JP4012609B2 - Stepping motor winding method - Google Patents

Stepping motor winding method Download PDF

Info

Publication number
JP4012609B2
JP4012609B2 JP27842897A JP27842897A JP4012609B2 JP 4012609 B2 JP4012609 B2 JP 4012609B2 JP 27842897 A JP27842897 A JP 27842897A JP 27842897 A JP27842897 A JP 27842897A JP 4012609 B2 JP4012609 B2 JP 4012609B2
Authority
JP
Japan
Prior art keywords
phase
winding
reverse
wound
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27842897A
Other languages
Japanese (ja)
Other versions
JPH11122896A (en
Inventor
勝正 金子
政春 香西
哲 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Motor Co Ltd
Original Assignee
Oriental Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Motor Co Ltd filed Critical Oriental Motor Co Ltd
Priority to JP27842897A priority Critical patent/JP4012609B2/en
Publication of JPH11122896A publication Critical patent/JPH11122896A/en
Application granted granted Critical
Publication of JP4012609B2 publication Critical patent/JP4012609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ステッピングモータの巻線方法の改良に関し、特に、2相、4相および8相などのステッピングモータの巻線方法の改良に関する。
【0002】
【従来の技術】
従来、例えば2相ステッピングモータの固定子磁極のそれぞれに巻回されるA相と逆A相、およびB相と逆B相の巻線方法は、バイファイラ巻として、巻線機の1つのノズルから、2本の電線を同時に1つの磁極に重ねて巻回し、しかる後、引き出し線を個別に取り出していた。
【0003】
すなわち、2相8極(全極数が8)のステッピングモータの固定子磁極のそれぞれに、巻線をするための巻線機としては、図5に示すものがある。この巻線機1は、電線を収納する円筒状の電線収納部2の外周面に、互いに135゜離れた位置に配設された2個のノズル2,3のそれぞれから、電線収納部2の電線を使用して、A相と逆A相用、およびB相と逆B相用のそれぞれ2本の電線を同時に2つの磁極に重ねて巻回していた。該磁極の巻線が終わると、該巻線機1を90゜回動し、その位置の磁極を同様に巻線し、これを全体で4回繰り返し、該モータの巻線を完了していた。
【0004】
前記2相ステッピングモータは、A相、逆A相、B相および逆B相の巻線は、バイファイラ巻に巻回されているので、その巻き始め、および巻き終わりの引き出し線は、図6にようになる。
【0005】
【発明が解決しようとする課題】
しかしながら、このような前記従来の巻線方法にあっては、巻線機の1つのノズル2または3から、2本の電線を同時に1つの磁極に重ねて巻回することにより、該電線にねじれが発生するため、該ノズル2または3を揺動しても整列巻きができなかった。そして、巻回する2本の電線にねじれが発生すると、線間の空間間隔の増大に伴い、巻線の占積率が低下するという問題点があった。
【0006】
同時に、前記2本の電線は、両者間、例えばA相、逆A相間の接触面積が多くなり、巻線時、ノズル側面で傷がつき易く、層間短絡または両者間での短絡が発生するという問題点があった。
【0007】
本発明はかかる点に鑑みなされたもので、その目的は前記問題点を解消し、固定子磁極のそれぞれに巻回される巻線の占積率の向上を図るとともに、同一磁極に巻回される2つの巻線間の短絡を防止するステッピングモータの巻線方法を提案することにある。
【0008】
本発明の他の目的は、固定子磁極のそれぞれに巻回される巻線の巻き始め、巻き終わりが容易に目視でき、作業性の改善を図ったステッピングモータの巻線方法を提案することにある。
【0009】
【課題を解決するための手段】
前記目的を達成するための本発明の構成は、ステッピングモータの固定子磁極のそれぞれに、A相と逆A相、およびB相と逆B相の巻線を巻回するに際し、次のとおりである。
【0010】
(1) 前記A相と逆A相の巻線が巻回される第1の磁極と、B相と逆B相の巻線が巻回される第2の磁極とが、前記固定子内に交互に配設されるとともに、該固定子の中心軸を中心に、互いに対向して配設されるそれぞれ2個の該第1および第2の磁極ごとに、その一方の磁極は、前記A相巻線とB相巻線が、該磁極のそれぞれの内側に、前記逆A相巻線と逆B相巻線は、該磁極のそれぞれの外側に巻回され、その他方の磁極は、前記逆A相巻線と逆B相巻線が、該磁極のそれぞれの内側に、前記A相巻線とB相巻線は、該磁極のそれぞれの外側に巻回され、かつ、前記それぞれのA相、逆A相、B相および逆B相の巻線は、ユニファイラ巻に個別に巻回されることを特徴とする。
【0011】
(2) (1)において、前記A相と逆A相との巻線相互間、およびB相と逆B相との巻線相互間が、絶縁材を介して、よりよく絶縁されることを特徴とする。
【0012】
本発明の方法は、前記のように構成されているので、同一磁極に巻回される2つの巻線、すなわちA相と逆A相、およびB相と逆B相の巻線が、ユニファイラ巻に個別に巻回されるので、2つの巻線間の短絡を防止できるとともに、該2つの巻線、A相と逆A相、およびB相と逆B相の巻線の巻回する位置を、巻回する磁極によって、異にしているため、それぞれの巻線、すなわちA相、逆A相、B相および逆B相の巻線の抵抗値、インダクタンス値などを同一化して、従来の2相ステッピングモータの特性を維持しながら、組立作業性の改善を図っている。
【0013】
【発明の実施の形態】
以下、図面に基づいて本発明の好適な実施の形態を例示的に詳しく説明する。
図1は、本発明のステッピングモータの巻線方法の一実施の形態を示す、巻線機により巻線された該モータの固定子の断面図、図2は、図1の巻線に使用される巻線機を示す図、図3(a)、図3(b)、図3(c)および図3(d)は、図1のA部、B部、C部およびD部のそれぞれの巻線拡大断面図である。
【0014】
図1において、例えば2相8極(全極数が8)ステッピングモータMの固定子10は、ケース11内に嵌着されるとともに、内周面に沿って放射状に等ピッチで配設された8個の磁極P1ないしP8のそれぞれに、卷線W1ないしW8が巻回され、かつ該磁極P1ないしP8の先端に内周方向に沿って、図示省略の複数個の固定子小歯が配設されている。また、該固定子10には、図示しない回転子が、該固定子の軸心と同心に、軸受によって回動自在に支持されるとともに、外周面に外周方向に沿って複数個の移動子小歯が等ピッチで配設されている。
【0015】
前記磁極P1ないしP8は、A相と逆A相との2層の巻線W1,W3,W5,W7が、それぞれ巻回される第1の磁極P1,P3,P5,P7と、B相と逆B相との2層の巻線W2,W4,W6,W8が、それぞれ巻回される第2の磁極P2,P4,P6,P8とからなり、該第1の磁極P1,P3,P5,P7と、第2の磁極P2,P4,P6,P8とが、前記固定子10内に交互に配設されている。
【0016】
前記ステッピングモータMの固定子磁極P1ないしP8のそれぞれに、巻線をするための巻線機5は、電線を収納する円筒状の電線収納部2の外周面に、互いにほぼ同一平面に45゜,135゜,45゜それぞれ離れた位置に配設された4個のノズル6,7,8,9のそれぞれから、電線収納部2内に収納されている電線を使用して、逆B相、逆A相、B相、A相用のそれぞれ1本の電線を同時に、それぞれの磁極の周囲を一方向に移動しながら、4つの磁極P8,P1,P4,P5の内側に重ねて巻回する。
【0017】
該磁極P8,P1,P4,P5の巻線が終わると、該巻線機5を反時計方向に90゜回動し、その位置の磁極の内側に同様に巻線し、次いで、該巻線機5を反時計方向に90゜回動し、その位置の磁極で、前記内側に巻回された巻線の外側に巻線する。その巻線が終わると、該巻線機5をさらに反時計方向に90゜回動し、その位置の磁極の内側に巻回された巻線の外側に巻線し、これを全体で4回繰り返し、該モータの巻線を完了する。
【0018】
これらの磁極P1,P3,P5,P7に、A相、逆A相の2層に巻回された巻線W1,W3,W5,W7の拡大断面図を示すと、図3(a)、図3(b)、図3(c)および図3(d)のとおりである。他方、磁極P2,P4,P6,P8に、B相、逆B相の2層に巻回された巻線W2,W4,W6,W8も同様である。
この場合、A相、逆A相、B相および逆B相の巻線は、ユニファイラ巻に個別に巻回されている。このため、A相、逆A相(またはB相、逆B相)の各巻線は、同図のE面のみにおいて、絶縁材、または巻線自体の絶縁材を介して、機械的に接触しているので、相互間の電気的接触はほとんどない。
【0019】
ここで、図3(a)、図3(b)、図3(c)および図3(d)のように、各A相、逆A相(またはB相、逆B相)の巻線は、電線1本で、前記磁極によって、内側か外側かに巻回されるので、内側か外側かで、その長さが異なる。そのため、その抵抗値とインダクタンスの値も当然異なってくる。しかしながら、従来は、磁極ごとに抵抗値やインダクタンスの値が異なると、モータは正常に動作しないと考えられていたが、関係磁極同士、全体で巻線のバランスをとることができれば、該モータは正常に動作することが実験的に判明された。
【0020】
本実施の形態における2相ステッピングモータは、A相、逆A相、B相および逆B相の巻線は、ユニファイラ巻に個別に巻回されているので、その巻き始め、および巻き終わりの引き出し線は、図4にようになる。
【0021】
以上の説明のように、本実施例によれば、次に列挙する効果が得られる。
(a)固定子のそれぞれの磁極に巻回される2つの巻線、すなわちA相と逆A相、およびB相と逆B相の巻線が、ユニファイラ巻に個別に巻回されるので、その巻き始め、巻き終わりが明確に判別できるので、それぞれの抵抗値が簡単に測定できる。また、導通テストなしで、共通線(コモン線)取りができ、色付き電線の必要性がなくなる。
(b)巻回される電線が、巻線機のノズルからそれぞれ独立して、出てくるため、将来の自動化が期待できる。
(c)前記2つの巻線を個別に巻回することにより、前記ノズルの揺動にて整列巻線が可能なため、該巻線の高占積率が狙える。
【0022】
(d)前記個別に巻回される巻線は、1本ずつの電線で巻くユニファイラ巻のため、前記ノズル幅を細くでき、結果として、固定子鉄心内に巻回数の多い巻線を巻くことができるる。
(e)応用として、超低速シンクロナスモータのようなA相、B相だけの巻線か巻回数を半分にすることができるため、1台あたりの巻線工数が半分になる。
【0023】
なお、本発明の技術は前記実施の形態における技術に限定されるものではなく、同様な機能を果す他の態様の手段によってもよく、また本発明の技術は前記構成の範囲内において種々の変更,付加が可能である。
本実施の形態においては、2相ステッピングモータの巻線方法について説明したが、4相および8相を含む多相ステッピングモータの巻線方法についても、同様に行うことができる。
【0024】
【発明の効果】
以上の説明から明らかなように、本発明のステッピングモータの巻線方法によれば、A相と逆A相の巻線が巻回される第1の磁極と、B相と逆B相の巻線が巻回される第2の磁極とが、前記固定子内に交互に配設され、互いに対向して配設されるそれぞれ2個の該第1および第2の磁極ごとに、その一方の磁極は、前記A相巻線とB相巻線が、該磁極のそれぞれの内側に、前記逆A相巻線と逆B相巻線は、該磁極のそれぞれの外側に巻回され、その他方の磁極は、前記逆A相巻線と逆B相巻線が、該磁極のそれぞれの内側に、前記A相巻線とB相巻線は、該磁極のそれぞれの外側に巻回され、かつ、前記それぞれのA相、逆A相、B相および逆B相の巻線は、ユニファイラ巻に個別に巻回されるので、固定子磁極のそれぞれに巻回される巻線の占積率の向上を図るとともに、同一磁極に巻回される2つの巻線間の短絡を防止することができる。
【0025】
また、それぞれの巻線、すなわちA相、逆A相、B相および逆B相の巻線の抵抗値、インダクタンス値などを同一化して、従来の2相ステッピングモータの特性を維持するとともに、固定子磁極のそれぞれに巻回される巻線の巻き始め、巻き終わりが容易に目視でき、組立作業性の改善を図ることができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明のステッピングモータの巻線方法の一実施の形態を示す、巻線機により巻線された該モータの固定子の断面図である。
【図2】図1の巻線に使用される巻線機を示す正面図である。
【図3】図3(a)、図3(b)、図3(c)および図3(d)は、図1のA部、B部、C部およびD部のそれぞれの巻線拡大断面図である。
【図4】図1の固定子に巻回された各巻線の巻き始め、および巻き終わりの引き出し線を示す図である。
【図5】従来の巻線機を示す正面図である。
【図6】従来の2相ステッピングモータの固定子に巻回された各巻線の巻き始め、および巻き終わりの引き出し線を示す図である。
【符号の説明】
10 固定子
M 2相ステッピングモータ
P1,P3,P5,P7 第1の磁極
P2,P4,P6,P8 第2の磁極
W1,W2,‥‥‥W8 巻線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a winding method for a stepping motor, and more particularly to an improvement in a winding method for a stepping motor such as a two-phase, four-phase, and eight-phase motor.
[0002]
[Prior art]
Conventionally, for example, a winding method of A phase and reverse A phase, and B phase and reverse B phase wound around each of the stator magnetic poles of a two-phase stepping motor is a bifilar winding from one nozzle of a winding machine. Two electric wires were simultaneously piled on one magnetic pole and wound, and then the lead wires were taken out individually.
[0003]
That is, there is a winding machine shown in FIG. 5 for winding each of the stator poles of a two-phase 8-pole (total number of poles: 8) stepping motor. The winding machine 1 includes an outer peripheral surface of a cylindrical electric wire storage portion 2 that stores electric wires, and two nozzles 2 and 3 disposed at positions spaced apart from each other by 135 °. Two electric wires for the A phase and the reverse A phase, and for the B phase and the reverse B phase were simultaneously wound on the two magnetic poles using the electric wires. When the winding of the magnetic pole is completed, the winding machine 1 is rotated 90 °, the magnetic pole at that position is similarly wound, and this is repeated a total of four times to complete the winding of the motor. .
[0004]
In the two-phase stepping motor, the A-phase, reverse A-phase, B-phase, and reverse B-phase windings are wound around the bifilar winding. It becomes like this.
[0005]
[Problems to be solved by the invention]
However, in such a conventional winding method, two wires are wound on one magnetic pole at the same time from one nozzle 2 or 3 of the winding machine, thereby twisting the wires. Therefore, even if the nozzle 2 or 3 is swung, alignment winding cannot be performed. And when twisting generate | occur | produces in the two electric wires wound, there existed a problem that the space factor of a coil | winding fell with the increase in the space space | interval between lines.
[0006]
At the same time, the two electric wires have a large contact area between the two, for example, the A phase and the reverse A phase, and are easily damaged on the side of the nozzle during winding, causing an interlayer short circuit or a short circuit between the two. There was a problem.
[0007]
The present invention has been made in view of the above points, and the object thereof is to solve the above-described problems, to improve the space factor of the windings wound around the stator magnetic poles, and to be wound around the same magnetic poles. Another object of the present invention is to propose a stepping motor winding method for preventing a short circuit between two windings.
[0008]
Another object of the present invention is to propose a winding method for a stepping motor in which the winding start and end of the winding wound around each of the stator magnetic poles can be easily observed and the workability is improved. is there.
[0009]
[Means for Solving the Problems]
The configuration of the present invention for achieving the above object is as follows when winding the A-phase and reverse A-phase and B-phase and reverse B-phase windings around the stator poles of the stepping motor. is there.
[0010]
(1) A first magnetic pole on which the A-phase and reverse A-phase windings are wound, and a second magnetic pole on which the B-phase and reverse B-phase windings are wound are provided in the stator. For each of the two first and second magnetic poles that are alternately arranged and are opposed to each other around the central axis of the stator, one of the magnetic poles is the A phase. A winding and a B-phase winding are wound inside each of the magnetic poles, and the reverse A-phase winding and the reverse B-phase winding are wound outside each of the magnetic poles. A phase winding and reverse B phase winding are wound inside each of the magnetic poles, and the A phase winding and B phase winding are wound outside each of the magnetic poles, and each of the A phase windings The reverse A-phase, B-phase and reverse B-phase windings are individually wound around a unified winding.
[0011]
(2) In (1), between the windings of the A phase and the reverse A phase and between the windings of the B phase and the reverse B phase are better insulated through an insulating material. Features.
[0012]
Since the method of the present invention is configured as described above, two windings wound around the same magnetic pole, that is, windings of A phase and reverse A phase, and B phase and reverse B phase, are unified. Since the windings are individually wound around the windings, a short circuit between the two windings can be prevented, and the winding positions of the two windings, the A phase and the reverse A phase, and the B phase and the reverse B phase winding are wound. Is different depending on the magnetic pole to be wound, so that the resistance values, inductance values, etc. of the respective windings, that is, the A-phase, reverse A-phase, B-phase and reverse B-phase windings are made the same. The assembly workability is improved while maintaining the characteristics of the two-phase stepping motor.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view of a stator of a motor wound by a winding machine, showing an embodiment of a winding method of a stepping motor of the present invention, and FIG. 2 is used for the winding of FIG. FIGS. 3 (a), 3 (b), 3 (c) and 3 (d) show the winding machine shown in FIG. It is a winding expanded sectional view.
[0014]
In FIG. 1, for example, a stator 10 of a two-phase 8-pole (total number of poles: 8) stepping motor M is fitted in a case 11 and is arranged radially at an equal pitch along the inner peripheral surface. Winding wires W1 to W8 are wound around each of the eight magnetic poles P1 to P8, and a plurality of stator small teeth (not shown) are arranged along the inner circumferential direction at the tips of the magnetic poles P1 to P8. Has been. In addition, a rotor (not shown) is supported on the stator 10 so as to be rotatable by a bearing concentrically with the axis of the stator, and a plurality of moving elements are arranged on the outer peripheral surface along the outer peripheral direction. The teeth are arranged at an equal pitch.
[0015]
The magnetic poles P1 to P8 include first and second magnetic poles P1, P3, P5, and P7 around which two-layer windings W1, W3, W5, and W7 of A phase and reverse A phase are wound, and B phase, Two layers of windings W2, W4, W6, and W8 with the reverse B phase are respectively composed of wound second magnetic poles P2, P4, P6, and P8, and the first magnetic poles P1, P3, P5, and so on. P7 and second magnetic poles P2, P4, P6, and P8 are alternately arranged in the stator 10.
[0016]
A winding machine 5 for winding each of the stator magnetic poles P1 to P8 of the stepping motor M is 45 [deg.] On the outer peripheral surface of the cylindrical wire storage portion 2 for storing the wires in substantially the same plane. , 135 °, 45 ° away from each of the four nozzles 6, 7, 8, 9 using the electric wires stored in the electric wire storage part 2, using the reverse B phase, A single wire for each of the reverse A-phase, B-phase, and A-phase is wound around the four magnetic poles P8, P1, P4, and P5 while simultaneously moving around each magnetic pole in one direction. .
[0017]
When the winding of the magnetic poles P8, P1, P4, and P5 is finished, the winding machine 5 is turned 90 ° counterclockwise, and the winding is similarly wound on the inner side of the magnetic pole at that position. The machine 5 is rotated 90 ° counterclockwise, and is wound on the outside of the winding wound inside by the magnetic pole at that position. When the winding is finished, the winding machine 5 is further rotated 90 ° counterclockwise and wound outside the winding wound inside the magnetic pole at that position, and this is performed four times in total. Repeat to complete the winding of the motor.
[0018]
An enlarged cross-sectional view of the windings W1, W3, W5, and W7 wound around these magnetic poles P1, P3, P5, and P7 in two layers of the A phase and the reverse A phase is shown in FIG. 3 (b), FIG. 3 (c) and FIG. 3 (d). On the other hand, the same applies to the windings W2, W4, W6, and W8 wound around the magnetic poles P2, P4, P6, and P8 in two layers of the B phase and the reverse B phase.
In this case, the A-phase, reverse A-phase, B-phase, and reverse B-phase windings are individually wound around a unified winding. For this reason, the A-phase and reverse A-phase (or B-phase and reverse B-phase) windings are in mechanical contact with each other only on the E surface of the figure via the insulating material or the insulating material of the winding itself. So there is little electrical contact between them.
[0019]
Here, as shown in FIG. 3 (a), FIG. 3 (b), FIG. 3 (c) and FIG. 3 (d), the windings of each A phase, reverse A phase (or B phase, reverse B phase) are Since one wire is wound inside or outside by the magnetic pole, the length differs depending on whether it is inside or outside. Therefore, the resistance value and the inductance value are naturally different. However, in the past, it was thought that the motor would not operate normally if the resistance value and inductance value differed for each magnetic pole. However, if the relevant magnetic poles and the windings could be balanced as a whole, the motor would It has been experimentally found to work properly.
[0020]
In the two-phase stepping motor in the present embodiment, the windings of the A phase, the reverse A phase, the B phase, and the reverse B phase are individually wound around the unified winding. The lead lines are as shown in FIG.
[0021]
As described above, according to the present embodiment, the following effects can be obtained.
(A) Since the two windings wound around the respective magnetic poles of the stator, that is, the windings of the A phase and the reverse A phase, and the B phase and the reverse B phase are individually wound around the unified winding. Since the winding start and winding end can be clearly identified, the respective resistance values can be easily measured. In addition, common wires can be removed without a continuity test, eliminating the need for colored wires.
(B) Since the wire to be wound comes out independently from the nozzle of the winding machine, future automation can be expected.
(C) Since the two windings are individually wound, an aligned winding is possible by swinging the nozzle, so that a high space factor of the winding can be aimed at.
[0022]
(D) Since the individually wound winding is a unified winding wound by one electric wire, the nozzle width can be narrowed, and as a result, a winding with a large number of turns is wound in the stator core. I can do it.
(E) As an application, it is possible to halve the number of windings of only the A phase and the B phase as in an ultra-low speed synchronous motor, so the number of windings per unit is halved.
[0023]
Note that the technology of the present invention is not limited to the technology in the above-described embodiment, and may be implemented by means of other modes that perform the same function, and the technology of the present invention may be variously modified within the scope of the above configuration. , Can be added.
Although the winding method of the two-phase stepping motor has been described in the present embodiment, the winding method of the multi-phase stepping motor including four phases and eight phases can be similarly performed.
[0024]
【The invention's effect】
As is apparent from the above description, according to the stepping motor winding method of the present invention, the first magnetic pole on which the A-phase and reverse A-phase windings are wound, and the B-phase and reverse B-phase winding are wound. Second magnetic poles around which the wire is wound are alternately arranged in the stator, and each of the two first and second magnetic poles arranged to face each other, one of them As for the magnetic pole, the A phase winding and the B phase winding are wound inside each of the magnetic poles, and the reverse A phase winding and the reverse B phase winding are wound outside each of the magnetic poles. The reverse A-phase winding and the reverse B-phase winding are wound inside each of the magnetic poles, and the A-phase winding and B-phase winding are wound outside each of the magnetic poles, and Since each of the A-phase, reverse A-phase, B-phase and reverse B-phase windings is wound individually in a uniform winding, the windings are wound around the stator poles. With improved space factor, it is possible to prevent a short circuit between the two windings wound on the same magnetic pole.
[0025]
In addition, the resistance value, inductance value, etc. of the respective windings, that is, the A-phase, reverse A-phase, B-phase and reverse B-phase windings are made the same to maintain the characteristics of the conventional two-phase stepping motor and to be fixed. The winding start and end of the winding wound around each of the child magnetic poles can be easily visually checked, and the assembling workability can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view of a stator of a motor wound by a winding machine, showing an embodiment of a winding method of a stepping motor of the present invention.
2 is a front view showing a winding machine used for the winding of FIG. 1; FIG.
3 (a), FIG. 3 (b), FIG. 3 (c), and FIG. 3 (d) are enlarged cross-sectional views of respective windings of A part, B part, C part, and D part of FIG. FIG.
FIG. 4 is a diagram showing a winding line at the beginning and end of winding of each winding wound around the stator in FIG. 1;
FIG. 5 is a front view showing a conventional winding machine.
FIG. 6 is a diagram showing winding start and winding end lead wires of each winding wound around a stator of a conventional two-phase stepping motor.
[Explanation of symbols]
10 Stator M Two-phase stepping motors P1, P3, P5, P7 First magnetic poles P2, P4, P6, P8 Second magnetic poles W1, W2, ... W8 Winding

Claims (2)

ステッピングモータの固定子磁極のそれぞれに、A相と逆A相、およびB相と逆B相の巻線を巻回するに際し、
前記A相と逆A相の巻線が巻回される第1の磁極と、B相と逆B相の巻線が巻回される第2の磁極とが、前記固定子内に交互に配設されるとともに、該固定子の中心軸を中心に、互いに対向して配設されるそれぞれ2個の該第1および第2の磁極ごとに、その一方の磁極は、前記A相巻線とB相巻線が、該磁極のそれぞれの内側に、前記逆A相巻線と逆B相巻線は、該磁極のそれぞれの外側に巻回され、その他方の磁極は、前記逆A相巻線と逆B相巻線が、該磁極のそれぞれの内側に、前記A相巻線とB相巻線は、該磁極のそれぞれの外側に巻回され、かつ、前記それぞれのA相、逆A相、B相および逆B相の巻線は、ユニファイラ巻に個別に巻回されることを特徴とするステッピングモータの巻線方法。
When winding the A-phase and reverse A-phase and B-phase and reverse B-phase windings around the stator poles of the stepping motor,
A first magnetic pole on which the A-phase and reverse A-phase windings are wound, and a second magnetic pole on which the B-phase and reverse B-phase windings are wound are alternately arranged in the stator. And each of the two first and second magnetic poles disposed opposite to each other around the central axis of the stator, the one magnetic pole is connected to the A-phase winding. A B-phase winding is wound inside each of the magnetic poles, the reverse A-phase winding and the reverse B-phase winding are wound outside each of the magnetic poles, and the other magnetic pole is wound around the reverse A-phase winding. A wire and a reverse B-phase winding are wound inside each of the magnetic poles, and the A-phase winding and the B-phase winding are wound outside each of the magnetic poles. The stepping motor winding method is characterized in that the phase, B phase, and reverse B phase windings are individually wound around a unified winding.
前記A相と逆A相との巻線相互間、およびB相と逆B相との巻線相互間が、絶縁材を介して、よりよく絶縁されることを特徴とする請求項1に記載のステッピングモータの巻線方法。The winding between the A-phase and reverse A-phase windings and between the winding between the B-phase and reverse B-phase are better insulated through an insulating material. Stepping motor winding method.
JP27842897A 1997-10-13 1997-10-13 Stepping motor winding method Expired - Fee Related JP4012609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27842897A JP4012609B2 (en) 1997-10-13 1997-10-13 Stepping motor winding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27842897A JP4012609B2 (en) 1997-10-13 1997-10-13 Stepping motor winding method

Publications (2)

Publication Number Publication Date
JPH11122896A JPH11122896A (en) 1999-04-30
JP4012609B2 true JP4012609B2 (en) 2007-11-21

Family

ID=17597218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27842897A Expired - Fee Related JP4012609B2 (en) 1997-10-13 1997-10-13 Stepping motor winding method

Country Status (1)

Country Link
JP (1) JP4012609B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567133B2 (en) * 2000-01-14 2010-10-20 三菱電機株式会社 Rotating electric machine and manufacturing method thereof
US6597077B2 (en) 2001-11-29 2003-07-22 Ted T. Lin Stator coil T-connection for two-phase step motors
KR102207482B1 (en) * 2015-10-23 2021-01-27 한국전자기술연구원 The stator improving the asymmetry of magnetic flux density in the unipolar type and step motor comprising the same

Also Published As

Publication number Publication date
JPH11122896A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
JP5896250B2 (en) Rotating electric machine stator
US7521828B2 (en) Segment connection type electric rotating machine
US7122933B2 (en) Reduced coil segmented stator
JP6707860B2 (en) Rotary electric machine and method of manufacturing the same
JPH10304604A (en) Direct-current motor
JP2002034212A (en) Manufacturing method and device for stator
JP2010011715A (en) Coil wire for coil assembly for rotating electrical machine
WO2021112040A1 (en) Rotating electric machine stator and rotating electric machine
WO2021220940A1 (en) Stator having wave-winding coil structure, three-phase ac motor equipped with same, and method for producing stator
JP4567133B2 (en) Rotating electric machine and manufacturing method thereof
JPH10146030A (en) Dynamo electric machine having concentratedly-wound stator
JP4012609B2 (en) Stepping motor winding method
JPH07163074A (en) Stator winding of multi-phase rotary machine
JP4961197B2 (en) DC motor armature and DC motor
US4598222A (en) Direct current machine
JP6216603B2 (en) Armature and rotating machine
JP2000014066A (en) Electric rotating machine and rotating machine coil
JP4177462B2 (en) Winding method in two cutting planes for rotating electrical equipment
JP3522014B2 (en) Winding method of polyphase motor and polyphase motor wound by the method
JP3667683B2 (en) Armature and manufacturing method thereof
JPH1169737A (en) Manufacture of stator for motor
JP2889361B2 (en) Three-phase armature winding
JP2003189571A (en) Dc motor with concentrated winding type brush
JP2019037103A (en) Stator and motor
JP3632721B2 (en) Permanent magnet synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees