Where SiN x If the film is a complete transparent nitride film, the film thickness may exceed 5 nm.
[0028]
In the laminate of the present invention, an overcoat layer may be further laminated on the fifth layer. As the overcoat layer, Sn containing SnO 2 Preferably a layer is formed. SnO containing Si 2 The layer is effective because it has a good compatibility with a layer containing ZnO as a main component and provides strong adhesion at the interface.
SnO containing Si 2 The content ratio of Si with respect to the total amount of Sn and Si in the layer is preferably 5 to 95 at%. In particular, 30 to 90 at%, more preferably 40 to 90 at% is preferable.
[0029]
An overcoat layer improves the function (water resistance) which prevents the penetration | invasion of water. SnO 2 When Si is added to the film, the formed film changes from crystalline to amorphous structure and becomes a dense film. When the proportion of Si is too small, the moisture resistance of the film decreases. Further, the film approaches an amorphous state to a crystalline state, and the smoothness of the film surface is lost. Moreover, when the ratio of Si increases too much, arcing tends to occur when a film is formed by a direct current sputtering method, and productivity is lowered.
SnO containing this Si 2 The film thickness of the layer is not particularly limited, but is required to be about 5 nm or more in order to improve water resistance and scratch resistance. As the film thickness increases, the water resistance and scratch resistance are improved. There is no particular upper limit on the thickness of the layer, but sufficient performance can be obtained with 20 nm.
[0030]
In the laminate of the present invention, the thickness of the first layer is 60 to 90% of the thickness of the fifth layer. If the thickness of the first layer is less than 60% of the thickness of the fifth layer, the difference in thickness between the two layers becomes too large, and a laminate showing a gentle reflection color tone close to an achromatic color cannot be obtained. Further, when the thickness of the first layer is more than 90% of the thickness of the fifth layer, the film thicknesses of the first layer oxide and the fifth layer oxide are approximately the same, and the incident angle Even if it changes, a laminated body with little change of a reflective color tone cannot be obtained.
[0031]
In the laminate of the present invention, the thickness of the first layer is set to 60 to 90% of the thickness of the fifth layer, and the thickness of the second layer is set to 50 to 90% of the thickness of the fourth layer. This is preferable because the effect of reducing the change in the reflected color tone due to the incident angle can be made more remarkable.
Further, in the laminate of the present invention, when the sum of the optical thicknesses of the first layer, the third layer, and the fifth layer is relatively thin at 300 nm or less, the thickness of the first layer is set to the thickness of the fifth layer. By setting the thickness of the third layer to be not less than 300% of the thickness of the first layer while making it 60 to 90% of the thickness, the effect of reducing the change in reflection color tone due to the incident angle is further remarkable. Since it can be used, it is preferable.
[0032]
As the first preferred embodiment of the laminate of the present invention, the thickness of the first layer to the fifth layer is such that the optical thickness of the first layer is 32 nm to 41 nm and the geometric thickness of the second layer, respectively. Is a structure in which the optical thickness of the third layer is 113 nm to 145 nm, the geometric thickness of the fourth layer is 8 nm to 12 nm, and the optical thickness of the fifth layer is 45 nm to 60 nm. It is done. A laminate in which the thickness of each layer is in these ranges has a gentle reflection color tone close to an achromatic color, and shows a characteristic that the reflection color tone from the substrate side changes little even if the incident angle is changed. In addition, it has high heat insulation, which is originally required for Low-E glass, and has moderate visible light transmittance and visible light reflectance that do not impede practical use as a window glass for buildings and vehicles. Are better.
[0033]
As a second preferred embodiment of the laminate of the present invention, the thickness of the first layer to the fifth layer is such that the optical thickness of the first layer is 41 nm to 50 nm, respectively, and the geometric thickness of the second layer. Is a structure in which the optical thickness of the third layer is 150 nm to 177 nm, the geometric thickness of the fourth layer is 11 nm to 15 nm, and the optical thickness of the fifth layer is 62 nm to 74 nm. It is done. In this configuration, since the thickness of the first layer, the third layer, the fourth layer, and the fifth layer is thicker than that of the above configuration, the thickness of the first layer, the third layer, and the fifth layer varies. Since the change in color tone is smaller than that of the above structure, it is preferable in that it can be stably manufactured.
[0034]
As the third preferred embodiment of the laminate of the present invention, the thickness of the first layer to the fifth layer is such that the optical thickness of the first layer is 63 nm to 71 nm, respectively, and the geometric thickness of the second layer. Is a structure in which the optical thickness of the third layer is 165 nm to 187 nm, the geometric thickness of the fourth layer is 10 nm to 14 nm, and the optical thickness of the fifth layer is 72 nm to 82 nm. It is done.
In this configuration, the thicknesses of the first layer, the third layer, and the fifth layer are further thicker than those of the second preferred embodiment, and the thicknesses of the first layer, the third layer, and the fifth layer vary. Since the change in color tone is even smaller than that of the above structure, the production can be stably performed. Further, even if the thickness of the third layer is not 300% or more of the thickness of the first layer, it has a gentle reflection color tone close to an achromatic color, and the reflection color tone from the substrate side changes the incident angle. The characteristic is that the change is relatively small.
[0035]
In the production of the laminate of the present invention, the first layer to the fifth layer are sequentially formed according to a conventional method for forming a layer made of a metal, an alloy, a compound or the like on a substrate whose surface has been cleaned. Can be done. The method for forming these layers is not particularly limited, and an evaporation method, a CVD method, a sputtering method, or the like can be used. In particular, for a large-area substrate such as a window glass, the direct current sputtering method is effective in that the uniformity of the film thickness can be easily controlled and the productivity is excellent.
[0036]
In addition, the present invention is a window glass laminate in which a plurality of glass substrates are laminated via a heat insulating air layer, respectively, and at least one glass substrate is a laminate of the present invention. Provide the body. The laminated body of this invention is arrange | positioned on the outdoor side of the glass laminated body for windows, and is arrange | positioned so that the surface which has a 1st layer-a 5th layer may become the heat insulation air layer side.
The glass laminate for windows of the present invention has high heat insulating properties, has a gentle color tone close to an achromatic color, and the color tone of reflected light viewed from the outside of the room has little change even when the incident angle is changed. It is suitable as a window glass for buildings, vehicles and the like. For example, in the glass laminate having the configuration of FIG. 4, the substrate 41a using the laminate of the present invention has a high heat insulating property and a gentle outdoor reflection color tone close to an achromatic color. The reflection color tone is little changed even when the incident angle is changed.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention.
[0038]
Example 1
A soda-lime glass plate with a thickness of 3 mm, which has been subjected to mechanical polishing and cleaning using a brush, cleaning with a surfactant, and rinsing with pure water, and then cleaning the surface, is set in a sputtering apparatus, and has the following thickness. Five layers were sequentially formed to produce a glass laminate.
1st layer 18.5nm (optical thickness 37nm)
Second layer 7.5nm
Third layer 66 nm (optical thickness 132 nm)
Fourth layer 9.5 nm
5th layer 27nm (optical thickness 54nm)
A Zn target containing 5 at% Al is used as the first layer, the third layer, and the fifth layer, and the pressure is 2 in a mixed gas atmosphere of oxygen gas and argon gas (the ratio of oxygen / argon is 10/1). .2 mtorr, input power 2.0 W / cm 2 Sputtering was performed under these conditions to form a layer containing ZnO as the main component and containing Al.
In addition, using an Ag target containing 1 at% Pd as the second layer and the fourth layer, in an argon gas atmosphere, the pressure is 2.0 mtorr, and the input power is 0.86 W / cm. 2 Sputtering was performed under the conditions described above to form a layer containing Ag as a main component and containing Pd.
[0039]
Further, before forming the third layer and the fifth layer, in order to prevent oxidation of the metal films of the second layer and the fourth layer, a Zn target containing 5 at% Al was used, and in an argon gas atmosphere, Pressure 2.0 mtorr, input power 0.2 W / cm 2 Sputtering was performed under these conditions to form a barrier layer (thickness of about 3 nm) made of a metal of Zn and Al at the interface between the second layer and the third layer and at the interface between the fourth layer and the fifth layer. This barrier layer eventually became the same oxide layer as the third and fifth layers.
[0040]
The reflection color tone from the glass surface side of the obtained glass laminate was measured using an ART-25GT manufactured by JASCO Corporation, with an incident angle of 0 °, 20 °, 40 ° and 60 in a wavelength range of 380 nm to 780 nm. Measured at °.
In this measurement, reflection color tone (coordinate values in the CIE chromaticity coordinate diagram) at incident angles of 0 ° and 60 ° were as follows.
When the incident angle is 0 ° (0.2986, 0.3455)
When the incident angle is 60 ° (0.3025, 0.3278)
The color tone represented by the coordinate values when the incident angle is 0 ° is not completely colorless, but a slightly greenish tone. However, this greenish color tone gives a good impression to the human eye and the appearance color tone is felt to be gentle.
Further, when the incident angle is 0 ° and when it is 60 °, the change amount of the value of x is +0.0039, and the change amount of the value of y is −0.0177.
[0041]
(Example 2)
Except for changing the film thickness, a glass laminate was produced in the same manner as in Example 1 by sequentially forming five layers having the following thickness.
First layer 24 nm (optical thickness 48 nm)
Second layer 7.5nm
Third layer 81.5 nm (optical thickness 163 nm)
4th layer 13nm
Fifth layer 32 nm (optical thickness 64 nm)
The reflection color tone from the glass surface side of the obtained glass laminate was measured in the same manner as in Example 1.
In this measurement result, the reflection color tone (coordinate values in the CIE chromaticity coordinate diagram) at incident angles of 0 ° and 60 ° was as follows.
When the incident angle is 0 ° (0.3001, 0.3492)
When the incident angle is 60 ° (0.3029, 0.3377)
The reflection color tone when the incident angle was 0 ° exhibited a gentle color tone as in Example 1.
Further, when the incident angle is 0 ° and when it is 60 °, the change amount of the x value is +0.0028, and the change amount of the y value is −0.0115.
[0042]
(Example 3)
Except for changing the film thickness, a glass laminate was produced in the same manner as in Example 1 by sequentially forming five layers having the following thickness.
First layer 34 nm (optical thickness 68 nm)
Second layer 7.5nm
Third layer 88 nm (optical thickness 176 nm)
4th layer 11.5nm
Fifth layer 38nm (optical thickness 76nm)
The reflection color tone from the glass surface side of the obtained glass laminate was measured in the same manner as in Example 1.
[0043]
In this measurement result, the reflection color tone (coordinate values in the CIE chromaticity coordinate diagram) at incident angles of 0 ° and 60 ° was as follows.
When the incident angle is 0 ° (0.2980, 0.3435)
When the incident angle is 60 ° (0.3020, 0.3280)
The reflection color tone when the incident angle was 0 ° exhibited a gentle color tone as in Example 1.
Further, when the incident angle is 0 ° and when it is 60 °, the change amount of the value of x is +0.0040, and the change amount of the value of y is −0.0155.
[0044]
(Comparative Example 1)
Except for changing the film thickness, a glass laminate was produced in the same manner as in Example 1 by sequentially forming five layers having the following thickness.
First layer 27.5 nm (optical thickness 55 nm)
Second layer 7.5nm
Third layer 56nm (optical thickness 112nm)
Fourth layer 9.5 nm
5th layer 23 nm (optical thickness 46 nm)
[0045]
The reflection color tone from the glass surface side of the obtained glass laminate was measured in the same manner as in Example 1.
In this measurement result, the reflection color tone (coordinate values in the CIE chromaticity coordinate diagram) at incident angles of 0 ° and 60 ° was as follows.
When the incident angle is 0 ° (0.3005, 0.3427)
When the incident angle is 60 ° (0.3137, 0.3268)
Comparing the case where the incident angle is 0 ° and the case where it is 60 °, the change amount of the value of x was +0.0132 and the change amount of the value of y was −0.0159.
[0046]
The measurement of the film thickness of each layer in the examples and comparative examples of the present invention was carried out by performing analysis in the depth direction from the surface using X-ray photoelectron spectroscopy (XPS) combined with sputter etching using an Ar ion beam. . In this measurement, the sputter etching time by the Ar ion beam corresponds to the depth from the surface, that is, the film thickness. The sputter etching time of each layer was defined as the difference in sputter etching time that is 50% of the maximum intensity at the rise and fall of the XPS peak intensity in the depth profile. Conversion from sputter etching time to film thickness was determined by a calibration curve prepared using a standard sample having a known film thickness and the same film configuration. The XPS spectrometer used was a PHI Quantum2000, and 15 kV, 20 W AlKα radiation monochromatized with an X-ray monochromator was used as the X-ray source. The X-ray beam was incident perpendicularly to the sample surface, and a 100 μm minute region on the sample surface was measured under the condition that the beam diameter was 100 μm. Further, the detection angle of X-ray photoelectrons was 45 °, and in order to avoid the influence of charging, charge correction was performed using both an electron shower and an Ar ion shower. Ar ion beam for sputter etching has an acceleration voltage of 1.0 keV and a current density of 37 nA / mm. 2 In order to make the energy distribution uniform and to remove neutral particles, the sample was refracted by 5 ° and irradiated at an incident angle of 45 ° to the sample surface.
[0047]
In both the example and the comparative example, the x value increases and the y value decreases when the incident angle is 60 ° compared to 0 °. This change is reddish on the CIE chromaticity coordinates. When the incident angle is 0 °, the color tone is tinged with a greenish color. Therefore, when the color tone is tinged with red, the reflected color tone changes particularly strongly. For this reason, the smaller the amount of increase in the value of x and the amount of decrease in the value of y, the better.
In the example of the present invention, the amount of change in the value of x is smaller than that of the comparative example, that is, redness is suppressed. As a result, it is possible to give an impression that the change in reflected color tone is small even when the incident angle is changed.
Regarding the reflection color tone from the substrate side in the glass laminate of the present invention, the absolute value of the difference between the value of x at the incident angle of 0 ° (x coordinate in the CIE chromaticity coordinate diagram) and the value of x at 60 ° is , Preferably 0.01 or less, and particularly preferably 0.005 or less.
[0048]
(Example 4)
Using the glass laminated body of Example 1, it laminated | stacked with another 3 mm soda-lime glass through the 6-mm heat insulation air layer, and produced the glass laminated body for windows (henceforth the laminated body A). On the other hand, a window glass laminate (hereinafter referred to as laminate B) was prepared in the same manner as described above except that the 6 mm heat insulating air layer was changed to 12 mm.
From the measured value of the emissivity of the glass laminate of Example 1, the thermal conductivity was calculated to be 2.5 for laminate A and 1.7 for laminate B. From this, it has confirmed that these glass laminated bodies for windows had high heat insulation.
Moreover, about reflection color tone (reflection color tone from the 31a side in FIG. 3), whitishness became strong by vitrifying into multiple layers, but a green color with a gentle color tone was sufficiently recognized. Furthermore, the change in the reflection color tone when viewed from an oblique direction was not affected even when it was made into a multi-layer glass, and was a good result similar to the case of the single plate of Example 1. The reflection color tone from the opposite side (reflection color tone from the 41a side in FIG. 4) was also the same as described above.
[0049]
【The invention's effect】
The laminate of the present invention has a gentle reflection color tone close to an achromatic color, and the color tone of reflected light viewed from the substrate side is little changed even when the incident angle is changed.
In addition, the glass laminate for windows of the present invention has high heat insulating properties, has a gentle reflection color tone close to an achromatic color, and the color tone of reflected light viewed from the substrate side changes even when the incident angle is changed. There are few things.
Therefore, the laminated body and glass laminated body for windows of this invention can be suitably used for the glass base material for window glasses, such as a building and a vehicle, taking advantage of the characteristic.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a laminated body of the present invention.
FIG. 2 is a view showing a result of measuring a reflection color tone from the glass surface side with changing an incident angle for a glass laminate.
FIG. 3 is a schematic cross-sectional view showing an example of a glass laminate using Low-E glass.
FIG. 4 is a schematic cross-sectional view showing another example of a glass laminate using Low-E glass.
[Explanation of symbols]
1 First layer made of oxide
2nd layer made of metal mainly composed of 2 Ag
3 Third layer made of oxide
4th layer made of metal mainly composed of 4 Ag
5 Fifth layer made of oxide
11 Substrate
31a glass substrate
31b glass substrate
32 Edge
33 Insulated air layer
34 Low reflective coating
41a glass substrate
41b glass substrate
42 Perimeter
43 Insulated air layer
44 Low radiation coating

Claims (4)

ガラス基体と、該ガラス基体上に、ガラス基体側から、順次、酸化物からなる第1層、Agを主成分とする金属からなる第2層、酸化物からなる第3層、Agを主成分とする金属からなる第4層、および酸化物からなる第5層とを有する積層体であって、前記第1層の厚さが第5層の厚さの60〜90%であり、前記第2層の厚さが第4層の厚さの50〜90%の厚さであり、前記第1層、第3層および第5層の光学的厚さの和が300nm以下であり、前記第3層の厚さが第1層の厚さの300%以上であり、前記第1層の光学的厚さが32nm〜41nmであり、第2層の幾何学的厚さが6nm〜9nmであり、第3層の光学的厚さが113nm〜145nmであり、第4層の幾何学的厚さが8nm〜12nmであり、かつ第5層の光学的厚さが45nm〜60nmであり、
前記ガラス基体側からの反射色調に関して、入射角度0°でのxの値(CIE色度座標図におけるx座標)と60°でのxの値との差の絶対値が、0.005以下である積層体。
Main component and glass substrate, onto the glass substrate, from the glass substrate side, in order, a first layer made of an oxide, a second layer of metal mainly composed of Ag, the third layer consisting of oxide, the Ag the fourth layer of metal to, and a laminate which have a a fifth layer comprised of an oxide, Ri 60% to 90% der of the thickness of the thickness of the first layer a fifth layer, The thickness of the second layer is 50 to 90% of the thickness of the fourth layer, and the sum of the optical thicknesses of the first layer, the third layer, and the fifth layer is 300 nm or less, The thickness of the third layer is 300% or more of the thickness of the first layer, the optical thickness of the first layer is 32 nm to 41 nm, and the geometric thickness of the second layer is 6 nm to 9 nm. The optical thickness of the third layer is 113 nm to 145 nm, the geometric thickness of the fourth layer is 8 nm to 12 nm, and the optical thickness of the fifth layer is Thickness is 45nm~60nm,
Regarding the reflection color tone from the glass substrate side, the absolute value of the difference between the value of x at an incident angle of 0 ° (x coordinate in the CIE chromaticity coordinate diagram) and the value of x at 60 ° is 0.005 or less . A laminate.
ガラス基体と、該ガラス基体上に、ガラス基体側から、順次、酸化物からなる第1層、Agを主成分とする金属からなる第2層、酸化物からなる第3層、Agを主成分とする金属からなる第4層、および酸化物からなる第5層とを有する積層体であって、前記第1層の厚さが第5層の厚さの60〜90%であり、前記第2層の厚さが第4層の厚さの50〜90%の厚さであり、前記第1層、第3層および第5層の光学的厚さの和が300nm以下であり、前記第3層の厚さが第1層の厚さの300%以上であり、前記第1層の光学的厚さが41nm〜50nm、第2層の幾何学的厚さが6nm〜9nm、第3層の光学的厚さが150nm〜177nm、第4層の幾何学的厚さが11nm〜15nm、かつ第5層の光学的厚さが62nm〜74nmであり、A glass substrate, and on the glass substrate, sequentially from the glass substrate side, a first layer made of oxide, a second layer made of metal containing Ag as a main component, a third layer made of oxide, and Ag as a main component A fourth layer made of a metal and a fifth layer made of an oxide, wherein the thickness of the first layer is 60 to 90% of the thickness of the fifth layer, The thickness of the two layers is 50 to 90% of the thickness of the fourth layer, the sum of the optical thicknesses of the first layer, the third layer, and the fifth layer is 300 nm or less, The thickness of the three layers is 300% or more of the thickness of the first layer, the optical thickness of the first layer is 41 nm to 50 nm, the geometric thickness of the second layer is 6 nm to 9 nm, and the third layer Has an optical thickness of 150 nm to 177 nm, a geometric thickness of the fourth layer of 11 nm to 15 nm, and an optical thickness of the fifth layer of 62 nm to 74 nm. M, and
前記基体側からの反射色調に関して、入射角度0°でのxの値(CIE色度座標図におけるx座標)と60°でのxの値との差の絶対値が、0.005以下である積層体。Regarding the reflected color tone from the substrate side, the absolute value of the difference between the value of x at the incident angle of 0 ° (x coordinate in the CIE chromaticity coordinate diagram) and the value of x at 60 ° is 0.005 or less. Laminated body.
ガラス基体と、該ガラス基体上に、ガラス基体側から、順次、酸化物からなる第1層、Agを主成分とする金属からなる第2層、酸化物からなる第3層、Agを主成分とする金属からなる第4層、および酸化物からなる第5層とを有する積層体であって、前記第1層の厚さが第5層の厚さの60〜90%であり、前記第2層の厚さが第4層の厚さの50〜90%の厚さであり、前記第1層の光学的厚さが63nm〜71nm、第2層の幾何学的厚さが6nm〜9nm、第3層の光学的厚さが165nm〜187nm、第4層の幾何学的厚さが10nm〜14nm、かつ第5層の光学的厚さが72nm〜82nmであり、A glass substrate, and on the glass substrate, sequentially from the glass substrate side, a first layer made of oxide, a second layer made of metal containing Ag as a main component, a third layer made of oxide, and Ag as a main component A fourth layer made of a metal and a fifth layer made of an oxide, wherein the thickness of the first layer is 60 to 90% of the thickness of the fifth layer, The thickness of the two layers is 50 to 90% of the thickness of the fourth layer, the optical thickness of the first layer is 63 nm to 71 nm, and the geometric thickness of the second layer is 6 nm to 9 nm. The optical thickness of the third layer is 165 nm to 187 nm, the geometric thickness of the fourth layer is 10 nm to 14 nm, and the optical thickness of the fifth layer is 72 nm to 82 nm,
前記基体側からの反射色調に関して、入射角度0°でのxの値(CIE色度座標図におけるx座標)と60°でのxの値との差の絶対値が、0.005以下である積層体。Regarding the reflected color tone from the substrate side, the absolute value of the difference between the value of x at the incident angle of 0 ° (x coordinate in the CIE chromaticity coordinate diagram) and the value of x at 60 ° is 0.005 or less. Laminated body.
複数枚のガラス基板が、それぞれ断熱空気層を介して積層されてなる窓用ガラス積層体であって、少なくとも1つのガラス基板が、請求項1〜3のいずれかに記載の積層体である窓用ガラス積層体。The window which is a glass laminated body for windows formed by laminating a plurality of glass substrates through respective insulating air layers, and at least one glass substrate is the laminated body according to any one of claims 1 to 3. Glass laminates.
JP13984398A 1997-05-21 1998-05-21 Laminate and glass laminate for window Expired - Fee Related JP4013329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13984398A JP4013329B2 (en) 1997-05-21 1998-05-21 Laminate and glass laminate for window

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13078997 1997-05-21
JP9-130789 1997-05-21
JP13984398A JP4013329B2 (en) 1997-05-21 1998-05-21 Laminate and glass laminate for window

Publications (2)

Publication Number Publication Date
JPH1134216A JPH1134216A (en) 1999-02-09
JP4013329B2 true JP4013329B2 (en) 2007-11-28

Family

ID=26465830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13984398A Expired - Fee Related JP4013329B2 (en) 1997-05-21 1998-05-21 Laminate and glass laminate for window

Country Status (1)

Country Link
JP (1) JP4013329B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030186064A1 (en) * 2000-09-29 2003-10-02 Kenji Murata Transparent laminate having low emissivity
JP2007197237A (en) * 2006-01-25 2007-08-09 Nippon Sheet Glass Co Ltd Low-radiation double glazing
WO2007029494A1 (en) * 2005-09-06 2007-03-15 Nippon Sheet Glass Company, Limited Low-radiation double glazing
JP4648813B2 (en) * 2005-09-30 2011-03-09 Hoya株式会社 Infrared cut coat film, optical element having infrared cut coat film, and endoscope apparatus having the optical element
JP2008036952A (en) * 2006-08-04 2008-02-21 Asahi Glass Co Ltd Electroconductive laminate and protective plate for plasma display
JP5463686B2 (en) * 2009-02-26 2014-04-09 セントラル硝子株式会社 Glass laminate for windows
WO2010098200A1 (en) * 2009-02-26 2010-09-02 セントラル硝子株式会社 Stack article
JP2011037255A (en) * 2009-07-15 2011-02-24 Kiyoshi Chiba Laminate
WO2011050908A2 (en) * 2009-10-28 2011-05-05 Schott Ag Device, in particular for a display unit
JP2011164433A (en) * 2010-02-10 2011-08-25 Sony Corp Optical body, window member, fixture and sunlight blocking member
JP2011173764A (en) * 2010-02-25 2011-09-08 Central Glass Co Ltd Low radiation film
JP5750059B2 (en) 2012-01-18 2015-07-15 株式会社ジーシー Orthodontic mouthpiece packaging container
SG11201500461WA (en) * 2012-07-24 2015-04-29 Asahi Glass Co Ltd Laminate
ES2658046T3 (en) 2013-05-14 2018-03-08 Asahi Glass Company, Limited Protective film, reflective member, and production procedure for protective film
JP6421592B2 (en) * 2014-12-26 2018-11-14 セントラル硝子株式会社 Fire door
JPWO2016181740A1 (en) 2015-05-11 2018-03-01 旭硝子株式会社 Insulating glass unit for vehicle and method for manufacturing the same
WO2016181739A1 (en) * 2015-05-11 2016-11-17 旭硝子株式会社 Insulated glass unit for vehicles
JP2021099418A (en) * 2019-12-20 2021-07-01 北川工業株式会社 Optical film

Also Published As

Publication number Publication date
JPH1134216A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP4013329B2 (en) Laminate and glass laminate for window
JP3902676B2 (en) Transparent substrate with a thin film stack acting on sunlight and / or infrared
JP5096001B2 (en) Transparent substrates that can be used alternatively or progressively for thermal control, electromagnetic shielding, and heating windows
JP6444891B2 (en) Anti solar glazing
EP0925260B1 (en) Coated glass
US5837361A (en) Substrates coated with a stack of thin layers having reflection properties in the infrared and/or with respect to solar radiation
JP6970754B2 (en) Low emissivity coating for glass substrates
US4546050A (en) Coated glass article as a new article of manufacture
JP2000233947A (en) Transparent substrate equipped with thin film laminated body
RU2747376C2 (en) Substrate equipped with a set having thermal properties, its application and its manufacture
EP2862845B1 (en) Low-emissivity transparent laminate, and method for manufacturing said low-emissivity transparent laminate and construction material including same
EP1858698A1 (en) Anti-reflective, thermally insulated glazing articles
MX2013010952A (en) Transparent substrate equipped with a thin-film multilayer.
WO2000055102A2 (en) Methods of making low haze coatings and the coatings and coated articles made thereby
KR20150087358A (en) Substrate equipped with a multilayer comprising a partial metal film, glazing unit and process
JP2000129464A (en) Transparent substrate provided with thin-film stack
CA2485008A1 (en) Reflective, solar control coated glass article
EP3004014A2 (en) Low-emissivity and anti-solar glazing
JP2012513369A (en) Substrate with a multilayer coating having thermal properties and an absorbent layer
JP7458401B2 (en) Solar control glazing comprising two titanium nitride-based layers
JP4114429B2 (en) Laminates and structures
KR20170016891A (en) Glazing for solar protection provided with thin-film coatings
KR20160015513A (en) Low-emissivity coat, and functional building material including low-emissivity coat for windows
PL199526B1 (en) Glazing panel
JP2535350B2 (en) High transmission solar control glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees