JP4013232B2 - Seismic structure at tunnel junction - Google Patents

Seismic structure at tunnel junction Download PDF

Info

Publication number
JP4013232B2
JP4013232B2 JP36643597A JP36643597A JP4013232B2 JP 4013232 B2 JP4013232 B2 JP 4013232B2 JP 36643597 A JP36643597 A JP 36643597A JP 36643597 A JP36643597 A JP 36643597A JP 4013232 B2 JP4013232 B2 JP 4013232B2
Authority
JP
Japan
Prior art keywords
tunnel
deformation
earthquake
intermediate shaft
resistant structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36643597A
Other languages
Japanese (ja)
Other versions
JPH11182189A (en
Inventor
明彦 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP36643597A priority Critical patent/JP4013232B2/en
Publication of JPH11182189A publication Critical patent/JPH11182189A/en
Application granted granted Critical
Publication of JP4013232B2 publication Critical patent/JP4013232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トンネルとの接合部、主としてシールドトンネルと中間立坑との接合部における耐震構造に関する。
【0002】
【従来の技術】
トンネルを構築するための技術であるシールド工法は、シールドマシンとその後方で組み立てられるセグメントによって周辺地盤を支持するため、比較的軟弱な地盤であっても安全確実に掘削することが可能であり、施工中における路面交通の阻害や騒音あるいは振動等環境に与える影響も少ない。
【0003】
そのため、都市部においては、道路や車両用トンネルをはじめ、電力ケーブルや通信ケーブルあるいは下水道のためのトンネルを施工する技術としてシールド工法が広く採用されるようになってきた。
【0004】
一方、地震に遭遇した場合や地盤の不等沈下を考慮する必要がある場合には、いわゆる可撓セグメントを所定の間隔をおいて使用することにより、トンネル自体の相対変形を吸収していた。
【0005】
【発明が解決しようとする課題】
ここで、トンネル自体の相対変形のみならず、発進立坑や到達立坑あるいは換気やメンテナンス等を目的としてトンネル施工後に設置される中間立坑とトンネルとの接続部においても地震や不等沈下による相対変形を考慮する必要があるが、高価な可撓セグメントを多用すると、全体の施工コストが高くなってしまうという問題を生じていた。
【0006】
また、発進立坑においては可撓セグメントを設置することができるものの、到達立坑や中間立坑とトンネルとの間においては施工誤差によって位置ずれが生じやすく、可撓セグメントを設置することが困難な場合もあるという問題も生じていた。
【0007】
本発明は、上述した事情を考慮してなされたもので、可撓セグメントを使用せずとも、トンネルと中間立坑等との接合部に生じる相対変形や施工誤差による位置ずれを吸収することが可能なトンネル接合部における耐震構造を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るトンネル接合部における耐震構造は請求項1に記載したように、トンネルと該トンネルに接続される中間立坑等の中空接続体との接合部における耐震構造において、
前記中空接続体の壁体端部を該中空接続体の材軸に沿った圧縮変形を吸収する圧縮変形吸収部材を介して前記トンネルに接合するとともに、前記中空接続体の材軸に沿った引張変形を吸収する伸縮性止水板及び前記トンネルの材軸に沿った相対変形に抵抗するせん断変形抵抗部材をそれらの両端が前記中空接続体の壁体端部及び前記トンネルのそれぞれに定着されるように配置し、前記せん断変形抵抗部材にせん断変形を吸収するせん断変形吸収部材を被覆したものである。
【0009】
また、本発明に係るトンネル接合部における耐震構造は、前記トンネルの前記中空接続体との接合部をスチールセグメントで構成したものである。
【0010】
また、本発明に係るトンネル接合部における耐震構造は、前記伸縮性止水板をゴム系材料で形成し、そのほぼ中央を環状断面としたものである。
【0012】
また、本発明に係るトンネル接合部における耐震構造は、前記中空接続体の壁体と前記圧縮変形吸収部材との間に鋼板を介在させたものである。
【0013】
本発明に係るトンネル接合部における耐震構造においては、トンネルと該トンネルに接続された中間立坑等の中空接続体との間に相対変形が生じるような地震や不等沈下が生じたとき、該相対変形に追従しあるいはこれに抵抗することによって接合部の耐震性を確保する。また、両者の間に施工誤差による位置ずれが発生した場合においても、かかる位置ずれを吸収して接合部の施工を可能にする。
【0014】
すなわち、中空接続体及びトンネルに該中空接続体の材軸方向に沿った外力として中空接続体がトンネルに押し付けられる方向の外力、いわば圧縮力が作用した場合、圧縮変形吸収部材はその外力を支持するとともに、移動による相対変形を吸収する。なお、かかる相対変形は、伸縮性止水板においても同時に吸収される。逆に、中空接続体及びトンネルに該中空接続体の材軸方向に沿った外力として中空接続体がトンネルから離される方向の外力、いわば引張力が作用した場合、その移動による相対変形は、伸縮性止水板によって吸収される。なお、中空接続体がトンネルに対して回転を生じる外力が作用した場合については、圧縮側及び引張側でそれぞれ上述と同様の作用となる。いずれにしろ、中空接続体とトンネルとの間に該中空接続体の材軸に沿った相対変形が生じても、かかる相対変形は、圧縮変形吸収部材及び伸縮性止水板の伸縮によって吸収され、伸縮性止水板の止水機能はそのまま維持される。
【0015】
ここで、中空接続体の壁体と圧縮変形吸収部材との間に鋼板を介在させたならば、上述した回転方向の外力に対し、中空接続体がRC構造である場合の壁体端部における圧壊を防止することができる。
【0016】
一方、中空接続体及びトンネルに該トンネルの材軸に沿った外力、いわばせん断力が作用した場合、せん断変形抵抗部材がそのせん断力を支持し、せん断変形による中空接続体とトンネルとの相対変形を防止する。
【0017】
中空接続体とトンネルとの接続角度は、直交方向を標準とするが、斜めに接続される場合であっても差し支えない。中空接続体としては、中間立坑をはじめ、到達立坑や水平方向に配置された坑も含まれる。また、トンネルとしては、セグメント組立によって一次覆工を行うシールドトンネルを主な対象とするが、他のトンネルに適用してもかまわない。
【0018】
ここで、トンネルの中空接続体との接合部については、通常のコンクリート製セグメントで構成しておき、接続の際、該セグメントの接合部外周面に例えば環状の凹部を斫り工で形成し、該凹部内に伸縮性止水板及びせん断変形抵抗部材を差し込んだ上、コンクリートを打設して定着させるようにしてもよいが、かかるトンネルの中空接続体との接合部をスチールセグメントで構成したならば、上述した斫り工が不要となるので、接続作業が容易になる。
【0019】
圧縮変形吸収部材としては、免震支承で採用されている積層ゴムを用いることが考えられるが、必ずしも鉄板とゴムシートとの積層構造でなければならないものではなく、ゴムシートのみで構成してもよい。
【0020】
伸縮性止水板は、例えば中空接続体が中空円筒体である場合には、該中空円筒体の壁芯位置での周長に等しい帯状のものとして形成することが可能である。ここで、かかる伸縮性止水板をゴム系材料で形成し、そのほぼ中央を環状断面としたならば、引張力を受けたときに該環状断面部分が伸張部分となり、引張方向の相対変形を吸収しやすくなる。
【0021】
せん断変形抵抗部材は、鋼製ロッドや差し筋等で構成することができる。ここで、かかるせん断変形抵抗部材にせん断変形を吸収するせん断変形吸収部材を被覆したならば、せん断変形が小さい場合に該変形をせん断変形吸収部材で吸収することができる。
【0022】
【発明の実施の形態】
以下、本発明に係るトンネル接合部における耐震構造の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0023】
図1は、本実施形態に係るトンネル接合部における耐震構造を示したものである。本実施形態に係るトンネル接合部における耐震構造は、同図(a)に示した全体図でわかるように、トンネルであるシールドトンネル1と該シールドトンネルに接続される中空接続体としての中間立坑2との接合部に適用してあり、該接合部における耐震構造は、同図(b)の詳細断面図に示すように、中間立坑2の壁体端部3を圧縮変形吸収部材としての積層ゴム4を介してトンネル1に接合してあり、中間立坑2の材軸5に沿った圧縮変形を吸収できるようになっている。
【0024】
ここで、壁体端部3と積層ゴム4との間には鋼板6を介在させてあり、中間立坑2がシールドトンネル1に対して相対回転を生じたときに壁体端部3の縁部における圧壊を防止するようになっている。また、シールドトンネル1の一次覆工は、一般部についてはRCセグメント7で構成してあるが、中間立坑2が接合される部分については、接合時の作業性を考慮してスチールセグメント8で構成してある。なお、一般部についてもスチールセグメントで構成してもかまわない。
【0025】
シールドトンネル1と中間立坑2との接合部には、同図(b)に示したHを高さとし、中間立坑2の材軸5から該中間立坑の壁芯までの長さLを半径としたときの円周を長さとした帯状の伸縮性止水板9を、中間立坑2とシールドトンネル1との接続開口10を取り囲むように環状に配置してあり、中間立坑2の材軸5に沿った引張変形を吸収するようになっている。
【0026】
ここで、伸縮性止水板9の両縁部にはリブ11を形成してあり、該リブは、伸縮性止水板9を積層ゴム4、鋼板6及びシールドトンネル1側のスチールセグメント8を貫通させる形で配置してその両縁部を中間立坑2側のコンクリートとスチールセグメント8に打設されるコンクリートにそれぞれ埋設することにより、コンクリートとの定着強度を高めるようになっている。なお、かかる伸縮性止水板9は、例えばゴム系材料で構成することができる。
【0027】
シールドトンネル1と中間立坑2との接合部には、せん断変形抵抗部材12を、積層ゴム4、鋼板6及びシールドトンネル1側のスチールセグメント8を貫通させた上、その両端を中間立坑2側のコンクリートとスチールセグメント8に打設されるコンクリートにそれぞれ定着させてあり、シールドトンネル1の材軸13に沿った相対変形に抵抗できるようになっている。かかるせん断変形抵抗部材12は、接続開口10を取り囲むようにして例えば数゜ピッチで配置するのがよい。
【0028】
本実施形態に係るトンネル接合部における耐震構造を構築するには、まず、図2(a)に示すように、シールドトンネル1を先行施工して一次覆工を行う。ここで、後工程で中間立坑2が接続される部分については、スチールセグメント8でシールドトンネル1を構成しておく。
【0029】
次に、同図(b)に示すように中間立坑が構築される縦孔31を地上から掘削し、しかる後に、図3(a)に示すように、せん断変形抵抗部材12が挿入するための孔41をスチールセグメント8に形成するとともに、伸縮性止水板9を挿入するためのスリット42を同じくスチールセグメント8に形成する。また、スチールセグメント8を中間立坑2の内面に合わせて切断し、接続開口10を形成する。
【0030】
次に、同図(b)に示すように、孔41、スリット42にそれぞれせん断変形抵抗部材12及び伸縮性止水板9を嵌め込むとともに、その上から積層ゴム4、鋼板6を順次差し込むようにして取り付ける。鋼板6の中間立坑側及びスチールセグメント8のトンネル側には必要に応じてアンカー筋43を突設しておく。
【0031】
次に、中間立坑側及びシールドトンネル側にそれぞれ型枠44、45を取り付け、しかる後に該型枠内にコンクリートを打設し、図1(b)で説明したように、せん断変形抵抗部材12の両端及び伸縮性止水板9の両縁部をそれぞれ中間立坑2側のコンクリートとシールドトンネル1のスチールセグメント8側のコンクリートに定着させる。なお、接合部の施工と相前後して、図1(a)に示す二次覆工14を必要に応じて適宜行う。
【0032】
本実施形態に係るトンネル接合部における耐震構造においては、シールドトンネル1と該シールドトンネルに接続された中間立坑2との間に相対変形が生じるような地震や不等沈下が生じたとき、該相対変形に追従しあるいはこれに抵抗することによって接合部の耐震性を確保する。
【0033】
すなわち、中間立坑2及びシールドトンネル1に該中間立坑の材軸5に沿った外力として中間立坑2がシールドトンネル1に押し付けられる方向の外力、いわば圧縮力が図4(a)に示すように作用した場合、圧縮変形吸収部材である積層ゴム4はその外力を支持するとともに、移動による相対変形を吸収する。なお、かかる相対変形は、伸縮性止水板9においても同時に吸収される。
【0034】
逆に、中間立坑2及びシールドトンネル1に材軸5に沿った外力として中間立坑2がシールドトンネル1から離される方向の外力、いわば引張力が同図(b)に示すように作用した場合、その移動による相対変形は、伸縮性止水板9によって吸収される。
【0035】
中間立坑2がシールドトンネル1に対して回転を生じる外力が作用した場合については、圧縮側及び引張側でそれぞれ上述と同様の作用となる。いずれにしろ、中間立坑2とシールドトンネル1との間に材軸5に沿った相対変形が生じても、該相対変形は、積層ゴム4及び伸縮性止水板9の伸縮によって吸収され、伸縮性止水板9の止水機能はそのまま維持される。
【0036】
なお、上述した回転方向の外力が作用した場合、中間立坑2を構成する壁体端部のうち、圧縮側の縁部は、同図(c)に示すようにシールドトンネル1に押し付けられ局所的な荷重を受けるが、該壁体端部と積層ゴム4との間に鋼板6を介在させてあるので、中間立坑2の壁体端部が圧壊することはない。
【0037】
一方、中間立坑2及びシールドトンネル1に該トンネルの材軸13に沿った外力、いわばせん断力が作用した場合、せん断変形抵抗部材12がそのせん断力を支持して中間立坑2とシールドトンネル1との間に相対変形が生じるのを防止する。
【0038】
以上説明したように、本実施形態に係るトンネル接合部における耐震構造によれば、施工誤差が原因でシールドトンネル1と中間立坑2との接合箇所に位置ずれが生じたとしても、現場施工であるがゆえに該位置ずれを吸収することができるとともに、地震や不等沈下が原因でシールドトンネル1と中間立坑2との間に相対変形が生じても、該相対変形を許容することによってこれらの接合部に過大な応力が作用して損傷するのを未然に防止することができる。一方、このように相対変形を許容する前提として伸縮性止水板9を設けてあるので、かかる相対変形によって生じたシールドトンネル1と中間立坑2との隙間から下水が周辺地盤に流出したり、地下水が流入したりといった事態も未然に防止することができる。そして、施工誤差による位置ずれや地震あるいは不等沈下による相対変形を吸収する手段として、従来のように高価な可撓セグメントを使用する必要がないので、接合部の施工コストを大幅に低減することも可能となる。
【0039】
また、本実施形態によれば、中間立坑2が接続されるシールドトンネル1の接合部をスチールセグメント8で構成したので、RCセグメントとした場合に必要となる斫り工が不要となり、接続作業を短時間に行うことが可能となる。
【0040】
また、本実施形態によれば、中間立坑2の壁体と圧縮変形吸収部材である積層ゴム4との間に鋼板6を介在させたので、上述した回転方向の外力に対し、中間立坑2の壁体端部におけるコンクリートの圧壊を防止することが可能となる。
【0041】
本実施形態では、図1(b)に示したように中央部が平坦な伸縮性止水板9を使用したが、これに代えて図5に示すように、そのほぼ中央を中空の環状断面51とした伸縮性止水板52を使用してもよい。かかる構成によれば、引張力を受けたときに環状断面部分51が伸び、引張方向の相対変形を吸収しやすくなる。
【0042】
また、本実施形態では、せん断方向については、せん断変形抵抗部材12で抵抗するように構成したが、せん断変形が比較的大きくなることが考えられる場合には、図6(a)に示すように、せん断変形抵抗部材12の周囲にせん断変形吸収部材としての円筒状ゴム体61を被覆してもよい。
【0043】
かかる構成においては、同図(b)の矢印に示すようなせん断変形を受けた場合、ある程度までは該変形をゴム体61で吸収することができるので、シールドトンネル1及び中間立坑2に生じる応力が過度に大きくなるのを防止することが可能となる。なお、かかるせん断変形に対しても、伸縮性止水板9が追従できることは言うまでもない。
【0044】
【発明の効果】
以上述べたように、本発明に係るトンネル接合部における耐震構造によれば、施工誤差が原因でトンネルと中空接続体との接合箇所に位置ずれが生じたとしても、現場施工であるがゆえに該位置ずれを吸収することができるとともに、地震や不等沈下が原因でこれらの間に相対変形が生じても、該相対変形を許容することによってこれらの接合部に過大な応力が作用して損傷するのを未然に防止することができる。一方、このように相対変形を許容する前提として伸縮性止水板を設けてあるので、かかる相対変形によって両者の間に生じた隙間から下水が周辺地盤に流出したり、地下水が流入したりといった事態も未然に防止することができる。そして、施工誤差による位置ずれや地震あるいは不等沈下による相対変形を吸収する手段として、従来のように高価な可撓セグメントを使用する必要がないので、接合部の施工コストを大幅に低減することも可能となる。
また、本発明に係るトンネル接合部における耐震構造によれば、ある程度まではせん断変形をせん断変形吸収部材で吸収することができるので、トンネル及び中空接続体に生じる応力が過度に大きくなるのを防止することが可能となるという効果も奏する。
【0045】
また、請求項2に係る本発明のトンネル接合部における耐震構造によれば、RCセグメントとした場合に必要となる斫り工が不要となり、接続作業を短時間に行うことが可能となるという効果も奏する。
【0046】
また、請求項3に係る本発明のトンネル接合部における耐震構造によれば、引張力を受けたときに環状断面部分が伸び、引張方向の相対変形を吸収しやすくなるという効果も奏する。
【0048】
また、請求項4に係る本発明のトンネル接合部における耐震構造によれば、回転方向の外力に対し、中空接続体の壁体端部におけるコンクリートの圧壊を防止することが可能となるという効果も奏する。
【0049】
【図面の簡単な説明】
【図1】本実施形態に係るトンネル接合部における耐震構造の図であり、(a)は全体図、(b)は(a)のAで囲まれた領域の断面詳細図。
【図2】本実施形態に係るトンネル接合部における耐震構造の施工手順図。
【図3】引き続き本実施形態に係るトンネル接合部における耐震構造の施工手順を示した断面詳細図。
【図4】本実施形態に係るトンネル接合部における耐震構造の作用を示した図。
【図5】変形例に係るトンネル接合部における耐震構造を示した断面詳細図。
【図6】別の変形例に係るトンネル接合部における耐震構造を示した断面詳細図。
【符号の説明】
1 シールドトンネル(トンネル)
2 中間立坑(中空接続体)
3 壁体端部
4 積層ゴム(圧縮変形吸収部材)
6 鋼板
8 スチールセグメント
9 伸縮性止水板
11 リブ
12 せん断変形抵抗部材
51 環状断面
52 伸縮性止水板
61 ゴム体(せん断変形吸収部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an earthquake resistant structure at a junction with a tunnel, mainly at a junction between a shield tunnel and an intermediate shaft.
[0002]
[Prior art]
The shield method, which is a technique for constructing a tunnel, supports the surrounding ground by a shield machine and segments assembled behind it, so it is possible to excavate safely and reliably even on relatively soft ground. There is little influence on the environment such as road traffic obstruction and noise or vibration during construction.
[0003]
Therefore, in urban areas, the shield method has been widely adopted as a technique for constructing a tunnel for roads, vehicle tunnels, power cables, communication cables or sewers.
[0004]
On the other hand, when an earthquake is encountered or when it is necessary to consider uneven settlement of the ground, so-called flexible segments are used at predetermined intervals to absorb the relative deformation of the tunnel itself.
[0005]
[Problems to be solved by the invention]
Here, not only the relative deformation of the tunnel itself, but also the joint between the shaft and the intermediate shaft installed after tunnel construction for the purpose of ventilation and maintenance, etc. Although it is necessary to consider, when many expensive flexible segments were used, the problem that the whole construction cost will become high occurred.
[0006]
In addition, although a flexible segment can be installed in the starting shaft, there are cases where it is difficult to install a flexible segment due to construction errors between the reaching shaft and intermediate shaft and the tunnel. There was also a problem.
[0007]
The present invention has been made in consideration of the above-described circumstances, and can absorb a positional shift due to a relative deformation or construction error that occurs in a joint portion between a tunnel and an intermediate shaft without using a flexible segment. An object is to provide a seismic structure at a tunnel junction.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the earthquake-resistant structure in the tunnel junction according to the present invention is the earthquake-resistant structure in the junction between the tunnel and a hollow connector such as an intermediate shaft connected to the tunnel. ,
The end of the wall of the hollow connector is joined to the tunnel via a compressive deformation absorbing member that absorbs the compressive deformation along the material axis of the hollow connector, and is pulled along the material axis of the hollow connector. A stretchable water blocking plate that absorbs deformation and a shear deformation resistance member that resists relative deformation along the material axis of the tunnel are fixed to the end of the wall of the hollow connector and the tunnel, respectively. It arrange | positions like this, and coat | covers the shear deformation absorption member which absorbs a shear deformation to the said shear deformation resistance member.
[0009]
Moreover, the earthquake-resistant structure in the tunnel junction part which concerns on this invention comprises the junction part with the said hollow connection body of the said tunnel with a steel segment.
[0010]
Moreover, the earthquake-proof structure in the tunnel junction part which concerns on this invention forms the said stretchable water stop board with a rubber-type material, and makes the substantially center the cyclic | annular cross section.
[0012]
Moreover, the earthquake-resistant structure in the tunnel junction part which concerns on this invention interposes the steel plate between the wall body of the said hollow connection body, and the said compression deformation absorption member.
[0013]
In the earthquake-resistant structure in the tunnel junction according to the present invention, when an earthquake or unequal subsidence occurs that causes relative deformation between the tunnel and a hollow connecting body such as an intermediate shaft connected to the tunnel, the relative Seismic resistance of the joint is ensured by following or resisting deformation. Moreover, even when a positional deviation due to construction error occurs between the two, the positional deviation is absorbed to enable construction of the joint.
[0014]
That is, when an external force in the direction in which the hollow connection body is pressed against the tunnel is applied to the hollow connection body and the tunnel as an external force along the axial direction of the hollow connection body, in other words, the compression deformation absorbing member supports the external force. In addition, it absorbs relative deformation caused by movement. Such relative deformation is also absorbed simultaneously in the stretchable water stop plate. On the contrary, when an external force in the direction in which the hollow connector is separated from the tunnel acts as an external force along the material axis direction of the hollow connector and the tunnel, when the tensile force acts on the hollow connector and the tunnel, the relative deformation due to the movement is expanded and contracted. It is absorbed by the water-proof water board. Note that, when an external force that causes the hollow connector to rotate with respect to the tunnel is applied, the operation is the same as that described above on the compression side and the tension side. In any case, even if a relative deformation along the material axis of the hollow connection body occurs between the hollow connection body and the tunnel, the relative deformation is absorbed by the expansion and contraction of the compression deformation absorbing member and the stretchable water stop plate. The water stop function of the elastic water stop plate is maintained as it is.
[0015]
Here, if a steel plate is interposed between the wall body of the hollow connection body and the compression deformation absorbing member, at the end of the wall body when the hollow connection body has an RC structure against the external force in the rotational direction described above. Crushing can be prevented.
[0016]
On the other hand, when an external force along the material axis of the tunnel, that is, a shear force, acts on the hollow connection body and the tunnel, the shear deformation resistance member supports the shear force, and the relative deformation between the hollow connection body and the tunnel due to the shear deformation. To prevent.
[0017]
The connection angle between the hollow connector and the tunnel is standard in the orthogonal direction, but may be a case where the connection is made obliquely. The hollow connector includes an intermediate shaft, a reaching shaft, and a shaft disposed in the horizontal direction. The tunnel is mainly a shield tunnel in which primary lining is performed by segment assembly, but may be applied to other tunnels.
[0018]
Here, for the joint portion with the hollow connection body of the tunnel, it is composed of a normal concrete segment, and at the time of connection, for example, an annular recess is formed on the outer peripheral surface of the joint portion of the segment by scouring, The elastic water stop plate and the shear deformation resistance member may be inserted into the concave portion, and concrete may be placed and fixed. However, the joint portion of the tunnel with the hollow connector is formed of a steel segment. Then, since the above-mentioned turning work becomes unnecessary, connection work becomes easy.
[0019]
As the compression deformation absorbing member, it is conceivable to use a laminated rubber adopted in the seismic isolation bearing, but it does not necessarily have to be a laminated structure of an iron plate and a rubber sheet, and may be composed only of a rubber sheet. Good.
[0020]
For example, when the hollow connecting body is a hollow cylindrical body, the stretchable water blocking plate can be formed as a band-shaped member having a circumference equal to the circumferential length at the wall core position of the hollow cylindrical body. Here, if such a stretchable water stop plate is formed of a rubber-based material and the substantially center thereof has an annular cross section, when the tensile force is applied, the annular cross section becomes an extended portion, and relative deformation in the tensile direction is caused. Easy to absorb.
[0021]
The shear deformation resistance member can be composed of a steel rod, a reinforcing bar or the like. Here, if the shear deformation absorbing member that covers the shear deformation is coated on the shear deformation resistance member, the deformation can be absorbed by the shear deformation absorbing member when the shear deformation is small.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an earthquake resistant structure in a tunnel junction according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0023]
FIG. 1 shows an earthquake resistant structure at a tunnel junction according to the present embodiment. As can be seen from the overall view shown in FIG. 2A, the seismic structure at the tunnel junction according to the present embodiment is a shield tunnel 1 as a tunnel and an intermediate shaft 2 as a hollow connector connected to the shield tunnel. As shown in the detailed cross-sectional view of FIG. 2 (b), the seismic structure at the joint is a laminated rubber having the wall end 3 of the intermediate shaft 2 as a compression deformation absorbing member. It is joined to the tunnel 1 via 4 and can absorb the compressive deformation along the material axis 5 of the intermediate shaft 2.
[0024]
Here, a steel plate 6 is interposed between the wall end 3 and the laminated rubber 4, and the edge of the wall end 3 when the intermediate shaft 2 is rotated relative to the shield tunnel 1. It is designed to prevent crushing. The primary lining of the shield tunnel 1 is composed of the RC segment 7 for the general part, but the part where the intermediate shaft 2 is joined is composed of the steel segment 8 in consideration of workability at the time of joining. It is. Note that the general part may also be composed of steel segments.
[0025]
At the junction between the shield tunnel 1 and the intermediate shaft 2, the height H shown in FIG. 2B is assumed to be the height, and the length L from the material shaft 5 of the intermediate shaft 2 to the wall core of the intermediate shaft is the radius. A belt-like stretchable water stop plate 9 having a length around the circumference is arranged in an annular shape so as to surround the connection opening 10 between the intermediate shaft 2 and the shield tunnel 1, and extends along the material axis 5 of the intermediate shaft 2. It absorbs the tensile deformation.
[0026]
Here, ribs 11 are formed on both edges of the stretchable water stop plate 9, and the ribs are formed by laminating the stretchable water stop plate 9 with the laminated rubber 4, the steel plate 6 and the steel segment 8 on the shield tunnel 1 side. By arranging them in a penetrating manner and embedding both edges in concrete on the side of the intermediate shaft 2 and concrete cast on the steel segment 8, the fixing strength with the concrete is increased. In addition, this stretchable water stop board 9 can be comprised, for example with a rubber-type material.
[0027]
At the joint between the shield tunnel 1 and the intermediate shaft 2, a shear deformation resistance member 12 is passed through the laminated rubber 4, the steel plate 6 and the steel segment 8 on the shield tunnel 1 side, and both ends thereof are connected to the intermediate shaft 2 side. The concrete and the concrete placed on the steel segment 8 are fixed to each other and can resist the relative deformation along the material axis 13 of the shield tunnel 1. The shear deformation resistance members 12 are preferably arranged at a pitch of, for example, several degrees so as to surround the connection openings 10.
[0028]
In order to construct an earthquake resistant structure in the tunnel junction according to the present embodiment, first, as shown in FIG. 2 (a), the shield tunnel 1 is preliminarily constructed and primary lining is performed. Here, the shield tunnel 1 is configured with the steel segment 8 in a portion where the intermediate shaft 2 is connected in a subsequent process.
[0029]
Next, as shown in FIG. 3B, the vertical hole 31 in which the intermediate shaft is constructed is excavated from the ground, and then the shear deformation resistance member 12 is inserted as shown in FIG. A hole 41 is formed in the steel segment 8, and a slit 42 for inserting the stretchable water blocking plate 9 is also formed in the steel segment 8. Moreover, the steel segment 8 is cut | disconnected according to the inner surface of the intermediate shaft 2, and the connection opening 10 is formed.
[0030]
Next, as shown in FIG. 2B, the shear deformation resistance member 12 and the stretchable water stop plate 9 are fitted into the hole 41 and the slit 42, respectively, and the laminated rubber 4 and the steel plate 6 are sequentially inserted from above. Install it. Anchor bars 43 are projected from the intermediate shaft side of the steel plate 6 and the tunnel side of the steel segment 8 as necessary.
[0031]
Next, the molds 44 and 45 are respectively attached to the intermediate shaft side and the shield tunnel side, and then concrete is placed in the molds. As described with reference to FIG. Both ends and both edges of the stretchable water blocking plate 9 are fixed to the concrete on the intermediate shaft 2 side and the concrete on the steel segment 8 side of the shield tunnel 1, respectively. In addition, the secondary lining 14 shown in FIG. 1 (a) is appropriately performed as necessary before and after the construction of the joint.
[0032]
In the earthquake resistant structure in the tunnel junction according to the present embodiment, when an earthquake or unequal settlement occurs that causes relative deformation between the shield tunnel 1 and the intermediate shaft 2 connected to the shield tunnel, the relative Seismic resistance of the joint is ensured by following or resisting deformation.
[0033]
That is, the external force in the direction in which the intermediate shaft 2 is pressed against the shield tunnel 1 as the external force along the material shaft 5 of the intermediate shaft 2 and the shield tunnel 1 act as shown in FIG. 4 (a). In this case, the laminated rubber 4 as the compression deformation absorbing member supports the external force and absorbs the relative deformation due to the movement. Such relative deformation is also absorbed at the stretchable water stop plate 9 at the same time.
[0034]
On the other hand, when the external force in the direction in which the intermediate shaft 2 is separated from the shield tunnel 1 as the external force along the material shaft 5 acts on the intermediate shaft 2 and the shield tunnel 1 as shown in FIG. The relative deformation due to the movement is absorbed by the stretchable water stop plate 9.
[0035]
When an external force that causes the intermediate shaft 2 to rotate with respect to the shield tunnel 1 is applied, the same action as described above is obtained on the compression side and the tension side. In any case, even if a relative deformation along the material axis 5 occurs between the intermediate shaft 2 and the shield tunnel 1, the relative deformation is absorbed by the expansion and contraction of the laminated rubber 4 and the stretchable water stop plate 9. The water stop function of the water stop plate 9 is maintained as it is.
[0036]
In addition, when the external force of the rotation direction mentioned above acts, the edge part by the side of compression among the wall body ends which comprise the intermediate shaft 2 is pressed against the shield tunnel 1 as shown in FIG. However, since the steel plate 6 is interposed between the end portion of the wall body and the laminated rubber 4, the end portion of the wall body of the intermediate shaft 2 is not crushed.
[0037]
On the other hand, when an external force along the material shaft 13 of the tunnel, that is, a shearing force, acts on the intermediate shaft 2 and the shield tunnel 1, the shear deformation resistance member 12 supports the shear force and the intermediate shaft 2 and the shield tunnel 1. To prevent relative deformation between the two.
[0038]
As described above, according to the earthquake-resistant structure in the tunnel junction according to the present embodiment, even if a positional shift occurs at the junction between the shield tunnel 1 and the intermediate shaft 2 due to construction errors, it is on-site construction. Therefore, the displacement can be absorbed, and even if a relative deformation occurs between the shield tunnel 1 and the intermediate shaft 2 due to an earthquake or uneven settlement, these joints are allowed by allowing the relative deformation. It is possible to prevent an excessive stress from acting on the portion and damage it. On the other hand, since the stretchable water blocking plate 9 is provided as a premise of allowing relative deformation in this way, sewage flows out to the surrounding ground from the gap between the shield tunnel 1 and the intermediate shaft 2 generated by the relative deformation, It is possible to prevent a situation such as inflow of groundwater. And it is not necessary to use expensive flexible segments as a means to absorb displacement due to construction error and relative deformation due to earthquake or unequal subsidence. Is also possible.
[0039]
In addition, according to the present embodiment, the joint portion of the shield tunnel 1 to which the intermediate shaft 2 is connected is configured by the steel segment 8, so that the digging work required in the case of the RC segment is unnecessary, and the connection work is performed. This can be done in a short time.
[0040]
Moreover, according to this embodiment, since the steel plate 6 was interposed between the wall of the intermediate shaft 2 and the laminated rubber 4 that is the compression deformation absorbing member, the intermediate shaft 2 has the external force in the rotational direction described above. It becomes possible to prevent concrete crushing at the end of the wall.
[0041]
In this embodiment, the stretchable water stop plate 9 having a flat central portion is used as shown in FIG. 1 (b). Instead of this, as shown in FIG. A stretchable water stop plate 52 may be used. According to such a configuration, the annular cross-section 51 extends when subjected to a tensile force, and the relative deformation in the tensile direction is easily absorbed.
[0042]
Further, in the present embodiment, the shear direction is configured to be resisted by the shear deformation resistance member 12, but when shear deformation is considered to be relatively large, as shown in FIG. 6 (a). A cylindrical rubber body 61 as a shear deformation absorbing member may be covered around the shear deformation resistance member 12.
[0043]
In such a configuration, when the shear deformation as shown by the arrow in FIG. 5B is applied, the deformation can be absorbed by the rubber body 61 to some extent, so that the stress generated in the shield tunnel 1 and the intermediate shaft 2 Can be prevented from becoming excessively large. Needless to say, the stretchable water stop plate 9 can follow such shear deformation.
[0044]
【The invention's effect】
As described above, according to the earthquake-resistant structure in the tunnel joint portion according to the present invention, even if the misalignment occurs in the joint portion between the tunnel and the hollow connector due to the construction error, the construction is performed on site because it is on-site construction. It can absorb misalignment, and even if relative deformation occurs between them due to earthquakes or uneven settlement, excessive stress is applied to these joints and damaged by allowing the relative deformation. Can be prevented in advance. On the other hand, since the stretchable water blocking plate is provided as a premise of allowing relative deformation in this way, sewage flows into the surrounding ground from the gap generated between the two due to such relative deformation, or groundwater flows in, etc. Things can also be prevented. And it is not necessary to use expensive flexible segments as a means to absorb displacement due to construction error and relative deformation due to earthquake or unequal subsidence. Is also possible.
Further, according to the earthquake-resistant structure in the tunnel junction according to the present invention, the shear deformation can be absorbed by the shear deformation absorbing member to some extent, so that the stress generated in the tunnel and the hollow connection body is prevented from becoming excessively large. There is also an effect that it becomes possible to do.
[0045]
Moreover, according to the earthquake-resistant structure in the tunnel junction part of this invention which concerns on Claim 2, the twist work required when it is set as RC segment becomes unnecessary, and the effect that it becomes possible to perform a connection work in a short time. Also play.
[0046]
Moreover, according to the earthquake-resistant structure in the tunnel junction part of this invention which concerns on Claim 3, an annular cross-section part is extended when it receives tensile force, and there also exists an effect that it becomes easy to absorb the relative deformation | transformation of a tension direction.
[0048]
Moreover, according to the earthquake-proof structure in the tunnel junction part of this invention which concerns on Claim 4, the effect that it becomes possible to prevent the concrete collapse in the wall body edge part of a hollow connection body with respect to the external force of a rotation direction. Play.
[0049]
[Brief description of the drawings]
1A and 1B are diagrams of an earthquake-resistant structure in a tunnel junction according to the present embodiment, where FIG. 1A is a general view, and FIG. 1B is a detailed cross-sectional view of a region surrounded by A in FIG.
FIG. 2 is a construction procedure diagram of an earthquake-resistant structure at a tunnel junction according to the present embodiment.
FIG. 3 is a detailed cross-sectional view illustrating the construction procedure of the earthquake-resistant structure at the tunnel junction according to the present embodiment.
FIG. 4 is a diagram showing the action of the earthquake-resistant structure at the tunnel junction according to the present embodiment.
FIG. 5 is a detailed cross-sectional view showing an earthquake resistant structure in a tunnel junction according to a modification.
FIG. 6 is a detailed cross-sectional view showing an earthquake resistant structure in a tunnel junction according to another modification.
[Explanation of symbols]
1 Shield tunnel (tunnel)
2 Middle shaft (hollow connection)
3 Wall end 4 Laminated rubber (compression deformation absorbing member)
6 Steel plate 8 Steel segment 9 Elastic water stop plate 11 Rib 12 Shear deformation resistance member 51 Annular cross section 52 Elastic water stop plate 61 Rubber body (shear deformation absorbing member)

Claims (4)

トンネルと該トンネルに接続される中間立坑等の中空接続体との接合部における耐震構造において、
前記中空接続体の壁体端部を該中空接続体の材軸に沿った圧縮変形を吸収する圧縮変形吸収部材を介して前記トンネルに接合するとともに、前記中空接続体の材軸に沿った引張変形を吸収する伸縮性止水板及び前記トンネルの材軸に沿った相対変形に抵抗するせん断変形抵抗部材をそれらの両端が前記中空接続体の壁体端部及び前記トンネルのそれぞれに定着されるように配置し、前記せん断変形抵抗部材にせん断変形を吸収するせん断変形吸収部材を被覆したことを特徴とするトンネル接合部における耐震構造。
In the earthquake-resistant structure at the junction between the tunnel and a hollow connector such as an intermediate shaft connected to the tunnel,
The end of the wall of the hollow connector is joined to the tunnel via a compressive deformation absorbing member that absorbs the compressive deformation along the material axis of the hollow connector, and is pulled along the material axis of the hollow connector. A stretchable water blocking plate that absorbs deformation and a shear deformation resistance member that resists relative deformation along the material axis of the tunnel are fixed to the end of the wall of the hollow connector and the tunnel, respectively. An earthquake-resistant structure in a tunnel junction, wherein the shear deformation absorbing member is disposed so as to cover the shear deformation absorbing member that absorbs shear deformation.
前記トンネルの前記中空接続体との接合部をスチールセグメントで構成した請求項1記載のトンネル接合部における耐震構造。  The earthquake-resistant structure in the tunnel junction part according to claim 1, wherein the junction part of the tunnel with the hollow connector is formed of a steel segment. 前記伸縮性止水板をゴム系材料で形成し、そのほぼ中央を環状断面とした請求項1記載のトンネル接合部における耐震構造。  The earthquake-resistant structure in the tunnel junction part according to claim 1, wherein the stretchable water stop plate is formed of a rubber-based material, and the substantially center thereof has an annular cross section. 前記中空接続体の壁体と前記圧縮変形吸収部材との間に鋼板を介在させた請求項1記載のトンネル接合部における耐震構造。  The earthquake-proof structure in the tunnel junction part of Claim 1 which interposed the steel plate between the wall body of the said hollow connection body, and the said compression deformation absorption member.
JP36643597A 1997-12-24 1997-12-24 Seismic structure at tunnel junction Expired - Fee Related JP4013232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36643597A JP4013232B2 (en) 1997-12-24 1997-12-24 Seismic structure at tunnel junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36643597A JP4013232B2 (en) 1997-12-24 1997-12-24 Seismic structure at tunnel junction

Publications (2)

Publication Number Publication Date
JPH11182189A JPH11182189A (en) 1999-07-06
JP4013232B2 true JP4013232B2 (en) 2007-11-28

Family

ID=18486781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36643597A Expired - Fee Related JP4013232B2 (en) 1997-12-24 1997-12-24 Seismic structure at tunnel junction

Country Status (1)

Country Link
JP (1) JP4013232B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5385855B2 (en) * 2010-05-20 2014-01-08 鹿島建設株式会社 Joint structure of shaft shaft
CN108150192B (en) * 2018-01-22 2023-11-28 中铁第四勘察设计院集团有限公司 Double-layer lining shield tunnel deformation joint structure and shield tunnel

Also Published As

Publication number Publication date
JPH11182189A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
JP4281010B2 (en) Tunnel structure
JP4013232B2 (en) Seismic structure at tunnel junction
JP2021188443A (en) Pile head joint structure, earthquake proof reinforcement method of existing structure, and repair method of pile head joint portion of existing structure
JP4279057B2 (en) Joint structure of flexible segment and shield tunnel using it
CN111503382A (en) Airtight structure and civil air defense engineering building
JPH10227040A (en) Pile foundation structure
JP2854563B2 (en) Culvert fittings
JP7517010B2 (en) Connection structure, connection method, and segment
JP3804440B2 (en) Shield tunnel connection construction method
JP2681612B2 (en) Sediment intrusion prevention structure at joints of underground structures
JP3716289B2 (en) Comb-type joint for flexible tube, fume tube connection structure using the same, and construction method thereof
JP4104777B2 (en) Shield tunnel opening method
JPS6115236B2 (en)
JP6925091B1 (en) Box culvert
JP3574515B2 (en) Flexible box culvert
JP2727308B2 (en) Culvert seismic joint
JP3844434B2 (en) Manhole pipe connection structure
JP2003113699A (en) Flexible joint
JP2937836B2 (en) Flexible connection structure in box culvert for propulsion method
JPH08319793A (en) Lining member and lining method in tunnel construction using shield machine
JP2819091B2 (en) Ring sheet pile method
JP3374093B2 (en) Thrust receiving material and method of constructing flexible joint using it
JPH0960100A (en) Flexible joining structure of box culvert
KR20240059790A (en) Seismic Lining Segment Having Hollow Cross-Section Elastic Body, Seismic Lining Segment Assembly And Construction Method by the Same
JP4128520B2 (en) Flexible joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140921

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees