JP4011975B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP4011975B2
JP4011975B2 JP2002157338A JP2002157338A JP4011975B2 JP 4011975 B2 JP4011975 B2 JP 4011975B2 JP 2002157338 A JP2002157338 A JP 2002157338A JP 2002157338 A JP2002157338 A JP 2002157338A JP 4011975 B2 JP4011975 B2 JP 4011975B2
Authority
JP
Japan
Prior art keywords
vane
cylinder chamber
rotary compressor
groove
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002157338A
Other languages
Japanese (ja)
Other versions
JP2003343465A (en
Inventor
誠一 天野
浩二 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2002157338A priority Critical patent/JP4011975B2/en
Publication of JP2003343465A publication Critical patent/JP2003343465A/en
Application granted granted Critical
Publication of JP4011975B2 publication Critical patent/JP4011975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空調用、冷凍用等に用いられるロータリコンプレッサに係わり、特に吐出側高圧圧縮室と吸い込み側低圧圧縮室に分離するベーンの摺動摩擦損失を低減したロータリコンプレッサに関する。
【0002】
【従来の技術】
一般にロータリコンプレッサは、電動機部により回転駆動される圧縮機部に設けられたシリンダに形成されたベーン溝内を往復動するベーンにより高圧と低圧に仕切られている。
【0003】
図4に示すように、従来のベーン溝21は、断面が長方形状で細長い溝形状をなし、このベーン溝21とシリンダ室22との交差部の低圧側には面取り部21sが形成されている。そして、シリンダ22内を偏心回転するローラ23のローラ回転偏心量eにかかわらず、潤滑油量を確保するために、面取り部21sの面取り量Cs0は、ベーン摺動方向に0.4〜1.2mmだけ採られている。
【0004】
しかしながら、面取り量Csが大きくなると、圧縮機部24での差圧により受けるベーン25のスラスト力が増加して、電力入力値が増大し、COPが低下する問題があった。このCOPの低下の割合は、ローラ回転偏心量eにより影響を受けて、変化する。すなわち、Csとローラ回転偏心量eとの比(Cs/e)が大きいほど、影響を受け易いという問題があった。
【0005】
【発明が解決しようとする課題】
そこで、ベーンのスラスト力の増大による電力の入力値を最小限に抑え、安定した高COPのロータリ圧縮機が要望されていた。
【0006】
本発明は上述した事情を考慮してなされたもので、ベーンのスラスト力の増大による電力の入力値を最小限に抑え、安定した高COPのロータリ圧縮機を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の1つの態様によれば、密閉ケースと、この密閉ケースに収納された電動要素と、この電動要素により駆動され、かつ、偏心運動するローラが収容され、ベーン溝内を往復動するベーンにより圧力的に仕切られたシリンダ室が設けられたロータリ式圧縮要素とを具備するロータリコンプレッサにおいて、ベーンスラスト力が作用する前記ベーンのシリンダ室突出面積を決める前記ローラのローラ回転偏心量をeとし、前記ベーン溝と前記シリンダ室との交差部の低圧側に形成された面取り部をベーン摺動方向に沿って測定した面取り量をCsとするとき、このCsとeとの間にCs/e≦0.05の関係が成立するように設定されたことを特徴とするロータリコンプレッサが提供される。これにより、ベーンのスラスト力の増大による電力の入力値を最小限に抑え、安定した高COPのロータリ圧縮機が実現される。
【0008】
好適な一例では、上記ベーン溝とシリンダ室との交差部の高圧側には、上記Csに等しい面取り量を有する面取り部が形成される。
【0009】
これにより、製造性が向上する。
【0010】
【発明の実施の形態】
以下、本発明に係わるロータリコンプレッサの実施形態について添付図面を参照して説明する。
【0011】
図1は本発明に係わるロータリコンプレッサの第1実施形態の概念図であり、図2はその断面図である。
【0012】
図1に示すように、ロータリコンプレッサ1は、密閉ケース2の内部に電動要素3とロータリ式圧縮要素4とを内装して構成され、圧縮要素4は電動要素3から延びる回転軸5を主軸受6と副軸受7に挿通され、この主軸受6と副軸受7との間に、仕切板8を介して同一形状を有する2基のシリンダ9を配設し、各シリンダ9に設けられたシリンダ室10内において、回転軸5に形成された偏心部5aにそれぞれ円筒状のローラ11を嵌合させる一方、図2に示すように、各シリンダ9に設けられたベーン溝12の高圧側溝側面12dおよび低圧側溝側面12s間を摺動するベーン13が配設されている。このベーン13は、スプリング収納部14に収納されたスプリング15によって常時ローラ11方向に押圧され、偏心部5a及びローラ11の回転に応じて各ローラ外周面に摺接しながらベーン溝12内を往復動し、各シリンダ室10内部を吸込シリンダ室10sと圧縮シリンダ室10dとに圧力的に仕切る役割を果している。
【0013】
上記圧縮機1は、電動要素3の駆動によってローラ11をシリンダ10室内において偏心回転させることにより、吸込口16を通り、シリンダ室10内の吸込シリンダ室10sに吸入したガスを圧縮シリンダ室10d方向に移動させながら圧縮して吐出口17から吐出する。
【0014】
以下、上記2基のシリンダ4は同一形状を有するので、下段のシリンダを例にとって説明する。
【0015】
図2および図3に示すように、シリンダ室10内を偏心回転するローラ11は、そのローラ回転偏心量がeに設定してあり、ベーン溝12は、断面が長方形、で細長い溝形状をなし、ベーン溝12とシリンダ室10との交差部、すなわち、ベーン溝12の端部に面取り部12s、12dが形成されている。そして、面取り部12sの面取り量Csは、ベーン摺動方向に沿って測定されたとき、このCsとローラ回転偏心量eとの比(Cs/e)が、Cs/e≦0.05の関係を成立させるように設定されている。Cs/eが0.05を超えると、ベーンスラスト摺動による入力増加を5%以内に抑えることができず、安定した高COPを実現できない。
【0016】
また、ベーン溝12とシリンダ室10との交差部の高圧側には、面取り部12sの面取り量Csに等しい面取り量Cdを有する面取り部12dが形成されている。これにより、製造性が向上する。
【0017】
なお、本発明に係わるロータリコンプレッサは、高圧側にも面取り部が設けられるのが好ましいが、低圧側に面取り部が設けられていれば、必ずしも設ける必要はなく、また、その面取り量を設定する必要はない。また、上記面取り部は、傾斜する直線により形成されているが、弧ないし円弧などで形成されるようにしてもよい。
【0018】
次に本発明に係わる実施形態のロータリコンプレッサを用いた冷媒圧縮作用について説明する。
【0019】
図1に示すように、いずれも図示しない冷凍サイクルの低温側熱交換器で蒸発し気体になって密閉ケース2に戻った冷媒は、圧縮要素3のシリンダ室10に吸込まれ、ローラ11の回転により圧縮され、高温側熱交換器に吐出される。
【0020】
図2および図3に示すように、この冷媒の圧縮過程において、常時スプリング15により押圧されローラ11に当接するベーン13は、偏心回転するローラ11の回転に伴なって、ベーン溝12内を摺動しながら往復動を繰返す。このベーン溝12内を往復動するベーン13は、圧縮シリンダ室10dと吸込シリンダ室10sとの圧力差によってベーン13に荷重がかかり、ベーン13と低圧側溝側面12aおよび高圧側溝側面12bがベーンスラスト力により線接触して、摺動することにより、摺動摩擦損失による電力の入力値が増加する。またベーンスラスト力は、圧力差ΔP×ベーンの圧縮室内突出面積Sに比例する。また、この圧縮室内突出面積Sをローラ回転偏心量e×シリンダ高さで表わすことができ、Sは(e+Cs)/e=1+Cs/eの割合で比例増減する。ここで、増加部分をCs/eとすると、この値を一定値以下に定めることにより、ベーンスラスト摺動による電力の入力増加を一定の割合以下に抑えることが可能となる。
【0021】
従って、Cs/e≦0.05とすることにより、ベーンスラスト摺動による入力増加を5%以内に抑えることができ、安定した高COPを実現させることができる。また、ロータリ式圧縮要素の製造工程において、Cs/e≦0.05が成立するように、Csとeとを設定すればよいので、容易いかつ再現性よく、汎用性の高い製造工程を実現させることができる。
【0022】
【発明の効果】
本発明に係わるロータリコンプレッサによれば、ベーンのスラスト力の増大による電力の入力値を最小限に抑え、安定した高COPのロータリ圧縮機を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わるロータリコンプレッサの実施形態の縦断面図。
【図2】本発明に係わるロータリコンプレッサの実施形態の横断面図。
【図3】本発明に係わるロータリコンプレッサの実施形態のベーン近傍の平面図。
【図4】従来のロータリコンプレッサのベーン近傍の平面図。
【符号の説明】
1 ロータリコンプレッサ
2 密閉ケース
3 電動要素
4 ロータリ式圧縮要素
5 回転軸
5a 偏心部
6 主軸受
7 副軸受
8 仕切板
9 シリンダ
10 シリンダ室
10d 圧縮シリンダ室
10s 吸込シリンダ室
11 ローラ
12 ベーン溝
12a 低圧側溝側面
12b 高圧側溝側面
12s、12d 面取り部
13 ベーン
14 スプリング収納部
15 スプリング
16 吸込口
17 吐出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary compressor used for air conditioning, refrigeration, and the like, and more particularly to a rotary compressor that reduces a sliding friction loss of a vane separated into a discharge side high pressure compression chamber and a suction side low pressure compression chamber.
[0002]
[Prior art]
Generally, a rotary compressor is partitioned into a high pressure and a low pressure by a vane that reciprocates in a vane groove formed in a cylinder provided in a compressor unit that is rotationally driven by an electric motor unit.
[0003]
As shown in FIG. 4, the conventional vane groove 21 has a rectangular cross section and an elongated groove shape, and a chamfered portion 21 s is formed on the low pressure side of the intersection of the vane groove 21 and the cylinder chamber 22. . Then, regardless of the roller rotation eccentricity e 0 of the roller 23 which eccentrically rotates in the cylinder 22, in order to ensure the amount of lubricating oil, chamfering amount Cs0 chamfers 21s is in the vane sliding direction 0.4-1 Only 2mm is taken.
[0004]
However, when the chamfering amount Cs increases, there is a problem that the thrust force of the vane 25 received by the differential pressure in the compressor unit 24 increases, the power input value increases, and the COP decreases. The rate of decrease of the COP is affected by the roller rotation eccentricity e 0 and changes. That is, there is a problem that the larger the ratio (Cs 0 / e 0 ) between Cs 0 and the roller rotation eccentricity e 0 is, the more easily affected.
[0005]
[Problems to be solved by the invention]
Therefore, there has been a demand for a stable high COP rotary compressor that minimizes the input value of electric power due to an increase in the thrust force of the vane.
[0006]
The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a stable high COP rotary compressor that minimizes the input value of electric power due to an increase in vane thrust force.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to one aspect of the present invention, an airtight case, an electric element housed in the airtight case, and a roller driven by the electric element and moving eccentrically are accommodated, and the vane is provided. A rotary compressor having a rotary compression element provided with a cylinder chamber pressure-divided by a vane reciprocating in a groove, wherein the roller that determines a cylinder chamber protruding area of the vane on which a vane thrust force acts When the roller rotation eccentricity is e, and the chamfering amount measured along the vane sliding direction of the chamfered portion formed on the low pressure side of the intersection between the vane groove and the cylinder chamber is Cs, Is provided so that a relationship of Cs / e ≦ 0.05 is established. As a result, an input value of electric power due to an increase in the thrust force of the vane is minimized, and a stable high COP rotary compressor is realized.
[0008]
In a preferred example, a chamfering portion having a chamfering amount equal to the Cs is formed on the high pressure side of the intersection between the vane groove and the cylinder chamber.
[0009]
Thereby, manufacturability is improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a rotary compressor according to the present invention will be described below with reference to the accompanying drawings.
[0011]
FIG. 1 is a conceptual diagram of a first embodiment of a rotary compressor according to the present invention, and FIG. 2 is a sectional view thereof.
[0012]
As shown in FIG. 1, the rotary compressor 1 is configured by incorporating an electric element 3 and a rotary compression element 4 inside a sealed case 2, and the compression element 4 has a rotating shaft 5 extending from the electric element 3 as a main bearing. 6 and sub-bearings 7, and two cylinders 9 having the same shape are arranged between the main bearing 6 and the sub-bearings 7 via a partition plate 8. In the chamber 10, cylindrical rollers 11 are fitted to the eccentric portions 5a formed on the rotary shaft 5, respectively, while the high pressure side groove side surface 12d of the vane groove 12 provided in each cylinder 9 as shown in FIG. And the vane 13 which slides between the low pressure side groove | channel side surfaces 12s is arrange | positioned. The vane 13 is constantly pressed in the direction of the roller 11 by the spring 15 accommodated in the spring accommodating portion 14, and reciprocates in the vane groove 12 while sliding on the outer peripheral surface of each roller according to the rotation of the eccentric portion 5 a and the roller 11. In addition, it plays the role of partitioning the inside of each cylinder chamber 10 into a suction cylinder chamber 10s and a compression cylinder chamber 10d in a pressure manner.
[0013]
The compressor 1 rotates the roller 11 in the cylinder 10 chamber eccentrically by driving the electric element 3, thereby passing the gas sucked into the suction cylinder chamber 10s in the cylinder chamber 10 through the suction port 16 toward the compression cylinder chamber 10d. Compressed while being moved, and discharged from the discharge port 17.
[0014]
Hereinafter, since the two cylinders 4 have the same shape, the lower cylinder will be described as an example.
[0015]
As shown in FIGS. 2 and 3, the roller 11 that rotates eccentrically in the cylinder chamber 10 has its roller rotation eccentricity set to e, and the vane groove 12 has a rectangular cross section and an elongated groove shape. Chamfered portions 12 s and 12 d are formed at the intersection between the vane groove 12 and the cylinder chamber 10, that is, at the end of the vane groove 12. When the chamfering amount Cs of the chamfered portion 12s is measured along the vane sliding direction, the ratio (Cs / e) between the Cs and the roller rotational eccentricity e is such that Cs / e ≦ 0.05. Is set to hold. If Cs / e exceeds 0.05, an increase in input due to vane last sliding cannot be suppressed to within 5%, and a stable high COP cannot be realized.
[0016]
Further, a chamfered portion 12 d having a chamfering amount Cd equal to the chamfering amount Cs of the chamfered portion 12 s is formed on the high pressure side of the intersection between the vane groove 12 and the cylinder chamber 10. Thereby, manufacturability is improved.
[0017]
The rotary compressor according to the present invention is preferably provided with a chamfered portion on the high pressure side as well, but it is not always necessary to provide a chamfered portion on the low pressure side, and the chamfering amount is set. There is no need. The chamfered portion is formed by an inclined straight line, but may be formed by an arc or a circular arc.
[0018]
Next, the refrigerant compression action using the rotary compressor according to the embodiment of the present invention will be described.
[0019]
As shown in FIG. 1, the refrigerant evaporated in a low temperature side heat exchanger of the refrigeration cycle (not shown) and turned into a gas and returned to the sealed case 2 is sucked into the cylinder chamber 10 of the compression element 3, and the roller 11 rotates. And discharged to the high temperature side heat exchanger.
[0020]
As shown in FIGS. 2 and 3, in the refrigerant compression process, the vane 13 that is always pressed by the spring 15 and contacts the roller 11 slides in the vane groove 12 as the roller 11 rotates eccentrically. Repeated reciprocation while moving. In the vane 13 reciprocating in the vane groove 12, a load is applied to the vane 13 due to a pressure difference between the compression cylinder chamber 10d and the suction cylinder chamber 10s, and the vane 13, the low pressure side groove side surface 12a, and the high pressure side groove side surface 12b are subjected to a vane last force. By making a line contact and sliding, the input value of electric power due to sliding friction loss increases. The vane thrust force is proportional to the pressure difference ΔP × the compression chamber protrusion area S of the vane. Further, the protrusion area S of the compression chamber can be expressed by a roller rotation eccentricity e × cylinder height, and S increases or decreases in proportion to a ratio of (e + Cs) / e = 1 + Cs / e. Here, assuming that the increased portion is Cs / e, by setting this value to a certain value or less, it is possible to suppress an increase in power input due to vane last sliding to a certain ratio or less.
[0021]
Therefore, by setting Cs / e ≦ 0.05, an increase in input due to vane last sliding can be suppressed within 5%, and a stable high COP can be realized. In addition, since Cs and e are set so that Cs / e ≦ 0.05 is satisfied in the manufacturing process of the rotary compression element, an easy, reproducible, and highly versatile manufacturing process is realized. be able to.
[0022]
【The invention's effect】
According to the rotary compressor of the present invention, it is possible to provide a stable high COP rotary compressor by minimizing the input value of electric power due to an increase in the thrust force of the vane.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an embodiment of a rotary compressor according to the present invention.
FIG. 2 is a cross-sectional view of an embodiment of a rotary compressor according to the present invention.
FIG. 3 is a plan view of the vicinity of a vane of an embodiment of a rotary compressor according to the present invention.
FIG. 4 is a plan view of the vicinity of a vane of a conventional rotary compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotary compressor 2 Sealing case 3 Electric element 4 Rotary type compression element 5 Rotary shaft 5a Eccentric part 6 Main bearing 7 Sub bearing 8 Partition plate 9 Cylinder 10 Cylinder chamber 10d Compression cylinder chamber 10s Suction cylinder chamber 11 Roller 12 Vane groove 12a Low pressure side groove Side surface 12b High pressure side groove side surface 12s, 12d Chamfered portion 13 Vane 14 Spring storage portion 15 Spring 16 Suction port 17 Discharge port

Claims (2)

密閉ケースと、この密閉ケースに収納された電動要素と、この電動要素により駆動され、かつ、偏心運動するローラが収容され、ベーン溝内を往復動するベーンにより圧力的に仕切られたシリンダ室が設けられたロータリ式圧縮要素とを具備するロータリコンプレッサにおいて、ベーンスラスト力が作用する前記ベーンのシリンダ室突出面積を決める前記ローラのローラ回転偏心量をeとし、前記ベーン溝と前記シリンダ室との交差部の低圧側に形成された面取り部をベーン摺動方向に沿って測定した面取り量をCsとするとき、このCsとeとの間にCs/e≦0.05の関係が成立するように設定されたことを特徴とするロータリコンプレッサ。A sealed case, an electric element housed in the hermetic case, a cylinder driven by the electric element and moving eccentrically, and a cylinder chamber partitioned by pressure by a vane reciprocating in the vane groove In a rotary compressor comprising a rotary compression element provided, e is a roller rotation eccentricity amount of the roller that determines a cylinder chamber protruding area of the vane on which a vane thrust force acts , and the vane groove and the cylinder chamber When the chamfering amount measured along the vane sliding direction of the chamfered portion formed on the low pressure side of the intersection is Cs, the relationship of Cs / e ≦ 0.05 is established between Cs and e. Rotary compressor characterized by being set to. 請求項1に記載のロータリコンプレッサにおいて、上記ベーン溝とシリンダ室との交差部の高圧側には、上記Csに等しい面取り量を有する面取り部が形成されたことを特徴とするロータリコンプレッサ。  2. The rotary compressor according to claim 1, wherein a chamfering portion having a chamfering amount equal to the Cs is formed on a high-pressure side of an intersection between the vane groove and the cylinder chamber.
JP2002157338A 2002-05-30 2002-05-30 Rotary compressor Expired - Lifetime JP4011975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002157338A JP4011975B2 (en) 2002-05-30 2002-05-30 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002157338A JP4011975B2 (en) 2002-05-30 2002-05-30 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2003343465A JP2003343465A (en) 2003-12-03
JP4011975B2 true JP4011975B2 (en) 2007-11-21

Family

ID=29773252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002157338A Expired - Lifetime JP4011975B2 (en) 2002-05-30 2002-05-30 Rotary compressor

Country Status (1)

Country Link
JP (1) JP4011975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105526167A (en) * 2016-02-03 2016-04-27 广东美芝制冷设备有限公司 Compression mechanism for rotary compressor, and rotary compressor with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257274A (en) * 2008-04-21 2009-11-05 Panasonic Corp Rotary compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105526167A (en) * 2016-02-03 2016-04-27 广东美芝制冷设备有限公司 Compression mechanism for rotary compressor, and rotary compressor with same
CN105526167B (en) * 2016-02-03 2018-06-29 广东美芝制冷设备有限公司 For the compression mechanism of rotary compressor and with its rotary compressor

Also Published As

Publication number Publication date
JP2003343465A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP4909597B2 (en) Hermetic rotary compressor and refrigeration cycle apparatus
JP4864572B2 (en) Rotary compressor and refrigeration cycle apparatus using the same
AU2005261267B2 (en) Rotary fluid machine
US20130101454A1 (en) Rotary compressor
JP2010031785A (en) Refrigerant compressor
CN101033746A (en) Scroll compressor
US8734142B2 (en) Rotation preventing member of a scroll compressor
JP4011975B2 (en) Rotary compressor
JP3867006B2 (en) Rotary compressor
US5015164A (en) Rotary compressor having long length blade
US8485805B2 (en) Rotary compressor
CN214036117U (en) Pump body assembly and fluid machine with same
JPH10148193A (en) Rotary compressor
WO2017130321A1 (en) Compressor
JP3600694B2 (en) Rotary compressor
KR102034799B1 (en) A Rotary Compressor Having Reduced Vane leak and Vane Friction loss
JPH0732951Y2 (en) Fluid compressor
JPH0849675A (en) Rotary compressor
JP2005337115A (en) Compressor body and gas compressor provided with its compressor body
JP2000283066A (en) Scroll compressor
JPH09137785A (en) Rotary compressor
JP2000097178A (en) Roller for rotary compressor
JPS61229984A (en) Construction of cylinder vane grooved part of rotary type closed compressor
JP2007291868A (en) Rotary compressor
JP2000009069A (en) Rotary fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent or registration of utility model

Ref document number: 4011975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term