JP4010757B2 - Resin molded product and manufacturing method thereof - Google Patents

Resin molded product and manufacturing method thereof Download PDF

Info

Publication number
JP4010757B2
JP4010757B2 JP2000273851A JP2000273851A JP4010757B2 JP 4010757 B2 JP4010757 B2 JP 4010757B2 JP 2000273851 A JP2000273851 A JP 2000273851A JP 2000273851 A JP2000273851 A JP 2000273851A JP 4010757 B2 JP4010757 B2 JP 4010757B2
Authority
JP
Japan
Prior art keywords
resin material
fitting
laser
transmissive
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000273851A
Other languages
Japanese (ja)
Other versions
JP2002086567A (en
Inventor
秀生 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000273851A priority Critical patent/JP4010757B2/en
Publication of JP2002086567A publication Critical patent/JP2002086567A/en
Application granted granted Critical
Publication of JP4010757B2 publication Critical patent/JP4010757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12463Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being tapered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/547Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/547Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes
    • B29C66/5472Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes for making elbows or V-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/749Motors
    • B29L2031/7492Intake manifold

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は樹脂成形品及びその製造方法に関しく、詳しくは、レーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して透過性のない非透過性樹脂材とをレーザ溶着により一体的に接合した樹脂成形品及びその製造方法に関する。
【0002】
【従来の技術】
近年、軽量化及び低コスト化等の観点より、自動車部品等、各種分野の部品を樹脂化して樹脂成形品とすることが頻繁に行われている。また、樹脂成形品の高生産性化等の観点より、樹脂成形品を予め複数に分割して成形し、これらの分割成形品を互いに接合する手段が採られることが多い。
【0003】
ここに、樹脂材同士の接合方法として、従来よりレーザ溶着方法が利用されている。例えば、特開昭60−214931号公報には、レーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して透過性のない非透過性樹脂材とを重ね合わせた後、該透過性樹脂材側からレーザ光を照射することにより、透過性樹脂材と非透過性樹脂材との当接面同士を加熱溶融させて両者を一体的に接合するレーザ溶着方法が開示されている。
【0004】
このレーザ溶着方法では、透過性樹脂材内を透過したレーザ光が非透過性樹脂材の当接面に到達して吸収され、この当接面に吸収されたレーザ光がエネルギーとして蓄積される。その結果、非透過性樹脂材の当接面が加熱溶融されるとともに、この非透過性樹脂材の当接面からの熱伝達により透過性樹脂材の当接面が加熱溶融される。この状態で、透過性樹脂材及び非透過性樹脂材の当接面同士を圧着させれば、両者を一体的に接合することができる。
【0005】
【発明が解決しようとする課題】
ところで、上記したようなレーザ溶着では、透過性樹脂材び非透過性樹脂材の当接面同士を確実に溶着させて十分な接合強度を得るためには、透過性樹脂材及び非透過性樹脂材の当接面同士の隙間を極力小さく又は無しにする必要がある。かかる当接面に隙間があると、非透過性樹脂材の当接面における発熱が透過性樹脂材の当接面に熱伝達されにくくなるため、透過性樹脂材の当接面における加熱溶融が不十分となって当接面同士が十分に溶着しなくなるためである。
【0006】
そこで、透過性樹脂材の当接端部に嵌合凸部を設けるとともに、非透過性樹脂材の当接端部に嵌合凹部を設けることにより、上記当接面同士の隙間を極力小さくする手段が考えられる。かかる手段によれば、凹凸嵌合による機械的結合力により、当接端部における反り等を矯正して、当接面同士の隙間を小さくすることが可能となる。
【0007】
しかしながら、透過性樹脂材及び非透過性樹脂材の当接端部に嵌合凸部及び嵌合凹部を設けると、凹凸部の形状やレーザ光の照射位置等によっては、照射されたレーザ光が透過性樹脂材に入射することを非透過性樹脂材が遮ることがある。このため、レーザ光の照射可能範囲が狭小化したり、あるいはレーザ溶着されうる溶着面積が狭小化して接合強度が不十分になるという問題が発生する。
【0008】
本発明は上記実情に鑑みてなされたものであり、透過性樹脂材及び非透過性樹脂材の当接端部を凹凸嵌合させて上記隙間の発生を防止しつつ、該凹凸嵌合における形状を工夫して、レーザ光の照射可能範囲及びレーザ溶着可能な溶着面積を十分に確保することのできる樹脂成形品及びその製造方法を提供することを解決すべき技術課題とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明の樹脂成形品は、加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して透過性のない非透過性樹脂材とからなり、該透過性樹脂材及び該非透過性樹脂材の当接端部同士が該透過性樹脂材側からの該レーザ光の照射により溶着されて接合された樹脂成形品において、上記透過性樹脂材の上記当接端部に嵌合凸部が設けられるとともに、上記非透過性樹脂材の上記当接端部に該嵌合凸部と嵌合可能な嵌合凹部が設けられ、該嵌合凹部を形成する一対の対向壁部のうちの上記レーザ光が照射される側が他方よりも低い高さで形成されていることを特徴とするものである。
好適な態様において、前記嵌合凸部及び前記嵌合凹部の当接面同士が全面的にレーザ溶着されている。
好適な態様において、前記嵌合凸部は、先端側に向かって漸次縮小して突出する略台形状の断面形状をなすとともに、前記レーザ光が照射される側の短傾斜側面と反対側の長傾斜側面とを有する一方、前記嵌合凹部は、該嵌合凸部と整合する略台形状の断面形状をなすとともに、該嵌合凸部の該短傾斜側面と当接してレーザ溶着される短傾斜側面と該嵌合凸部の該長傾斜側面と当接してレーザ溶着される長傾斜側面とを有している。
好適な態様において、前記嵌合凸部及び前記嵌合凹部の前記短傾斜側面は中心線Cに対してαの角度で傾斜し、前記嵌合凸部及び前記嵌合凹部の前記長傾斜側面は中心線Cに対してβの角度で傾斜しており、角度αが角度βよりも大きくされている。
上記課題を解決する本発明の樹脂成形品の製造方法は、加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して透過性のない非透過性樹脂材とからなり、該透過性樹脂材及び該非透過性樹脂材の当接端部同士が該透過性樹脂材側からの該レーザ光の照射により溶着されて接合された樹脂成形品の製造方法において、上記透過性樹脂材の上記当接端部に嵌合凸部が設けられるとともに、上記非透過性樹脂材の上記当接端部に該嵌合凸部と嵌合可能な嵌合凹部が設けられ、該嵌合凹部を形成する一対の対向壁部のうちの一方が他方よりも低い高さで形成されており、高さの低い方の対向壁部からレーザ光を照射することを特徴とするものである。
好適な態様において、前記嵌合凸部及び前記嵌合凹部の当接面同士を全面的にレーザ溶着する。
【0010】
【発明の実施の形態】
本発明の樹脂成形品は、加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して透過性のない非透過性樹脂材とからなり、該透過性樹脂材及び該非透過性樹脂材の当接端部同士がレーザ溶着により一体的に接合されている。このレーザ溶着は、透過性樹脂材及び非透過性樹脂材の当接端部同士を当接させた状態で、透過性樹脂材側からレーザ光を照射することにより行われる。透過性樹脂材側から照射されたレーザ光は該透過性樹脂材内を透過して非透過性樹脂材の当接面に到達し、吸収される。この非透過性樹脂材の当接面に吸収されたレーザ光がエネルギーとして蓄積される結果、非透過性樹脂材の当接面が加熱溶融されるとともに、この非透過性樹脂材の当接面からの熱伝達により透過性樹脂材の当接面が加熱溶融される。この状態で、透過性樹脂材及び非透過性樹脂材の当接面同士を圧着させれば、両者を一体的に接合することができる。
【0011】
こうして得られた接合部では、接合面同士が溶融されて接合されており、該接合面同士の間では両成形部材を構成する両樹脂が溶融して互いに入り込み絡まった状態が形成されているため、強固な接合状態を構成して高い接合強度及び耐圧強度を有している。
【0012】
ここに本発明の樹脂成形品では、透過性樹脂材の当接端部に嵌合凸部が設けられるとともに、非透過性樹脂材の当接端部に該嵌合凸部と嵌合可能な嵌合凹部が設けられており、透過性樹脂材の嵌合凸部と非透過性樹脂材の嵌合凹部とが嵌合している。この凹凸嵌合による機械的な結合力により、透過性樹脂材及び非透過性樹脂材の当接端部における反り等が矯正されるので、透過性樹脂材の当接面と非透過性樹脂材の当接面との間に隙間が発生することを抑えることができる。このため、非透過性樹脂材の当接面における発熱を透過性樹脂材の当接面に確実に熱伝達させて、透過性樹脂材の当接面を確実に加熱溶融させることができる。したがって、透過性樹脂材及び非透過性樹脂材の当接面同士を確実にレーザ溶着させることが可能となる。
【0013】
また、非透過性樹脂材の当接端部に設けられた嵌合凹部は、該嵌合凹部を形成する一対の対向壁部のうちの一方(レーザ光が照射される側)が他方よりも低い高さで形成されている。このため、高さの低い方の対向壁部側からレーザ光を照射することにより、照射されたレーザ光が非透過性樹脂材(レーザ光が照射される側の対向壁部)で遮られるのを抑えることができる。したがって、レーザ光の照射可能範囲及びレーザ溶着可能な溶着面積を十分に確保することが可能となる。
【0014】
さらに、本発明の樹脂成形品では、透過性樹脂材に嵌合凸部を設けるとともに、非透過性樹脂材に嵌合凹部を設けている。ここで、透過性樹脂材内を透過して非透過性樹脂材の当接面(嵌合凹部の内面)に到達したレーザ光は該当接面でその全てが吸収されることはなく一部が反射される。このため、透過性樹脂材内におけるレーザ光の散乱に加えて、非透過性樹脂材の嵌合凹部の内面におけるレーザ光の反射を利用することにより、嵌合凸部の外面及び嵌合凹部の内面同士をより広く、かつ、略均等にレーザ溶着することが可能となる。
【0015】
上記非透過性樹脂材の当接端部に設けられる嵌合凹部の形状としては、該嵌合凹部を形成する一対の対向壁部のうちの一方が他方よりも低い高さで形成されていれば特に限定されず、例えば略逆台形状、略半円状や略三角形状等の断面形状とすることができる。
【0016】
上記透過性樹脂材に用いる樹脂の種類としては、熱可塑性を有し、加熱源としてのレーザ光を所定の透過率以上で透過させうるものであれば特に限定されない。例えば、ナイロン6(PA6)やナイロン66(PA66)等のポリアミド(PA)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート(PET)、ポリスチレン、ABS、アクリル(PMMA)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)等を挙げることができる。なお、必要に応じて、ガラス繊維、カーボン繊維等の補強繊維や着色材を添加したものを用いてもよい。
【0017】
上記非透過性樹脂材に用いる樹脂の種類としては、熱可塑性を有し、加熱源としてのレーザ光を透過させずに吸収しうるものであれば特に限定されない。例えば、ナイロン6(PA6)やナイロン66(PA66)等のポリアミド(PA)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート(PET)、ポリスチレン、ABS、アクリル(PMMA)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、PPS等に、カーボンブラック、染料や顔料等の所定の着色材を混入したものを挙げることができる。なお、必要に応じて、ガラス繊維、カーボン繊維等の補強繊維を添加したものを用いてもよい。
【0018】
また、上記透過性樹脂材に用いる樹脂と上記非透過性樹脂材に用いる樹脂との組合せについては、互いに相溶性のあるもの同士の組合せとされる。かかる組合せとしては、ナイロン6同士やナイロン66同士等、同種の樹脂同士の組合せの他、ナイロン6とナイロン66との組合せ、PETとPCとの組合せやPCとPBTとの組合せ等を挙げることができる。
【0019】
また、加熱源として用いるレーザ光の種類としては、レーザ光を透過させる透過性樹脂材の吸収スペクトルや板厚(透過長)等との関係で、透過性樹脂材内での透過率が所定値以上となるような波長を有するものが適宜選定される。例えば、YAG:Nd3+レーザ(レーザ光の波長:1060nm)や半導体レーザ(レーザ光の波長:500〜1000nm)を用いることができる。
【0020】
なお、レーザの出力、照射密度や加工速度(移動速度)等の照射条件は、樹脂の種類等に応じて適宜設定可能である。
【0021】
【実施例】
以下、本発明の具体的な実施例を図面に基づいて説明する。
【0022】
本実施例は、本発明の樹脂成形品を合成樹脂製のインテークマニホールドに適用したものである。
【0023】
図1はインテークマニホールドの平面図である。図2はインテークマニホールドの図1におけるA−A線で切断した切断端面を拡大して示している。
【0024】
このインテークマニホールド10は、上下に2分割されていて、上側分割体である第1成形部材11と下側分割体である第2成形部材12とから構成された中空体である。第1成形部材11及び第2成形部材12は、互いに整合して当接し合う当接端部11a及び12aをそれぞれ有している。そして、第1成形部材11の当接端部11a及び第2成形部材12の当接端部12aの当接面同士がレーザ溶着により一体的に接合されている。
【0025】
第1成形部材11は、加熱源としてのレーザ光に対して透過性のある透過性樹脂よりなるもので、この透過性樹脂として、本実施例ではナイロン6に補強材であるガラスファイバーを30wt%添加してなる強化プラスチックを用いた。但し、ガラスファイバーを30wt%添加したことにより、ガラスファイバー非添加のナイロン6製のプラスチックに比較してレーザ光の透過率は30%低下している。なお、照射に使用するレーザ光はYAG:Nd3+レーザ(波長:1060nm)である。
【0026】
また、第2成形部材12は、加熱源としてのレーザ光に対して透過性のない非透過性樹脂よりなるもので、この非透過性樹脂として、本実施例ではナイロン6に補強材であるガラスファイバーを30wt%、補助剤(着色材)であるカーボンブラックを適宜量添加してなる強化プラスチックを用いた。
【0027】
なお、第1成形部材11及び第2成形部材12は、いずれもナイロン6を母材樹脂とするもので、互いに相溶性のあるものである。
【0028】
第1成形部材11は、図1のA−A線で示す部位が図2で拡大して示されているように、断面形状が略半円筒状を呈している。この略半円筒状をなす第1成形部材11の開口端部に当接端部11aが設けられている。
【0029】
この部分がさらに拡大して図3に示されているように、第1成形部材11の当接端部11aには、下方に突出する環状の嵌合凸部11bが設けられている。この嵌合凸部11bは、先端側(下方側)に向かって漸次縮小して突出する略台形状の断面形状をなしている。そして、レーザ光が照射される側(図3の左側)の短傾斜側面11d1は、反対側の長傾斜側面11d2よりも短い長さとされている。
【0030】
一方、第2成形部材12の当接端部12aには、上記嵌合凸部11bと嵌合可能な環状の嵌合凹部12bが設けられている。この嵌合凹部12bは、上記嵌合凸部11bと整合する形状とされ、底面から上方に向かって漸次開口が拡がる略台形状の断面形状をなしている。そして、嵌合凹部12bを形成する一対の対向壁部12c1、12c2のうちの一方は他方よりも低い高さで形成されている。すなわち、レーザ光が照射される側(図3の左側)の低対向壁部12c1は、反対側の高対向壁部12c2よりも低い高さとされている。なお、低対向壁部12c1の内面が、上記短傾斜側面11d1と当接してレーザ溶着される短傾斜側面12d1となり、高対向壁部12c2の内面が、上記長傾斜側面11d2と当接してレーザ溶着される長傾斜側面12d2となる。
【0031】
さらに詳しくは、図4に示すように、嵌合凸部11bの短傾斜側面11d1及び嵌合凹部12bの短傾斜側面12d1は中心線Cに対してαの角度で傾斜しており、嵌合凸部11bの長傾斜側面11d2及び嵌合凹部12bの長傾斜側面12d2は中心線Cに対してβの角度で傾斜している。また、嵌合凹部12bの低対向壁部12c1の高さはH1で、嵌合凹部12bの高対向壁部12c2の高さはH2であり、両者の差がh(=H2−H1)とされている。
【0032】
こうして、第1成形部材11の嵌合凸部11c及び第2成形部材12の嵌合凹部12c同士が嵌合されるとともに、第1成形部材11の当接面11b(嵌合凸部11cの短傾斜側面11e1及び長傾斜側面11e2)及び第2成形部材12の当接面12b(嵌合凹部12cの短傾斜側面12e1及び長傾斜側面12e2)同士がレーザ溶着により一体的に接合されている。
【0033】
上記構成を有する本実施例の樹脂成形品は、以下のようにして製造した。まず、所定の射出成形型を用いて、第1成形部材11及び第2成形部材12を予め所定形状に射出成形した。そして、第1成形部材11の嵌合凸部11cと第2成形部材12の嵌合凹部12cとを嵌合させるとともに、第1成形部材11及び第2成形部材12の当接面11b及び12b同士を当接させた。この状態で、図示しないレーザトーチを用い、第1成形部材11側から第2成形部材12の嵌合凹部12cに向かってレーザ光を照射した。すなわち、第2成形部材12の嵌合凹部12cを形成する一対の対向壁部のうち高さの低い方の低対向壁部12d1側から嵌合凹部12cの内面、すなわち嵌合凹部12cの短傾斜側面12e1及び長傾斜側面12e2に向かってレーザ光を照射した。これにより、第1成形部材11の当接端部11aと第2成形部材12の当接端部12aとの当接面11b及び12b同士を全面的に加熱溶融させて、レーザ溶着により両者を一体的に接合した。
【0034】
このように、本実施例の樹脂成形品では、非透過性樹脂材よりなる第2成形部材12の当接端部12aに設けられた嵌合凹部12cは、レーザ光が照射される側の低対向壁部12d1が反対側の高対向壁部12d2よりも高さが低くされている。このため、高さの低い方の低対向壁部12d1側からレーザ光を照射することにより、照射されたレーザ光が非透過性樹脂材(レーザ光が照射される側の対向壁部)で遮られるのを抑えることができる。したがって、レーザ光の照射可能範囲及びレーザ溶着可能な溶着面積を十分に確保することが可能となる。
【0035】
こうして得られた接合部では、当接面11b及び12b同士が全面的に溶融されて接合されており、該当接面11b及び12b同士の間では両成形部材11及び12を構成する両樹脂が溶融して互いに入り込み絡まった状態が形成されているため、強固な接合状態を構成して高い接合強度及び耐圧強度を有している。
【0036】
特に、本実施例の樹脂成形品では、第1成形部材11の嵌合凸部11cと第2成形部材12の嵌合凹部12cとの凹凸嵌合により、両者間に機械的な結合力が付与せしめられるので、両者の接合強度をより向上させることができる。
【0037】
また、凹凸嵌合による機械的な結合力により、第1成形部材11及び第2成形部材12の当接端部11a及び12aにおける反り等が矯正されるので、第1成形部材11及び第2成形部材12の当接面11b及び12b同士の間に隙間が発生することを抑えることができる。このため、非透過性樹脂材よりなる第2成形部材12の当接面12bにおける発熱を透過性樹脂材よりなる第1成形部材11の当接面11bに確実に熱伝達させて、第1成形部材11の当接面11bを確実に加熱溶融させることができる。したがって、第1成形部材11及び第2成形部材12の当接面11b及び12b同士を確実にレーザ溶着させることが可能となる。
【0038】
さらに、上記凹凸嵌合により、第1成形部材11の上記当接面11b(嵌合凸部11dの傾斜側面及び先端面を含む)と第2成形部材12の上記当接面12b(嵌合凹部12dの傾斜側面及び底面を含む)との当接面積、すなわちレーザ溶着による接合面積も増大することから、これによっても接合強度の向上を図ることができる。
【0039】
加えて、透過性樹脂材よりなる第1成形部材11に上記嵌合凸部11dを設けるとともに、非透過性樹脂材よりなる第2成形部材12に上記嵌合凹部12dを設けているので、該嵌合凹部12dの内面(底面及び傾斜側面)でレーザ光の一部が反射することを利用することができ、より均一にレーザ溶着するのに有利となる。
【0040】
ここに、上記凹凸嵌合における好ましい形状について、図4を参照しつつ以下説明する。
【0041】
まず、非透過性樹脂材よりなる嵌合凹部12bを形成する一対の対向壁部のうち高さの低い方の低対向壁部12c1については、高さH1が低すぎると、凹凸嵌合(インロー継手)により第1成形部材11の当接端部11a等における反り等を防止して第1成形部材11及び第2成形部材12間の隙間を少なくするという効果を十分に発揮できない。一方、このインロー継手による隙間抑制の効果は、低対向壁部12c1の高さH1が1mm程度あれば十分であり、また高さH1が高すぎると、レーザ光の照射範囲の制約やフランジ幅増加による形状制約等の不都合を招来する。かかる観点より、低対向壁部12c1の高さH1は1〜3mm程度とすることが好ましく、1.5〜2.5mm程度とすることがより好ましい。なお、第1成形部材11及び第2成形部材12の板厚をt(本実施例ではt=3mm)としたとき、低対向壁部12c1の高さH1は、0.3t〜1t程度とすることが好ましく、0.5t〜0.8t程度とすることがより好ましい。
【0042】
また、上記低対向壁部12c1の高さH1を高対向壁部12c2の高さH2よりも低くする程度h(=H2−H1)については、hの値が小さすぎると、レーザ光の照射可能な範囲及びレーザ溶着可能な面積を拡大するという効果を十分に発揮できない。一方、このレーザ光の照射範囲及びレーザ溶着面積の拡大の効果は、上記hの値が1mm以上あれば十分であり、またhの値が大きすぎるとレーザスポット径拡大や、エネルギー密度低下等の不都合を招来する。かかる観点より、上記hの値は1〜6mm程度とすることが好ましく、3〜4mm程度とすることがより好ましい。なお、このhの値は、第1成形部材11及び第2成形部材12の板厚tに対して、0.3〜2t程度とすることが好ましく、1t〜1.3t程度とすることがより好ましい。
【0043】
そして、中心線Cに対して直角方向からレーザ光を照射した場合、嵌合凸部11bの長傾斜側面11d2と嵌合凹部12bの長傾斜側面12d2とが図4の矢印hで示す範囲でレーザ溶着されることになるが、このhの値が1mm以上あればレーザ溶着面積を十分に確保して十分な接合強度を得ることが可能となる。したがって、hの値が1mm以上のとき、図4の矢印θで示す範囲内からレーザ光照射すれば、第1成形部材11と第2成形部材12とを十分な接合強度をもってレーザ溶着することが可能となり、レーザ光の照射可能範囲を十分に拡大させることができる。
【0044】
また、嵌合凸部11bの短傾斜側面11d1及び嵌合凹部12bの短傾斜側面12d1における中心線Cに対する上記角度α(°)、並びに嵌合凸部11bの長傾斜側面11d2及び嵌合凹部12bの長傾斜側面12d2における中心線Cに対する上記角度β(°)については、嵌合凹部12bの低対向壁部12c1の内面に相当する短傾斜側面12d1の角度αが、嵌合凹部12bの高対向壁部12c2の内面に相当する長傾斜側面12d2の角度βよりも大きいことが好ましい。角度αが角度βよりも大きくなるほど、レーザ光の照射範囲及びレーザ溶着面積の拡大の効果を発揮させる上で有利となる。一方、角度αが角度βよりも大きくなりすぎると、インロー継手による隙間抑制の効果を十分に発揮できなくなる。したがって、角度αと角度βとの間には、下記(1)式を満たす関係にあることが特に好ましい。角度βとしては、10≦β≦45程度とすることができる。
【0045】
β+10≦α≦β+40 …(1)
【0046】
【発明の効果】
以上詳述したように、本発明の樹脂成形品は、透過性樹脂材及び非透過性樹脂材の当接端部を凹凸嵌合させて両者間の隙間の発生を防止しつつ、レーザ光の照射可能範囲及びレーザ溶着可能な溶着面積を十分に確保することができる。
【0047】
したがって、レーザ溶着による接合強度の向上を図ることができるとともに、レーザ溶着可能なレーザ光の発射位置の自由度が増し、障害物等によりレーザ光の発射位置が制限される場合でもレーザ溶着が可能となる。
【図面の簡単な説明】
【図1】実施例に係り、本発明に係る樹脂成形品を適用する合成樹脂製のインテークマニホールドの平面図である。
【図2】実施例に係り、図1の矢印A−A線で示す部位の断面図である。
【図3】実施例に係り、第1成形部材と第2成形部材との接合構造を示す拡大部分断面図である。
【図4】実施例に係り、第1成形部材と第2成形部材との接合構造を示す拡大部分断面図である。
【符号の説明】
11…第1成形部材(透過性樹脂材)
12…第2成形部材(非透過性樹脂材)
11a、12a…当接端部
11b…嵌合凸部
12b…嵌合凹部
12c1…低対向壁部
12c2…高対向壁部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin molded product and a manufacturing method thereof , and more specifically, laser welding a transparent resin material that is transmissive to laser light and a non-transmissive resin material that is not transmissive to the laser light. The present invention relates to a resin molded product integrally joined by the method and a manufacturing method thereof .
[0002]
[Prior art]
In recent years, from the viewpoints of weight reduction and cost reduction, it has been frequently performed to resin parts of various fields such as automobile parts to form resin molded products. Further, from the viewpoint of increasing the productivity of resin molded products, it is often the case that a resin molded product is divided into a plurality of parts and molded, and these divided molded products are joined together.
[0003]
Here, as a method for joining resin materials, a laser welding method has been conventionally used. For example, in JP-A-60-214931, a transparent resin material that is transmissive to laser light and a non-transmissive resin material that is not transmissive to the laser light are superimposed, A laser welding method is disclosed in which laser light is irradiated from the transmissive resin material side to heat and melt the contact surfaces of the transmissive resin material and the non-permeable resin material so as to integrally bond the two. Yes.
[0004]
In this laser welding method, the laser light transmitted through the transmissive resin material reaches the contact surface of the non-transmissive resin material and is absorbed, and the laser light absorbed on the contact surface is accumulated as energy. As a result, the contact surface of the non-permeable resin material is heated and melted, and the contact surface of the transparent resin material is heated and melted by heat transfer from the contact surface of the non-permeable resin material. In this state, if the contact surfaces of the permeable resin material and the non-permeable resin material are pressure-bonded together, they can be joined together.
[0005]
[Problems to be solved by the invention]
By the way, in the laser welding as described above, in order to surely weld the contact surfaces of the transparent resin material and the non-permeable resin material to obtain sufficient bonding strength, the transparent resin material and the non-permeable resin are used. It is necessary to minimize or eliminate the gap between the contact surfaces of the material. If there is a gap in the contact surface, heat generation at the contact surface of the non-permeable resin material is difficult to transfer to the contact surface of the transparent resin material. This is because the contact surfaces are not sufficiently welded to each other.
[0006]
Therefore, by providing a fitting convex portion at the contact end portion of the transparent resin material and providing a fitting concave portion at the contact end portion of the non-permeable resin material, the gap between the contact surfaces is made as small as possible. Means are conceivable. According to this means, it is possible to correct the warp or the like at the abutting end portion by the mechanical coupling force due to the uneven fitting, and to reduce the gap between the abutting surfaces.
[0007]
However, if a fitting convex part and a fitting concave part are provided at the contact end part of the permeable resin material and the non-permeable resin material, the irradiated laser beam may vary depending on the shape of the concavo-convex part or the irradiation position of the laser light. The non-transparent resin material may block incident on the transparent resin material. For this reason, there arises a problem that the laser beam irradiable range is narrowed, or the welded area that can be laser welded is narrowed, resulting in insufficient bonding strength.
[0008]
The present invention has been made in view of the above circumstances, and the shape of the concavo-convex fitting is achieved while the contact end portions of the permeable resin material and the non-permeable resin material are concavo-convex fitted to prevent the occurrence of the gap. The technical problem to be solved is to provide a resin molded product capable of sufficiently securing a laser beam irradiable range and a laser welding area and a manufacturing method thereof .
[0009]
[Means for Solving the Problems]
The resin molded product of the present invention that solves the above problems comprises a transmissive resin material that is transmissive to laser light as a heating source and an impermeable resin material that is not transmissive to the laser light. In the resin molded product in which the contact end portions of the transparent resin material and the non-permeable resin material are welded and joined by irradiation of the laser light from the transparent resin material side, A fitting convex portion is provided at the abutting end portion, and a fitting concave portion that can be fitted to the fitting convex portion is provided at the abutting end portion of the non-permeable resin material. Of the pair of opposing wall portions to be formed, the side irradiated with the laser light is formed at a height lower than the other.
In a preferred aspect, the contact surfaces of the fitting convex part and the fitting concave part are entirely laser welded.
In a preferred aspect, the fitting convex portion has a substantially trapezoidal cross-sectional shape protruding gradually shrinking toward the distal end side, and has a length opposite to the short inclined side surface on the side irradiated with the laser beam. On the other hand, the fitting recess has a substantially trapezoidal cross-sectional shape that aligns with the fitting protrusion, and is short-contacted with the short inclination side of the fitting protrusion and laser-welded. It has an inclined side surface and a long inclined side surface that is in contact with the long inclined side surface of the fitting convex portion and is laser-welded.
In a preferred embodiment, the short inclined side surfaces of the fitting convex portion and the fitting concave portion are inclined at an angle α with respect to a center line C, and the long inclined side surfaces of the fitting convex portion and the fitting concave portion are The center line C is inclined at an angle β, and the angle α is larger than the angle β.
The method for producing a resin molded product of the present invention that solves the above problems includes a transparent resin material that is transparent to laser light as a heating source, and a non-transparent resin material that is not transparent to the laser light. In the manufacturing method of the resin molded product, wherein the contact end portions of the transparent resin material and the non-permeable resin material are welded and joined by irradiation of the laser light from the transparent resin material side, A fitting convex portion is provided at the contact end portion of the transparent resin material, and a fitting concave portion capable of fitting with the fitting convex portion is provided at the contact end portion of the non-permeable resin material. One of the pair of opposing wall portions forming the fitting recess is formed at a lower height than the other, and the laser beam is irradiated from the opposing wall portion having a lower height. Is.
In a preferred aspect, the contact surfaces of the fitting convex portion and the fitting concave portion are entirely laser welded.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The resin molded product of the present invention comprises a transparent resin material that is transmissive to laser light as a heating source, and a non-transmissive resin material that is not transmissive to the laser light. The contact ends of the material and the non-permeable resin material are integrally joined by laser welding. This laser welding is performed by irradiating laser light from the transparent resin material side in a state where the contact end portions of the transparent resin material and the non-permeable resin material are in contact with each other. The laser light irradiated from the transparent resin material side passes through the transparent resin material, reaches the contact surface of the non-transmissive resin material, and is absorbed. As a result of the laser light absorbed on the contact surface of the non-permeable resin material being accumulated as energy, the contact surface of the non-permeable resin material is heated and melted, and the contact surface of the non-permeable resin material The contact surface of the permeable resin material is heated and melted by heat transfer from. In this state, if the contact surfaces of the permeable resin material and the non-permeable resin material are pressure-bonded together, they can be joined together.
[0011]
In the joint part obtained in this way, the joint surfaces are melted and joined, and between the joint surfaces, both resins constituting both molded members are melted and are intertwined with each other. It has a strong bonding state and a high pressure strength by constituting a strong bonding state.
[0012]
Here, in the resin molded product of the present invention, a fitting convex portion is provided at the abutting end portion of the transparent resin material, and the fitting convex portion can be fitted at the abutting end portion of the non-permeable resin material. A fitting concave portion is provided, and the fitting convex portion of the permeable resin material and the fitting concave portion of the non-permeable resin material are fitted. Due to the mechanical coupling force due to the concave / convex fitting, warpage or the like at the abutting end of the permeable resin material and the non-permeable resin material is corrected, so that the contact surface of the permeable resin material and the non-permeable resin material It is possible to suppress the occurrence of a gap between the contact surface and the contact surface. For this reason, heat generated on the contact surface of the non-permeable resin material can be reliably transferred to the contact surface of the transparent resin material, and the contact surface of the transparent resin material can be reliably heated and melted. Therefore, it is possible to reliably laser weld the contact surfaces of the transmissive resin material and the non-permeable resin material.
[0013]
Further, the fitting recess provided at the contact end portion of the non-permeable resin material is such that one of the pair of opposing wall portions forming the fitting recess (the side irradiated with the laser beam) is more than the other. It is formed with a low height. For this reason, by irradiating the laser beam from the side of the opposing wall portion having the lower height, the irradiated laser light is blocked by the non-transparent resin material (the opposing wall portion on the side irradiated with the laser beam). Can be suppressed. Therefore, it is possible to ensure a sufficient laser beam irradiation range and a welding area where laser welding is possible.
[0014]
Furthermore, in the resin molded product of the present invention, the fitting convex portion is provided in the permeable resin material, and the fitting concave portion is provided in the non-permeable resin material. Here, the laser beam that has passed through the permeable resin material and reached the contact surface of the non-permeable resin material (the inner surface of the fitting recess) is not absorbed completely by the corresponding contact surface, but partly. Reflected. For this reason, in addition to the scattering of the laser beam in the transmissive resin material, the reflection of the laser beam on the inner surface of the fitting recess of the non-transparent resin material is used, so that the outer surface of the fitting projection and the fitting recess The inner surfaces can be laser-welded more broadly and substantially uniformly.
[0015]
As the shape of the fitting recess provided at the contact end portion of the non-permeable resin material, one of the pair of opposing wall portions forming the fitting recess is formed at a lower height than the other. For example, the cross-sectional shape may be a substantially inverted trapezoidal shape, a substantially semicircular shape, or a substantially triangular shape.
[0016]
The type of resin used for the transparent resin material is not particularly limited as long as it has thermoplasticity and can transmit laser light as a heating source at a predetermined transmittance or higher. For example, polyamide (PA) such as nylon 6 (PA6) and nylon 66 (PA66), polyethylene (PE), polypropylene (PP), styrene-acrylonitrile copolymer, polyethylene terephthalate (PET), polystyrene, ABS, acrylic (PMMA) ), Polycarbonate (PC), polybutylene terephthalate (PBT), and the like. In addition, you may use what added reinforcing fibers and coloring materials, such as glass fiber and carbon fiber, as needed.
[0017]
The type of resin used for the non-permeable resin material is not particularly limited as long as it has thermoplasticity and can absorb laser light as a heating source without transmitting it. For example, polyamide (PA) such as nylon 6 (PA6) and nylon 66 (PA66), polyethylene (PE), polypropylene (PP), styrene-acrylonitrile copolymer, polyethylene terephthalate (PET), polystyrene, ABS, acrylic (PMMA) ), Polycarbonate (PC), polybutylene terephthalate (PBT), PPS, and the like, and carbon black, a predetermined colorant such as a dye or pigment, and the like. In addition, you may use what added reinforcement fibers, such as glass fiber and carbon fiber, as needed.
[0018]
Moreover, about the combination of resin used for the said permeable resin material and resin used for the said non-permeable resin material, it is set as the combination of mutually compatible things. Examples of such combinations include combinations of resins of the same type such as nylons 6 and 66, combinations of nylon 6 and nylon 66, combinations of PET and PC, combinations of PC and PBT, and the like. it can.
[0019]
In addition, as the type of laser light used as a heating source, the transmittance in the transparent resin material is a predetermined value in relation to the absorption spectrum, plate thickness (transmission length), etc. of the transparent resin material that transmits the laser light. What has the wavelength which becomes the above is selected suitably. For example, a YAG: Nd 3+ laser (laser light wavelength: 1060 nm) or a semiconductor laser (laser light wavelength: 500 to 1000 nm) can be used.
[0020]
Irradiation conditions such as laser output, irradiation density, and processing speed (moving speed) can be set as appropriate according to the type of resin.
[0021]
【Example】
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[0022]
In this embodiment, the resin molded product of the present invention is applied to a synthetic resin intake manifold.
[0023]
FIG. 1 is a plan view of the intake manifold. FIG. 2 is an enlarged view of the cut end surface of the intake manifold taken along line AA in FIG.
[0024]
The intake manifold 10 is divided into two parts in the vertical direction, and is a hollow body composed of a first molded member 11 that is an upper divided body and a second molded member 12 that is a lower divided body. The 1st shaping | molding member 11 and the 2nd shaping | molding member 12 have contact | abutting edge part 11a and 12a which mutually align and contact | abut. The contact surfaces of the contact end portion 11a of the first molding member 11 and the contact end portion 12a of the second molding member 12 are integrally joined by laser welding.
[0025]
The first molded member 11 is made of a transparent resin that is transparent to laser light as a heating source, and in this embodiment, 30 wt% of glass fiber as a reinforcing material is added to nylon 6 as the transparent resin. The reinforced plastic added was used. However, by adding 30 wt% of glass fiber, the transmittance of laser light is reduced by 30% as compared with plastic made of nylon 6 not added with glass fiber. The laser beam used for irradiation is a YAG: Nd 3+ laser (wavelength: 1060 nm).
[0026]
Moreover, the 2nd shaping | molding member 12 consists of non-permeable resin which is not transmissive with respect to the laser beam as a heating source, and this non-permeable resin is made of nylon 6 in this embodiment as a reinforcing material. A reinforced plastic obtained by adding 30 wt% of fiber and an appropriate amount of carbon black as an auxiliary agent (coloring material) was used.
[0027]
The first molded member 11 and the second molded member 12 are both made of nylon 6 as a base material resin and are compatible with each other.
[0028]
The first molded member 11 has a substantially semi-cylindrical cross-sectional shape as shown in the enlarged view of the portion indicated by the line AA in FIG. A contact end portion 11a is provided at an opening end portion of the first molding member 11 having a substantially semicylindrical shape.
[0029]
As this portion is further enlarged and shown in FIG. 3, the contact end portion 11 a of the first molding member 11 is provided with an annular fitting convex portion 11 b protruding downward. This fitting convex part 11b has comprised the substantially trapezoidal cross-sectional shape which protrudes shrink | contracting gradually toward the front end side (downward side). The short inclined side surface 11d1 on the side irradiated with the laser light (left side in FIG. 3) has a shorter length than the long inclined side surface 11d2 on the opposite side.
[0030]
On the other hand, the contact end 12a of the second molded member 12 is provided with an annular fitting recess 12b that can be fitted with the fitting protrusion 11b. The fitting recess 12b is shaped to match the fitting projection 11b and has a substantially trapezoidal cross-sectional shape in which the opening gradually widens upward from the bottom surface. And one of a pair of opposing wall part 12c1, 12c2 which forms the fitting recessed part 12b is formed in the height lower than the other. That is, the low facing wall portion 12c1 on the side irradiated with the laser light (left side in FIG. 3) has a lower height than the high facing wall portion 12c2 on the opposite side. The inner surface of the low facing wall portion 12c1 is a short inclined side surface 12d1 that comes into contact with the short inclined side surface 11d1 and is laser welded, and the inner surface of the high facing wall portion 12c2 comes into contact with the long inclined side surface 11d2 and laser welds. The long inclined side surface 12d2 is formed.
[0031]
More specifically, as shown in FIG. 4, the short inclined side surface 11d1 of the fitting convex portion 11b and the short inclined side surface 12d1 of the fitting concave portion 12b are inclined at an angle α with respect to the center line C. The long inclined side surface 11d2 of the portion 11b and the long inclined side surface 12d2 of the fitting recess 12b are inclined at an angle β with respect to the center line C. The height of the low facing wall portion 12c1 of the fitting recess 12b is H1, the height of the high facing wall portion 12c2 of the fitting recess 12b is H2, and the difference between the two is h (= H2−H1). ing.
[0032]
In this way, the fitting convex part 11c of the first molding member 11 and the fitting concave part 12c of the second molding member 12 are fitted together, and the contact surface 11b of the first molding member 11 (short of the fitting convex part 11c). The inclined side surface 11e1 and the long inclined side surface 11e2) and the contact surface 12b of the second molding member 12 (the short inclined side surface 12e1 and the long inclined side surface 12e2 of the fitting recess 12c) are integrally joined by laser welding.
[0033]
The resin molded product of the present example having the above-described configuration was manufactured as follows. First, the 1st shaping | molding member 11 and the 2nd shaping | molding member 12 were injection-molded previously to the predetermined shape using the predetermined | prescribed injection molding die. And the fitting convex part 11c of the 1st shaping | molding member 11 and the fitting recessed part 12c of the 2nd shaping | molding member 12 are fitted, and contact surface 11b and 12b of the 1st shaping | molding member 11 and the 2nd shaping | molding member 12 are mutually Was brought into contact. In this state, a laser torch (not shown) was used to irradiate laser light from the first molding member 11 side toward the fitting recess 12 c of the second molding member 12. That is, the inner surface of the fitting recess 12c, that is, the short inclination of the fitting recess 12c, from the lower facing wall 12d1 side of the lower height of the pair of opposing walls forming the fitting recess 12c of the second molded member 12. Laser light was irradiated toward the side surface 12e1 and the long inclined side surface 12e2. As a result, the contact surfaces 11b and 12b of the contact end portion 11a of the first molding member 11 and the contact end portion 12a of the second molding member 12 are heated and melted all over and integrated by laser welding. Joined.
[0034]
Thus, in the resin molded product of the present embodiment, the fitting recess 12c provided in the contact end portion 12a of the second molded member 12 made of the non-permeable resin material is low on the side irradiated with the laser light. The opposing wall portion 12d1 has a lower height than the opposite high opposing wall portion 12d2. For this reason, by irradiating laser light from the lower facing wall portion 12d1 side having the lower height, the irradiated laser light is blocked by the non-transparent resin material (opposing wall portion on the side irradiated with the laser light). Can be suppressed. Therefore, it is possible to ensure a sufficient laser beam irradiation range and a welding area where laser welding is possible.
[0035]
In the joint portion thus obtained, the contact surfaces 11b and 12b are completely melted and joined to each other, and both resins constituting the molding members 11 and 12 are melted between the contact surfaces 11b and 12b. As a result, the entangled state is formed, so that a strong joined state is formed and high joint strength and pressure strength are provided.
[0036]
In particular, in the resin molded product of the present embodiment, a mechanical coupling force is imparted between the fitting protrusions 11c of the first molding member 11 and the fitting recesses 12c of the second molding member 12 due to the uneven fitting. Therefore, the joint strength between the two can be further improved.
[0037]
Further, since the warp and the like at the contact end portions 11a and 12a of the first molding member 11 and the second molding member 12 are corrected by the mechanical coupling force due to the uneven fitting, the first molding member 11 and the second molding are corrected. Generation of a gap between the contact surfaces 11b and 12b of the member 12 can be suppressed. For this reason, the heat generated in the contact surface 12b of the second molding member 12 made of the non-permeable resin material is reliably transferred to the contact surface 11b of the first molding member 11 made of the transparent resin material, so that the first molding is performed. The contact surface 11b of the member 11 can be reliably heated and melted. Therefore, the contact surfaces 11b and 12b of the first molding member 11 and the second molding member 12 can be reliably laser-welded.
[0038]
Further, by the concave / convex fitting, the contact surface 11b of the first molding member 11 (including the inclined side surface and the tip surface of the fitting convex portion 11d) and the contact surface 12b of the second molding member 12 (the fitting concave portion). 12d (including the inclined side surface and bottom surface), that is, the bonding area by laser welding is also increased, so that the bonding strength can also be improved.
[0039]
In addition, since the fitting convex portion 11d is provided in the first molding member 11 made of a permeable resin material and the fitting concave portion 12d is provided in the second molding member 12 made of a non-permeable resin material, The fact that part of the laser beam is reflected by the inner surface (bottom surface and inclined side surface) of the fitting recess 12d can be used, which is advantageous for more uniform laser welding.
[0040]
Here, a preferable shape in the concave-convex fitting will be described below with reference to FIG.
[0041]
First, when the height H1 is too low for the lower facing wall portion 12c1 having the lower height of the pair of facing wall portions forming the fitting recess 12b made of the non-permeable resin material, the concave and convex fitting (inlay The effect of preventing warpage or the like at the contact end portion 11a of the first molded member 11 by the joint) and reducing the gap between the first molded member 11 and the second molded member 12 cannot be sufficiently exhibited. On the other hand, as for the effect of suppressing the gap by the inlay joint, it is sufficient that the height H1 of the low facing wall portion 12c1 is about 1 mm, and if the height H1 is too high, the laser beam irradiation range is restricted and the flange width is increased. This causes inconveniences such as shape restrictions. From this viewpoint, the height H1 of the low facing wall portion 12c1 is preferably about 1 to 3 mm, and more preferably about 1.5 to 2.5 mm. In addition, when the plate | board thickness of the 1st shaping | molding member 11 and the 2nd shaping | molding member 12 is set to t (this example t = 3mm), height H1 of the low opposing wall part 12c1 shall be about 0.3t-1t. It is more preferable, and it is more preferable to set it as about 0.5t-0.8t.
[0042]
Further, for the degree h (= H2−H1) that makes the height H1 of the low facing wall portion 12c1 lower than the height H2 of the high facing wall portion 12c2, if the value of h is too small, the laser beam can be irradiated. The effect of enlarging the range and the laser-weldable area cannot be sufficiently exhibited. On the other hand, the effect of expanding the laser beam irradiation range and the laser welding area is sufficient if the value of h is 1 mm or more. If the value of h is too large, the laser spot diameter is increased, the energy density is decreased, etc. Inconvenience. From this viewpoint, the value of h is preferably about 1 to 6 mm, and more preferably about 3 to 4 mm. The value of h is preferably about 0.3 to 2 t, and more preferably about 1 t to 1.3 t with respect to the plate thickness t of the first forming member 11 and the second forming member 12. preferable.
[0043]
When the laser beam is irradiated from the direction perpendicular to the center line C, the long inclined side surface 11d2 of the fitting convex portion 11b and the long inclined side surface 12d2 of the fitting concave portion 12b are within the range indicated by the arrow h in FIG. Although it is welded, if the value of h is 1 mm or more, it becomes possible to secure a sufficient laser welding area and obtain a sufficient bonding strength. Therefore, when the value of h is 1 mm or more, the first molded member 11 and the second molded member 12 can be laser-welded with sufficient bonding strength if the laser beam is irradiated from the range indicated by the arrow θ in FIG. It becomes possible, and the laser beam irradiation possible range can be expanded sufficiently.
[0044]
Further, the angle α (°) with respect to the center line C of the short inclined side surface 11d1 of the fitting convex portion 11b and the short inclined side surface 12d1 of the fitting concave portion 12b, and the long inclined side surface 11d2 and the fitting concave portion 12b of the fitting convex portion 11b. As for the angle β (°) with respect to the center line C of the long inclined side surface 12d2, the angle α of the short inclined side surface 12d1 corresponding to the inner surface of the low facing wall portion 12c1 of the fitting concave portion 12b is high facing the fitting concave portion 12b. The angle β of the long inclined side surface 12d2 corresponding to the inner surface of the wall portion 12c2 is preferably larger. As the angle α becomes larger than the angle β, it becomes more advantageous to exert the effect of expanding the laser light irradiation range and the laser welding area. On the other hand, when the angle α is larger than the angle β, the effect of suppressing the gap by the spigot joint cannot be sufficiently exhibited. Therefore, it is particularly preferable that the relationship between the angle α and the angle β satisfy the following expression (1). The angle β can be about 10 ≦ β ≦ 45.
[0045]
β + 10 ≦ α ≦ β + 40 (1)
[0046]
【The invention's effect】
As described in detail above, the resin molded product of the present invention has a laser light transmission while preventing contact between the permeable resin material and the non-permeable resin material and preventing the formation of a gap between them. A sufficient irradiation range and a welding area capable of laser welding can be secured.
[0047]
Therefore, it is possible to improve the bonding strength by laser welding, increase the degree of freedom of the laser beam emission position where laser welding is possible, and laser welding is possible even when the laser beam emission position is limited by an obstacle, etc. It becomes.
[Brief description of the drawings]
FIG. 1 is a plan view of a synthetic resin intake manifold to which a resin molded product according to the present invention is applied according to an embodiment.
2 is a cross-sectional view of a portion indicated by an arrow AA line in FIG. 1 according to the embodiment.
FIG. 3 is an enlarged partial cross-sectional view showing a joint structure between a first molded member and a second molded member according to an embodiment.
FIG. 4 is an enlarged partial cross-sectional view showing a joint structure between a first molded member and a second molded member according to an embodiment.
[Explanation of symbols]
11 ... 1st shaping | molding member (permeable resin material)
12 ... Second molded member (non-permeable resin material)
11a, 12a ... abutting end 11b ... fitting convex part 12b ... fitting concave part 12c1 ... low opposing wall part 12c2 ... high opposing wall part

Claims (6)

加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して透過性のない非透過性樹脂材とからなり、該透過性樹脂材及び該非透過性樹脂材の当接端部同士が該透過性樹脂材側からの該レーザ光の照射により溶着されて接合された樹脂成形品において、
上記透過性樹脂材の上記当接端部に嵌合凸部が設けられるとともに、上記非透過性樹脂材の上記当接端部に該嵌合凸部と嵌合可能な嵌合凹部が設けられ、該嵌合凹部を形成する一対の対向壁部のうちの上記レーザ光が照射される側が他方よりも低い高さで形成されていることを特徴とする樹脂成形品。
A transparent resin material that is transmissive to laser light as a heating source and a non-transmissive resin material that is not transmissive to the laser light, and the transmissive resin material and the non-transmissive resin material In the resin molded product in which the contact end portions are welded and joined by irradiation of the laser light from the transparent resin material side,
A fitting convex portion is provided at the contact end portion of the transparent resin material, and a fitting concave portion capable of fitting with the fitting convex portion is provided at the contact end portion of the non-permeable resin material. The resin molded product is characterized in that the laser beam irradiated side of the pair of opposing wall portions forming the fitting recess is formed at a lower height than the other.
前記嵌合凸部及び前記嵌合凹部の当接面同士が全面的にレーザ溶着されていることを特徴とする請求項1記載の樹脂成形品。  The resin molded product according to claim 1, wherein the contact surfaces of the fitting convex part and the fitting concave part are entirely laser-welded. 前記嵌合凸部は、先端側に向かって漸次縮小して突出する略台形状の断面形状をなすとともに、前記レーザ光が照射される側の短傾斜側面と反対側の長傾斜側面とを有する一方、前記嵌合凹部は、該嵌合凸部と整合する略台形状の断面形状をなすとともに、該嵌合凸部の該短傾斜側面と当接してレーザ溶着される短傾斜側面と該嵌合凸部の該長傾斜側面と当接してレーザ溶着される長傾斜側面とを有していることを特徴とする請求項1又は2記載の樹脂成形品。  The fitting convex portion has a substantially trapezoidal cross-sectional shape protruding gradually shrinking toward the tip side, and has a short inclined side surface on the side irradiated with the laser light and a long inclined side surface on the opposite side. On the other hand, the fitting concave portion has a substantially trapezoidal cross-sectional shape that matches the fitting convex portion, and the short inclined side surface and the fitting which are in contact with the short inclined side surface of the fitting convex portion and are laser-welded. The resin molded product according to claim 1, further comprising a long inclined side surface which is in contact with the long inclined side surface of the joint convex portion and is laser-welded. 前記嵌合凸部及び前記嵌合凹部の前記短傾斜側面は中心線Cに対してαの角度で傾斜し、前記嵌合凸部及び前記嵌合凹部の前記長傾斜側面は中心線Cに対してβの角度で傾斜しており、角度αが角度βよりも大きくされていることを特徴とする請求項3記載の樹脂成形品。  The short inclined side surfaces of the fitting convex portion and the fitting concave portion are inclined at an angle α with respect to the center line C, and the long inclined side surfaces of the fitting convex portion and the fitting concave portion are relative to the center line C. The resin molded product according to claim 3, wherein the resin product is inclined at an angle β and the angle α is larger than the angle β. 加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して透過性のない非透過性樹脂材とからなり、該透過性樹脂材及び該非透過性樹脂材の当接端部同士が該透過性樹脂材側からの該レーザ光の照射により溶着されて接合された樹脂成形品の製造方法において、
上記透過性樹脂材の上記当接端部に嵌合凸部が設けられるとともに、上記非透過性樹脂材の上記当接端部に該嵌合凸部と嵌合可能な嵌合凹部が設けられ、該嵌合凹部を形成する一対の対向壁部のうちの一方が他方よりも低い高さで形成されており、高さの低い方の対向壁部からレーザ光を照射することを特徴とする樹脂成形品の製造方法。
A transparent resin material that is transmissive to laser light as a heating source and a non-transmissive resin material that is not transmissive to the laser light, and the transmissive resin material and the non-transmissive resin material In the manufacturing method of the resin molded product in which the contact end portions are welded and joined by irradiation of the laser light from the transparent resin material side,
A fitting convex portion is provided at the contact end portion of the transparent resin material, and a fitting concave portion capable of fitting with the fitting convex portion is provided at the contact end portion of the non-permeable resin material. One of the pair of opposing wall portions forming the fitting recess is formed at a lower height than the other, and the laser beam is irradiated from the opposing wall portion having a lower height. Manufacturing method of resin molded product.
前記嵌合凸部及び前記嵌合凹部の当接面同士を全面的にレーザ溶着することを特徴とする請求項5記載の樹脂成形品の製造方法。  6. The method of manufacturing a resin molded product according to claim 5, wherein the contact surfaces of the fitting convex part and the fitting concave part are entirely laser-welded.
JP2000273851A 2000-09-08 2000-09-08 Resin molded product and manufacturing method thereof Expired - Lifetime JP4010757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273851A JP4010757B2 (en) 2000-09-08 2000-09-08 Resin molded product and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273851A JP4010757B2 (en) 2000-09-08 2000-09-08 Resin molded product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002086567A JP2002086567A (en) 2002-03-26
JP4010757B2 true JP4010757B2 (en) 2007-11-21

Family

ID=18759716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273851A Expired - Lifetime JP4010757B2 (en) 2000-09-08 2000-09-08 Resin molded product and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4010757B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345105B4 (en) * 2002-10-02 2015-02-19 Siemens Vdo Automotive Inc. Cone closure for laser welding seam on a component of an air intake
JP4432474B2 (en) 2003-11-27 2010-03-17 ダイキン工業株式会社 Centrifugal blower impeller and centrifugal blower provided with the impeller
US20090281380A1 (en) * 2004-12-30 2009-11-12 Shahar Miller System and method for assembling a swallowable sensing device
JP2013026153A (en) * 2011-07-25 2013-02-04 Stanley Electric Co Ltd Manufacturing method of resin components and fixing structure between the resin components
DE102017101268A1 (en) * 2017-01-24 2018-07-26 HELLA GmbH & Co. KGaA Forming a joint for performing a laser beam welding of two plastic components
CN111805915A (en) * 2020-07-28 2020-10-23 苏州大学 Cylindrical plastic shell with built-in wide ribs and welding method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590323A (en) * 1978-12-28 1980-07-08 Wako Sangyo Kk Production of hollow case having swelled large diameter section at center
JPS6256467U (en) * 1985-09-30 1987-04-08
DE59502175D1 (en) * 1994-03-31 1998-06-18 Marquardt Gmbh WORKPIECE MADE OF PLASTIC AND MANUFACTURING METHOD FOR SUCH A WORKPIECE

Also Published As

Publication number Publication date
JP2002086567A (en) 2002-03-26

Similar Documents

Publication Publication Date Title
JP3973792B2 (en) Manufacturing method of vehicular lamp
JP3961737B2 (en) Vehicular lamp and manufacturing method thereof
US6478451B2 (en) Vehicular lamp unit and method for manufacturing same
JP3630298B2 (en) Bonding method of resin molded products
JP3674479B2 (en) Plastic molded product
JP3551157B2 (en) Laser welding method for resin parts
JP4010757B2 (en) Resin molded product and manufacturing method thereof
JP2001105500A (en) Resin molded product and its manufacturing method
JP4731040B2 (en) Laser welding method
JP2005339873A (en) Manufacturing method of vehicular lamp
JP5941714B2 (en) Manufacturing method of vehicular lamp
JP4009432B2 (en) Laser welding method for vehicular lamp
JP3610917B2 (en) Plastic molded product
JP2007523763A (en) Joint design for laser welding of thermoplastics
JP3918845B2 (en) Resin molded product and joining method thereof
JP2004209916A (en) Resin bonding method and resin component
Kagan Innovations in laser welding of thermoplastics: This advanced technology is ready to be commercialized
JP3596456B2 (en) Method for manufacturing resin molded products
KR101387641B1 (en) Head lamp device with two-color type lens and manufacturing method thereof
JP2004188802A (en) Laser welding method of resin member
JP5426143B2 (en) Manufacturing method of injection molded body
JP4032862B2 (en) Laser welding method for resin parts
JP2003251699A (en) Welding method of resin component by laser
JP4911401B2 (en) Plastic molded product having double wall and method of welding and joining
JP2004058124A (en) Method for working hollow formed body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041029

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R151 Written notification of patent or utility model registration

Ref document number: 4010757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

EXPY Cancellation because of completion of term