JP4009191B2 - Organosilica sol - Google Patents

Organosilica sol Download PDF

Info

Publication number
JP4009191B2
JP4009191B2 JP2002378028A JP2002378028A JP4009191B2 JP 4009191 B2 JP4009191 B2 JP 4009191B2 JP 2002378028 A JP2002378028 A JP 2002378028A JP 2002378028 A JP2002378028 A JP 2002378028A JP 4009191 B2 JP4009191 B2 JP 4009191B2
Authority
JP
Japan
Prior art keywords
mass
silica
parts
resin
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002378028A
Other languages
Japanese (ja)
Other versions
JP2004203719A (en
Inventor
英行 菊池
雄三 行森
桂子 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nissan Chemical Corp
Original Assignee
Hitachi Cable Ltd
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nissan Chemical Corp filed Critical Hitachi Cable Ltd
Priority to JP2002378028A priority Critical patent/JP4009191B2/en
Publication of JP2004203719A publication Critical patent/JP2004203719A/en
Application granted granted Critical
Publication of JP4009191B2 publication Critical patent/JP4009191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、オルガノシリカゾルに関し、特にフェノール類又はベンジルアルコールを溶剤とした樹脂塗料に分散されるオルガノシリカゾルに関する。
【0002】
【従来の技術】
従来、導体の外周に絶縁体として樹脂塗料を塗布焼付けしたエナメル線において、有機溶剤に溶解した樹脂塗料中にシリカなどの無機絶縁材料微粉末を分散させた樹脂塗料により絶縁体を形成したものが知られている。シリカ粒子は、エナメル線に耐部分放電性を付与するほか、熱伝導度の向上、熱膨張の低減、強度の向上に寄与する。
【0003】
耐熱高分子、特にポリイミドやアミドなどの絶縁材料を溶解する溶剤としてはN−メチルピロリドン(NMP)やジメチルアセトアミド(DMAC)、クレゾール等が用いられる。特にクレゾールは、ポリアミドに対して最も溶解性が高いとともに、ポリエステルイミド、ポリエステル、ポリウレタン等の熱硬化性樹脂に対しても優れた溶解力を示す。
【0004】
そこで、これらの耐熱性樹脂の溶剤としては、クレゾールなどのフェノール類が広く使用されている。しかし、フェノール類は、臭気や毒性を有するため、他の溶媒への転換が図られており、フェノール類のSP値(溶解度因子)に近い値を持つベンジルアルコールが樹脂塗料の溶剤として使用できる。
【0005】
一般に樹脂溶液にシリカの微粒子を分散させるためには、シリカの粉末を添加分散する方法または樹脂溶液とシリカゾルを混合する方法などが知られている。粉末を添加した場合と比べ、シリカゾルを用いると、混合が容易でシリカが高度に分散した塗料が得られる。ただし、この場合シリカゾルは樹脂溶液との相溶性がよいものであることが必要である。
【0006】
有機溶剤に分散したオルガノシリカゾルを得る方法は、水性シリカゾルをアルコールなどの親水性溶媒で溶媒置換する方法、また親水性溶媒をさらに疎水性溶媒で置換する方法などが知られている。これら溶媒置換法によるオルガノシリカゾルの製造方法例が開示されている(例えば特許文献1、特許文献2参照)。
【0007】
【特許文献1】
特開昭57−196717号公報
【特許文献2】
米国特許3336235号明細書
【0008】
【発明が解決しようとする課題】
しかし、従来フェノール類を溶剤とする耐熱性樹脂にシリカ微粒子を分散する際にはシリカ微粒子粉末の分散が行われているが、この方法ではシリカ微粒子が凝集し、分散が不十分である。電線被膜の耐部分放電性と電線被膜内のシリカ粒子の個数とは相関関係があり、分散が不十分で凝集物が多くなったシリカ分散樹脂塗料を用いて被膜を形成した電線は、耐部分放電性が不十分となる。従って、シリカ微粒子を被膜中に凝集なく均一に存在させる必要があり、シリカ分散樹脂塗料の製造には非常に高度な分散が必要になる。
【0009】
オルガノシリカゾルとしては、アルコール、ケトンなどの有機溶媒にシリカ微粒子が分散したものが公知であるが、これらのオルガノシリカゾルはフェノール類に溶解した樹脂との相溶性が悪く、凝集物ができやすい。
【0010】
クレゾール等を溶媒とした耐熱性樹脂溶液に混合するにはフェノール類に分散したシリカゾルが望ましいと考えられるが、フェノール類は融点が高いため常温で固化しやすく、またシリカとの親和性が不足していることもあり、これらを分散媒とする安定なオルガノシリカゾルが得られていない、また、フェノール類とSP値が近いベンジルアルコールに分散したシリカゾルも安定なものが得られない。
【0011】
従って、本発明の目的は、フェノール類又はベンジルアルコールを主溶剤とする耐熱性樹脂液に均一に分散でき、かつ安定なオルガノシリカゾルを提供することにある。
【0012】
【課題を解決するための手段】
本発明は、前記目的を達成するために、フェノール、クレゾール、キシレノール、又はベンジルアルコール5〜80質量%と炭素数3〜7の1価アルコール1〜40質量%とを含む混合溶媒にシリカを分散させたことを特徴とするオルガノシリカゾルを提供する。また、フェノール、クレゾール、キシレノール、又はベンジルアルコール5〜80質量%と炭素数3〜7の1価アルコール1〜40質量%と、芳香族炭化水素5〜90質量%とを含む混合溶媒にシリカを分散させたことを特徴とするオルガノシリカゾルを提供する。
【0013】
【発明の実施の形態】
本発明によるオルガノシリカゾルの実施の形態を説明する。
【0014】
本発明に用いるオルガノシリカゾルの粒子径は、被膜に耐部分放電性を付与する目的においては、BET法(粉体粒子の表面に吸着占有面積の判った分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法)によって求めた平均粒子径として100nm以下が好ましく、更には5〜50nmが一層好ましい。
【0015】
本発明におけるオルガノシリカゾルの分散媒の成分としてのフェノール類は、フェノール、クレゾール、キシレノールなどがあげられる。
【0016】
また、ベンジルアルコールは、m−クレゾールと溶剤としての性質が近く樹脂溶液との相溶性が良好であるため、これを溶媒中に含有させることが好ましい。
【0017】
オルガノゾルの分散溶媒が上記フェノール類またはベンジルアルコールを含有することにより、ゾルと樹脂溶液との親和性がよくなり、混合時の凝集や増粘を抑制することができる。しかし、これらの成分の溶媒に対する比率が80質量%を超えると、オルガノシリカゾル自体の安定性が悪くなり、凝集しやすくなる。
【0018】
炭素数3〜7の1価アルコールとしては、n−プロパノール、n−ブタノールなどのアルコール類、エチルセロソルブ、ブチルセロソルブ等のエチレングリコールのモノエーテル類などが好適である。これらのアルコールは、オルガノシリカゾルの分散安定化作用を示し、溶媒に対し1質量%以上含まれる。しかし、分散溶媒中のアルコール類含有量が40質量%を超えると樹脂溶液との親和性が低下し、混合した際の分散性が悪化するため好ましくない。
【0019】
芳香族炭化水素は、樹脂液との混合において分散性を阻害することなく、またゾル自体の粘度を低下させる効果があるため併用して好ましい溶媒である。しかし、芳香族炭化水素の割合が多くなりすぎるとゾルが不安定となり、凝集を生じることがある。好ましい炭化水素の例としては、トルエン、キシレン、ソルベントナフサなどがあげられる。
【0020】
メタノール、またはエタノールは、少量含有させることにより、ゾルの分散安定性を上げたり、フェノール類の凝固点を上げ、ゾルの低温での安定化効果を示す。溶液中に5質量%を超える量添加すると樹脂溶液との混合の際に影響を及ぼすことがあり、好ましくない。
【0021】
上記の混合溶媒に分散したオルガノシリカゾルは、例えばアルコキシシランの加水分解によって得られたシリカゾルを溶媒置換して、あるいは水ガラスをイオン交換して得たシリカゾルを溶媒置換して得ることができる。また、炭素数3〜7の1価アルコールを含有するオルガノシリカゾルにフェノール類またはベンジルアルコールを添加する方法によっても得ることができる。オルガノシリカゾルは、上記の製造方法に限定されることなく、既知のいずれの方法によって製造してもよい。
【0022】
オルガノシリカゾル中の水分量は、分散させる混合溶媒の組成により適切な範囲が変化するが、一般には多すぎるとゾルの安定性、あるいは樹脂塗料との混合性が悪化するためゾル中0.5質量%以下が好ましい。
【0023】
上記の組成の溶媒に分散されたオルガノシリカゾルは、分散性が優れているため、シリカ濃度20質量%以上の高濃度のオルガノゾルを得ることができる。
【0024】
本発明のオルガノシリカゾルは、耐熱性樹脂溶液との相溶性が良好であり、混合した際のシリカ同士の凝集、樹脂の析出、シリカと樹脂の凝集が起こらず、透明性を有する均一な塗料溶液が得られ、塗膜にした際も緻密で平滑性のある良好な被膜が得られる。
【0025】
また、本発明におけるオルガノシリカゾルは、分散媒自体が樹脂の溶解性を有しているため、高分子材料の溶剤として用いることも可能である。従って、前述したフェノール類又はベンジルアルコールで溶解した樹脂塗料に用いられるだけでなく、無溶剤型絶縁ワニスへの混合、アクリル樹脂などの各種樹脂の溶解などに用いることができる。
(実施例)
【0026】
以下に本発明の製造例、および樹脂溶液との安定性の実験例を示す。
【0027】
(実施例1)
キシレンとn−ブタノールの混合溶媒に分散したシリカゾル(日産化学工業(株)XBA−ST)100質量部にm−クレゾール20質量部を添加し、オルガノシリカゾルを得た。シリカのBET法により求めた平均粒子径は12nm、オルガノシリカゾル中のシリカ濃度は25質量%、溶媒中の組成はm−クレゾール22質量%、n−ブタノール28質量%、キシレン50質量%であった。
【0028】
(実施例2)
イソプロパノール分散シリカゾル(日産化学工業(株)IPA−ST 以下「IPA−ST」という。)100質量部にm−クレゾール48質量部を加えたのちロータリーエバポレーターで濃縮し、100質量部のオルガノシリカゾルを得た。シリカの平均粒子径は12nm、オルガノシリカゾル中のシリカ濃度は30質量%、水分0.1質量%であった。溶媒中の組成はm−クレゾールが69質量%、イソプロピルアルコールが31質量%となった。
【0029】
(実施例3)
IPA−ST100質量部にベンジルアルコール35質量部を加えロータリーエバポレーターで濃縮したのちトルエン20質量部を添加し、100質量部のオルガノシリカゾルを得た。シリカの平均粒子径は12nm、オルガノシリカゾル中のシリカ濃度は30質量%、水分0.2質量%であった。溶媒中の組成はベンジルアルコール50質量%、イソプロピルアルコール21質量%、トルエン29質量%であつた。
【0030】
(実施例4)
メタノール分散シリカゾル(日産化学工業(株)MA−ST−M)100質量部にn−ブタノール15質量部、m−クレゾール25質量部を添加しロータリーエパポレーターで90質量部になるまで濃縮した。ソルベントナフサ65質量部を加えたのちさらに蒸留濃縮し、133質量部のオルガノシリカゾルを得た。シリカの平均粒子径は23nm、オルガノシリカゾル中のシリカ濃度は30質量%、水分0.1質量%未満、溶媒中の組成はm−クレゾール26質量%、n−ブタノール11質量%、ソルベントナフサ62質量%、メタノール1質量%であった。
【0031】
(実施例5)
フェノール及びクレゾール異性体を主成分とする合成クレゾール250質量部で溶解したポリエステル樹脂又はその前駆体100質量部を樹脂塗料とし、そこに、実施例1に示すオルガノシリカゾルをシリカ添加量として樹脂塗料の樹脂分100質量部に対して5質量部含有するように調製したものを撹拌し、耐部分放電性絶縁塗料を得た。
【0032】
(実施例6)
フェノール及びクレゾール異性体を主成分とする合成クレゾール250質量部で溶解したポリエステル樹脂又はその前駆体100質量部を樹脂塗料とし、そこに、実施例1に示すオルガノシリカゾルをシリカ添加量として樹脂塗料の樹脂分100質量部に対して100質量部含有するように調製したものを撹拌し、耐部分放電性絶縁塗料を得た。
【0033】
(実施例7)
フェノール及びクレゾール異性体を主成分とする合成クレゾール250質量部で溶解したポリエステル樹脂又はその前駆体100質量部を樹脂塗料とし、そこに、実施例2に示すオルガノシリカゾルをシリカ添加量として樹脂塗料の樹脂分100質量部に対して50質量部含有するように調製したものを撹拌し、耐部分放電性絶縁塗料を得た。
【0034】
(実施例8)
フェノール及びクレゾール異性体を主成分とする合成クレゾール250質量部で溶解したポリエステル樹脂又はその前駆体100質量部を樹脂塗料とし、そこに、実施例3に示すオルガノシリカゾルをシリカ添加量として樹脂塗料の樹脂分100質量部に対して50質量部含有するように調製したものを撹拌し、耐部分放電性絶縁塗料を得た。
【0035】
(比較例)
(比較例1) IPA−ST100質量部にm−クレゾール108質量部を加えたのちロータリーエバポレーターで150質量部となるまで濃縮を行ったところ、白濁し粘度が顕著に高くなった。シリカの平均粒子径は12nm、オルガノシリカゾル中のシリカ濃度は20質量%、溶媒中の組成はm−クレゾールが90質量%、イソプロピルアルコールが10質量%と計算される。
【0036】
(比較例2)
フェノール及びクレゾール異性体を主成分とする合成クレゾール250質量部で溶解したポリエステル樹脂又はその前駆体100質量部を樹脂塗料とし、そこに、シリカの平均粒子径23nm、オルガノシリカゾル中のシリカ濃度40質量%、溶媒中の組成がメタノール100質量%のメタノール分散シリカゾル(日産化学工業(株)MA−ST―M)をシリカ添加量として樹脂塗料の樹脂分100質量部に対して50質量部含有するように調製したものを撹拌し、塗料を得た。
【0037】
(比較例3)
フェノール及びクレゾール異性体を主成分とする合成クレゾール250質量部で溶解したポリエステル樹脂又はその前駆体100質量部を樹脂塗料とし、そこに、シリカの平均粒子径12nm、オルガノシリカゾル中のシリカ濃度30質量%であり、かつ、溶媒中の組成がキシレン64質量%とn−ブタノール36質量%の混合溶媒にシリカを分散してなるキシレンブタノールシリカゾル(日産化学工業(株)XBA−ST)をシリカ添加量として樹脂塗料の樹脂分100質量部に対して50質量部含有するように調製したものを撹拌し、塗料を得た。
【0038】
(比較例4)
フエノール及びクレゾール異性体を主成分とする合成クレゾール250質量部で溶解したポリエステル樹脂又はその前駆体100質量部を樹脂塗料とし、そこに、シリカの平均粒子径12nm、オルガノシリカゾル中のシリカ濃度30質量%であり、かつ、溶媒中の組成がイソプロピルアルコール100質量%の溶媒に分散してなるIPAをシリカ添加量として樹脂塗料の樹脂分100質量部に対して50質量部含有するように調整したものを撹絆し、塗料を得た。
【0039】
実施例及び比較例のオルガノシリカゾルの性状を評価した結果およびポリエステル樹脂または合成クレゾールを成分とする塗料に溶解させ、その性状を評価した結果を表1に示した。
【0040】
【表1】

Figure 0004009191
【0041】
表1に示されたように、比較例2から比較例4で得られた塗料では、凝集物が生じて沈降が認められた。そして、その塗料を用いた電線被膜では、耐部分放電性は不十分であった。
【0042】
【発明の効果】
以上説明したように、本発明によるオルガノシリカゾルによれば、フェノール類又はベンジルアルコール5〜80質量%と炭素数3〜7の1価アルコール1〜40質量%とを含む混合溶媒にシリカを分散させたため、安定したオルガノシリカゾルとなり、樹脂塗料中にオルガノシリカゾルが均一に分散することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organosilica sol, and more particularly to an organosilica sol dispersed in a resin paint using phenols or benzyl alcohol as a solvent.
[0002]
[Prior art]
Conventionally, in an enameled wire in which a resin paint is applied and baked as an insulator on the outer periphery of a conductor, an insulator is formed by a resin paint in which fine powder of an inorganic insulating material such as silica is dispersed in a resin paint dissolved in an organic solvent. Are known. In addition to imparting partial discharge resistance to the enameled wire, the silica particles contribute to improvement in thermal conductivity, reduction in thermal expansion, and improvement in strength.
[0003]
N-methylpyrrolidone (NMP), dimethylacetamide (DMAC), cresol, or the like is used as a solvent for dissolving a heat-resistant polymer, particularly an insulating material such as polyimide or amide. In particular, cresol has the highest solubility in polyamides and also exhibits excellent dissolving power in thermosetting resins such as polyesterimide, polyester, and polyurethane.
[0004]
Therefore, phenols such as cresol are widely used as solvents for these heat resistant resins. However, since phenols have odor and toxicity, they are converted to other solvents, and benzyl alcohol having a value close to the SP value (solubility factor) of phenols can be used as a solvent for resin coatings.
[0005]
In general, in order to disperse silica fine particles in a resin solution, a method of adding and dispersing silica powder or a method of mixing a resin solution and silica sol is known. Compared to the case where powder is added, when a silica sol is used, a paint in which mixing is easy and silica is highly dispersed can be obtained. In this case, however, the silica sol needs to have good compatibility with the resin solution.
[0006]
Known methods for obtaining an organosilica sol dispersed in an organic solvent include a method in which the aqueous silica sol is replaced with a hydrophilic solvent such as alcohol, and a method in which the hydrophilic solvent is further replaced with a hydrophobic solvent. Examples of methods for producing organosilica sols by these solvent substitution methods are disclosed (see, for example, Patent Document 1 and Patent Document 2).
[0007]
[Patent Document 1]
JP-A-57-196717 [Patent Document 2]
US Pat. No. 3,336,235 specification
[Problems to be solved by the invention]
However, when silica fine particles are dispersed in a heat-resistant resin using phenols as a solvent, silica fine particle powder is dispersed. However, in this method, the silica fine particles are aggregated and the dispersion is insufficient. There is a correlation between the partial discharge resistance of the electric wire coating and the number of silica particles in the electric wire coating, and the electric wire formed with the silica-dispersed resin paint with insufficient dispersion and increased agglomerates Dischargeability is insufficient. Therefore, it is necessary to make the silica fine particles uniformly exist in the coating without agglomeration, and the production of the silica-dispersed resin coating requires very high dispersion.
[0009]
As the organosilica sol, those in which silica fine particles are dispersed in an organic solvent such as alcohol and ketone are known. However, these organosilica sols have poor compatibility with resins dissolved in phenols, and easily form aggregates.
[0010]
Silica sol dispersed in phenols is considered desirable for mixing with heat-resistant resin solutions using cresol as a solvent. However, phenols have a high melting point, so they easily solidify at room temperature and lack affinity with silica. Therefore, a stable organosilica sol using these as a dispersion medium has not been obtained, and a stable silica sol dispersed in benzyl alcohol having an SP value close to that of phenols cannot be obtained.
[0011]
Accordingly, an object of the present invention is to provide a stable organosilica sol that can be uniformly dispersed in a heat-resistant resin solution containing phenols or benzyl alcohol as a main solvent.
[0012]
[Means for Solving the Problems]
The present invention, in order to achieve the above object, phenol, cresol, xylenol, or silica in a mixed solvent comprising a monohydric alcohol of 1 to 40 wt% of the benzyl alcohol 5 to 80 wt% and 3 to 7 carbon atoms Disclosed is an organosilica sol characterized by being dispersed. Further, phenol, cresol, xylenol, or silica in a mixed solvent containing monohydric alcohol of 1 to 40 wt% of the benzyl alcohol 5 to 80 wt% and 3 to 7 carbon atoms, and 5 to 90 wt% aromatic hydrocarbons An organosilica sol characterized in that is dispersed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an organosilica sol according to the present invention will be described.
[0014]
The particle diameter of the organosilica sol used in the present invention is determined by the BET method (molecules whose adsorption occupation area is known are adsorbed on the surface of the powder particles at the temperature of liquid nitrogen for the purpose of imparting partial discharge resistance to the coating. The average particle diameter determined by the method for determining the specific surface area of the sample from the amount is preferably 100 nm or less, more preferably 5 to 50 nm.
[0015]
Examples of the phenols as the component of the dispersion medium of the organosilica sol in the present invention include phenol, cresol, xylenol and the like.
[0016]
Further, since benzyl alcohol has close properties as m-cresol and a solvent and has good compatibility with the resin solution, it is preferable to contain this in the solvent.
[0017]
When the organosol dispersion solvent contains the above phenols or benzyl alcohol, the affinity between the sol and the resin solution is improved, and aggregation and thickening during mixing can be suppressed. However, when the ratio of these components to the solvent exceeds 80% by mass, the stability of the organosilica sol itself is deteriorated and the particles tend to aggregate.
[0018]
Suitable monohydric alcohols having 3 to 7 carbon atoms include alcohols such as n-propanol and n-butanol, and monoethers of ethylene glycol such as ethyl cellosolve and butyl cellosolve. These alcohols show the dispersion stabilizing action of the organosilica sol and are contained in an amount of 1% by mass or more based on the solvent. However, when the alcohol content in the dispersion solvent exceeds 40% by mass, the affinity with the resin solution is lowered, and the dispersibility when mixed is deteriorated.
[0019]
Aromatic hydrocarbons are preferred solvents to be used in combination because they have the effect of lowering the viscosity of the sol itself without inhibiting the dispersibility in mixing with the resin liquid. However, if the ratio of aromatic hydrocarbons is too high, the sol may become unstable and agglomerate may occur. Examples of preferred hydrocarbons include toluene, xylene, solvent naphtha and the like.
[0020]
By containing a small amount of methanol or ethanol, the dispersion stability of the sol is increased, the freezing point of phenols is increased, and the sol is stabilized at a low temperature. If the amount exceeds 5% by mass in the solution, it may affect the mixing with the resin solution, which is not preferable.
[0021]
The organosilica sol dispersed in the above mixed solvent can be obtained, for example, by replacing the silica sol obtained by hydrolysis of alkoxysilane with a solvent, or by replacing the silica sol obtained by ion exchange of water glass with a solvent. It can also be obtained by a method of adding phenols or benzyl alcohol to an organosilica sol containing a monohydric alcohol having 3 to 7 carbon atoms. The organosilica sol is not limited to the above production method, and may be produced by any known method.
[0022]
The appropriate amount of water in the organosilica sol varies depending on the composition of the mixed solvent to be dispersed. However, if the amount is too large, the stability of the sol or the miscibility with the resin coating deteriorates. % Or less is preferable.
[0023]
Since the organosilica sol dispersed in the solvent having the above composition has excellent dispersibility, a high concentration organosol having a silica concentration of 20% by mass or more can be obtained.
[0024]
The organosilica sol of the present invention has good compatibility with the heat-resistant resin solution, and does not cause aggregation between silicas, precipitation of resin, and aggregation of silica and resin when mixed, and a uniform coating solution having transparency Even when it is formed into a coating film, a good film having a dense and smooth surface can be obtained.
[0025]
In addition, the organosilica sol in the present invention can be used as a solvent for the polymer material because the dispersion medium itself has resin solubility. Therefore, it can be used not only for the resin paint dissolved in the above-mentioned phenols or benzyl alcohol, but also for mixing in a solventless insulating varnish, dissolving various resins such as acrylic resin, and the like.
(Example)
[0026]
Examples of production of the present invention and experimental examples of stability with resin solutions are shown below.
[0027]
Example 1
20 parts by mass of m-cresol was added to 100 parts by mass of silica sol (Nissan Chemical Industry Co., Ltd. XBA-ST) dispersed in a mixed solvent of xylene and n-butanol to obtain an organosilica sol. The average particle size of the silica determined by the BET method was 12 nm, the silica concentration in the organosilica sol was 25% by mass, the composition in the solvent was 22% by mass of m-cresol, 28% by mass of n-butanol, and 50% by mass of xylene. .
[0028]
(Example 2)
Isopropanol-dispersed silica sol (Nissan Chemical Industry Co., Ltd. IPA-ST, hereinafter referred to as “IPA-ST”) 100 parts by mass of m-cresol 48 parts by mass was added and then concentrated with a rotary evaporator to obtain 100 parts by mass of organosilica sol. It was. The average particle diameter of silica was 12 nm, the silica concentration in the organosilica sol was 30% by mass, and the water content was 0.1% by mass. The composition in the solvent was 69% by mass for m-cresol and 31% by mass for isopropyl alcohol.
[0029]
(Example 3)
After adding 35 parts by mass of benzyl alcohol to 100 parts by mass of IPA-ST and concentrating with a rotary evaporator, 20 parts by mass of toluene was added to obtain 100 parts by mass of organosilica sol. The average particle size of silica was 12 nm, the silica concentration in the organosilica sol was 30% by mass, and the water content was 0.2% by mass. The composition in the solvent was 50% by mass of benzyl alcohol, 21% by mass of isopropyl alcohol, and 29% by mass of toluene.
[0030]
(Example 4)
15 parts by mass of n-butanol and 25 parts by mass of m-cresol were added to 100 parts by mass of methanol-dispersed silica sol (Nissan Chemical Industry Co., Ltd. MA-ST-M), and the mixture was concentrated to 90 parts by mass with a rotary evaporator. After adding 65 parts by mass of solvent naphtha, it was further concentrated by distillation to obtain 133 parts by mass of an organosilica sol. The average particle diameter of silica is 23 nm, the silica concentration in the organosilica sol is 30% by mass, the water content is less than 0.1% by mass, the composition in the solvent is m-cresol 26% by mass, n-butanol 11% by mass, and solvent naphtha 62% by mass. %, Methanol 1 mass%.
[0031]
(Example 5)
100 parts by mass of a polyester resin or its precursor dissolved in 250 parts by mass of synthetic cresol containing phenol and cresol isomers as main components is used as a resin paint, and the organosilica sol shown in Example 1 is added to silica as a silica coating amount. What was prepared so that it might contain 5 mass parts with respect to 100 mass parts of resin parts was stirred, and the partial discharge-resistant insulating coating material was obtained.
[0032]
(Example 6)
100 parts by mass of a polyester resin or its precursor dissolved in 250 parts by mass of synthetic cresol containing phenol and cresol isomers as main components is used as a resin paint, and the organosilica sol shown in Example 1 is added to silica as an amount of silica. What was prepared so that it might contain 100 mass parts with respect to 100 mass parts of resin parts was stirred, and the partial discharge-resistant insulating coating material was obtained.
[0033]
(Example 7)
100 parts by mass of a polyester resin or its precursor dissolved in 250 parts by mass of synthetic cresol mainly composed of phenol and cresol isomers is used as a resin coating, and the organosilica sol shown in Example 2 is added to silica as an amount of silica. What was prepared so that it might contain 50 mass parts with respect to 100 mass parts of resin parts was stirred, and the partial discharge-resistant insulating coating material was obtained.
[0034]
(Example 8)
100 parts by mass of a polyester resin or its precursor dissolved in 250 parts by mass of synthetic cresol containing phenol and cresol isomers as main components is used as a resin paint, and the organosilica sol shown in Example 3 is added to silica as an additive amount of the resin paint. What was prepared so that it might contain 50 mass parts with respect to 100 mass parts of resin parts was stirred, and the partial discharge-resistant insulating coating material was obtained.
[0035]
(Comparative example)
(Comparative example 1) After adding 108 mass parts of m-cresol to 100 mass parts of IPA-ST, when it concentrated until it became 150 mass parts with a rotary evaporator, it became cloudy and the viscosity became remarkably high. The average particle size of silica is 12 nm, the silica concentration in the organosilica sol is 20% by mass, and the composition in the solvent is 90% by mass for m-cresol and 10% by mass for isopropyl alcohol.
[0036]
(Comparative Example 2)
100 parts by mass of a polyester resin or its precursor dissolved in 250 parts by mass of synthetic cresol having phenol and cresol isomers as main components is used as a resin coating, and there is an average particle diameter of silica of 23 nm and a silica concentration in the organosilica sol of 40 masses. 50% by mass of 100% by mass of methanol-dispersed silica sol (Nissan Chemical Industry Co., Ltd. MA-ST-M) as a silica addition amount with respect to 100 parts by mass of the resin content of the resin paint. The prepared one was stirred to obtain a paint.
[0037]
(Comparative Example 3)
100 parts by mass of a polyester resin or its precursor dissolved in 250 parts by mass of synthetic cresol having phenol and cresol isomers as main components is used as a resin coating, and there is an average particle diameter of 12 nm of silica and a silica concentration of 30 mass in organosilica sol. %, And xylene butanol silica sol (Nissan Chemical Industry Co., Ltd. XBA-ST) in which silica is dispersed in a mixed solvent of 64% by mass of xylene and 36% by mass of n-butanol is added to silica. Were prepared so as to contain 50 parts by mass with respect to 100 parts by mass of the resin content of the resin paint to obtain a paint.
[0038]
(Comparative Example 4)
100 parts by mass of a polyester resin or its precursor dissolved in 250 parts by mass of synthetic cresol having phenol and cresol isomers as main components is used as a resin coating, and there is an average particle diameter of 12 nm of silica and a silica concentration of 30 mass in organosilica sol. %, And adjusted to contain 50 parts by mass of IPA dispersed in a solvent having a composition of 100% by mass of isopropyl alcohol as a silica addition amount with respect to 100 parts by mass of the resin component of the resin paint. The paint was obtained.
[0039]
Table 1 shows the results of evaluating the properties of the organosilica sols of Examples and Comparative Examples and the results of evaluating the properties by dissolving them in a paint containing a polyester resin or synthetic cresol as a component.
[0040]
[Table 1]
Figure 0004009191
[0041]
As shown in Table 1, in the coatings obtained in Comparative Examples 2 to 4, aggregates were formed and sedimentation was observed. And in the electric wire film using the coating material, partial discharge resistance was insufficient.
[0042]
【The invention's effect】
As described above, according to the organosilica sol according to the present invention, silica is dispersed in a mixed solvent containing phenols or benzyl alcohol 5 to 80% by mass and 1 to 40% by mass of monohydric alcohol having 3 to 7 carbon atoms. Therefore, a stable organosilica sol is obtained, and the organosilica sol can be uniformly dispersed in the resin paint.

Claims (2)

フェノール、クレゾール、キシレノール、又はベンジルアルコール5〜80質量%と炭素数3〜7の1価アルコール1〜40質量%とを含む混合溶媒にシリカを分散させたことを特徴とするオルガノシリカゾル。 Phenol, cresol, xylenol, or organosilica sol, characterized in that dispersed silica in a mixed solvent comprising a monohydric alcohol of 1 to 40 wt% of the benzyl alcohol 5 to 80 wt% and 3 to 7 carbon atoms. フェノール、クレゾール、キシレノール、又はベンジルアルコール5〜80質量%と炭素数3〜7の1価アルコール1〜40質量%と、芳香族炭化水素5〜90質量%とを含む混合溶媒にシリカを分散させたことを特徴とするオルガノシリカゾル。Distributed phenol, cresol, xylenol, or a monohydric alcohol of 1 to 40 wt% of the benzyl alcohol 5 to 80 wt% and 3 to 7 carbon atoms, a silica to a mixed solvent containing a 5 to 90 wt% aromatic hydrocarbons An organosilica sol characterized by having been made.
JP2002378028A 2002-12-26 2002-12-26 Organosilica sol Expired - Lifetime JP4009191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002378028A JP4009191B2 (en) 2002-12-26 2002-12-26 Organosilica sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002378028A JP4009191B2 (en) 2002-12-26 2002-12-26 Organosilica sol

Publications (2)

Publication Number Publication Date
JP2004203719A JP2004203719A (en) 2004-07-22
JP4009191B2 true JP4009191B2 (en) 2007-11-14

Family

ID=32815022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002378028A Expired - Lifetime JP4009191B2 (en) 2002-12-26 2002-12-26 Organosilica sol

Country Status (1)

Country Link
JP (1) JP4009191B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641412B2 (en) * 2004-12-01 2011-03-02 日本板硝子株式会社 Hydrophobic organic-containing sol solution and method for producing the same
JP5288681B2 (en) * 2005-04-05 2013-09-11 シキボウ株式会社 Ultrafine silica dispersion, ultrafine silica dispersion, and production method thereof
JP4542463B2 (en) * 2005-04-25 2010-09-15 日立マグネットワイヤ株式会社 Partially discharge-resistant insulating paint, insulated wire, and method for producing the same
JP4584014B2 (en) 2005-04-25 2010-11-17 日立マグネットワイヤ株式会社 Partially discharge-resistant insulating paint, insulated wire, and method for producing the same
JPWO2012161157A1 (en) * 2011-05-24 2014-07-31 日産化学工業株式会社 Organic solvent-dispersed silica sol
JP2013151686A (en) * 2013-02-27 2013-08-08 Hitachi Magnet Wire Corp Coating material for partial discharge resistant enameled wire and partial discharge resistant enameled wire
JP6943516B1 (en) * 2021-01-25 2021-10-06 富士シリシア化学株式会社 Silica complex, resin composition, and resin film or resin sheet

Also Published As

Publication number Publication date
JP2004203719A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
CN100465241C (en) Vernis isolant resistant a une decharge partielle, fil isole et son procede de realisation
JP4973569B2 (en) Fibrous carbon-based material insulator, resin composite including the same, and method for producing fibrous carbon-based material insulator
EP2455428B1 (en) Low-permittivity resin composition
Sun et al. Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly (vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles
Zhang et al. Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber
CN101525517A (en) Varnish for partial discharge resistant enameled wire and partial discharge resistant enameled wire
CN113421695B (en) Aqueous carbon nanotube dispersion liquid, conductive slurry and preparation method thereof
JP4009191B2 (en) Organosilica sol
CN111732108A (en) Porous amorphous silicon dioxide powder and preparation method and application thereof
Li et al. A thermally conductive and insulating epoxy polymer composite with hybrid filler of modified copper nanowires and graphene oxide
JP2009093876A (en) Hollow silica particle
JP4131168B2 (en) Partially discharge resistant insulation paint and insulated wire
Tran et al. Manufacturing carbon nanotube/PVDF nanocomposite powders
JP2006134813A (en) Insulated covering material and insulating coating conductor
US20120234575A1 (en) Corona discharge-resistant insulating varnish composition and insulated wire having insulated layer formed therefrom
Nordell et al. Preparation and characterization of aluminum oxide–poly (ethylene‐co‐butyl acrylate) nanocomposites
JP4829086B2 (en) Silica sol and coating composition containing the same
Xu et al. Surface modification and structure analysis of coated iron oxide yellow pigments to improve dispersion in organic solvents
Yu et al. Improved dispersion and interfacial interaction of SiO2@ polydopamine fillers in polytetrafluoroethylene composites for reduced thermal expansion and suppressed dielectric deterioration
CN114667311A (en) Heat-conducting filler and preparation method thereof
WO2013021831A1 (en) Resin composite material having high dielectric constant and method for producing same
Hou et al. Surface modification of carbon black to facilitate suspension polymerization of styrene and carbon black
CN112194934B (en) High-performance protective coating and preparation method thereof
CN111646491B (en) Dispersion liquid for dispersing nano particles in corona-resistant paint, preparation method and application thereof, and application of stable nano particle dispersion liquid
JP2017095547A (en) Partial discharge resistant coating and insulation wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term