JP4008393B2 - Water cooler - Google Patents

Water cooler Download PDF

Info

Publication number
JP4008393B2
JP4008393B2 JP2003276134A JP2003276134A JP4008393B2 JP 4008393 B2 JP4008393 B2 JP 4008393B2 JP 2003276134 A JP2003276134 A JP 2003276134A JP 2003276134 A JP2003276134 A JP 2003276134A JP 4008393 B2 JP4008393 B2 JP 4008393B2
Authority
JP
Japan
Prior art keywords
water
cooling
ice
cooling tank
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003276134A
Other languages
Japanese (ja)
Other versions
JP2005037087A (en
Inventor
賢志 入野
Original Assignee
東芝機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝機器株式会社 filed Critical 東芝機器株式会社
Priority to JP2003276134A priority Critical patent/JP4008393B2/en
Publication of JP2005037087A publication Critical patent/JP2005037087A/en
Application granted granted Critical
Publication of JP4008393B2 publication Critical patent/JP4008393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Dispensing Beverages (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、既存の氷センサおよび水温センサを用いて冷却用タンク内の冷却水の給水水位を検知できるようにした冷水機に関する。   The present invention relates to a chiller capable of detecting a feed water level of cooling water in a cooling tank using an existing ice sensor and water temperature sensor.

従来、例えば、飲料液をカップに注出して提供する給茶機やカツプ式飲料自動販売機などの液体注出装置では、飲料原料と冷水または湯水とを混合攪拌して希釈された飲料をカップに注出するようになっている。   Conventionally, for example, in a liquid dispensing device such as a tea dispenser or cup-type beverage vending machine that pours and provides beverage liquid into a cup, a beverage that has been diluted by mixing and stirring the beverage ingredients and cold water or hot water is added to the cup. It is supposed to be poured out into.

そして、このような液体注出装置では、冷水を供給するために、水冷蓄熱式の冷却機能を備えた構成が知られている。すなわち、冷却水槽内(冷却用タンク)の冷却水中に冷媒コイル(冷却コイル)を配設し、冷凍サイクルの作動により冷媒コイル(冷却コイル)の表面に氷を蓄氷させこの氷を介して冷却水を冷却し、この冷却水と給水管路の途中に設けられた冷却コイル(冷水コイル)を通過する水道水とを熱交換を行って、冷水として注出するようになっている。   And in such a liquid extraction apparatus, in order to supply cold water, the structure provided with the cooling function of the water-cooled thermal storage type is known. That is, a refrigerant coil (cooling coil) is arranged in the cooling water in the cooling water tank (cooling tank), and ice is stored on the surface of the refrigerant coil (cooling coil) by the operation of the refrigeration cycle to cool through this ice. Water is cooled, heat is exchanged between the cooling water and tap water passing through a cooling coil (cold water coil) provided in the middle of the water supply pipe, and the water is poured out as cold water.

また、冷凍サイクルの停止中に氷の蓄熱量を利用して冷却水槽内を低温に維持させるために、冷媒コイルの表面に所定厚の氷を蓄氷させ、この蓄氷された氷の厚みを検知して所定厚の氷を維持管理する蓄氷センサ(氷センサ)が配置されている。   In addition, in order to maintain the inside of the cooling water tank at a low temperature by using the amount of heat stored in the ice while the refrigeration cycle is stopped, ice of a predetermined thickness is stored on the surface of the refrigerant coil, and the thickness of the stored ice is reduced. An ice storage sensor (ice sensor) that detects and maintains ice of a predetermined thickness is disposed.

すなわち、冷凍サイクルの作動により冷媒コイルを介して冷媒コイル(冷却コイル)の表面に氷を生成させ、氷が蓄氷センサで検知されると蓄氷センサ間の電気抵抗値は水の電気抵抗値より大きいため、これにより冷凍サイクルは停止される。そして、飲料の注出時は、水道水が冷却コイル(冷水コイル)を通過する間に冷却水槽(冷却用タンク)内の冷却水との間で熱交換されて冷却され瞬時に冷水となってカップに注出される。そして、この注出により氷が溶けて蓄氷センサの電気抵抗値が小さくなると冷凍サイクルが作動されて再び氷を生成するようになっている。   That is, ice is generated on the surface of the refrigerant coil (cooling coil) through the refrigerant coil by the operation of the refrigeration cycle, and when ice is detected by the ice storage sensor, the electric resistance value between the ice storage sensors is the electric resistance value of water. This will stop the refrigeration cycle because it is larger. And at the time of the pouring of the beverage, while the tap water passes through the cooling coil (cold water coil), heat is exchanged with the cooling water in the cooling water tank (cooling tank) to cool and instantly become cold water. It is poured out into the cup. When the ice melts and the electric resistance value of the ice storage sensor decreases due to this pouring, the refrigeration cycle is activated to generate ice again.

ところで、このような液体注出装置の冷却水槽(冷却用タンク)内への冷却水の給水は、冷却水の最初の給水時または排水後の給水時、あるいは自然蒸発などにより水位が低下したような場合に手動または自動のいずれかの方法により行われる。そして、自動給水の場合、その水位は冷却水槽(冷却用タンク)内の冷却水中に設けられたフロートスイッチ等の水位センサで所定の位置に水位が達したことが検知されたことにより給水が停止されるようになっている。また、手動給水の場合でもフロートスイッチ等の水位センサを設けて給水水位を検知する必要性が生じる(例えば、特許文献1参照)。
特開平11−311464号公報(第5頁、図1)
By the way, the water level of the cooling water supplied to the cooling water tank (cooling tank) of such a liquid pouring device seems to have decreased due to natural evaporation or the like when the cooling water is supplied for the first time or after the drainage. In either case, it is performed by either manual or automatic method. In the case of automatic water supply, the water level is stopped when a water level sensor such as a float switch provided in the cooling water in the cooling water tank (cooling tank) detects that the water level has reached a predetermined position. It has come to be. Moreover, even in the case of manual water supply, it is necessary to provide a water level sensor such as a float switch to detect the water supply water level (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-311464 (5th page, FIG. 1)

しかしながら、このように、冷却水槽(冷却用タンク)内の冷却水中に設けられたフロートスイッチ等の水位センサにより給水水位を検知するようにすると、専用の水位センサが必要であるとともに、その水位センサの取付作業が伴ないコストアップになる。   However, if the water supply level is detected by a water level sensor such as a float switch provided in the cooling water in the cooling water tank (cooling tank) in this way, a dedicated water level sensor is required, and the water level sensor Cost increases due to the installation work.

本発明は、このような点に鑑みなされたもので、冷却水槽(冷却用タンク)内の水位検知を冷媒コイル(冷却コイル)の表面に生成される氷の量を検知する氷センサと冷却用タンク内の水温を検知する水温センサとの既存のセンサを用いて給水水位を検知することによりフロートスイッチ等の水位センサを廃止してコストダウンが図れる冷水機を提供することを目的とする。   The present invention has been made in view of the above points, and an ice sensor for detecting the level of ice generated on the surface of a refrigerant coil (cooling coil) and a cooling device for detecting the water level in the cooling water tank (cooling tank). An object of the present invention is to provide a chiller capable of reducing the cost by eliminating a water level sensor such as a float switch by detecting a water supply water level using an existing sensor with a water temperature sensor for detecting a water temperature in a tank.

請求項1記載の冷水機は、冷却水を貯留する冷却用タンクと、この冷却用タンク内の冷却水中に配置され表面に氷層を生成させる冷却コイルと、一端が給水源に接続されるとともに他端から冷水が注出され、中間部に前記冷却タンク内を通過する冷水コイルを有する給水管路と、前記冷却コイルにより生成された氷の量を検知する一対の氷センサと、前記冷却用タンク内の水温を検知する水温センサとを備えた冷水機において、前記一対の氷センサの一方を給水水位より下方に配置するとともに、他方の氷センサを給水水位近傍に配置し、前記一対の氷センサ間の電気抵抗値が所定の抵抗値以下である時は、前記冷却用タンク内の水位は給水水位以上にあると判断し、また、一対の氷センサ間の抵抗値が所定の抵抗値以上で、且つ、前記水温センサが検知する水温が所定温度以上を所定時間以上継続した時は、前記冷却用タンク内の水位は給水水位以下であると判断するものである。   The chiller according to claim 1 is a cooling tank for storing cooling water, a cooling coil disposed in the cooling water in the cooling tank for generating an ice layer on the surface, and one end connected to a water supply source. Cold water is poured out from the other end, a water supply pipe having a cold water coil passing through the cooling tank in the middle portion, a pair of ice sensors for detecting the amount of ice generated by the cooling coil, and the cooling In a chiller equipped with a water temperature sensor for detecting the water temperature in the tank, one of the pair of ice sensors is disposed below the feed water level, and the other ice sensor is disposed in the vicinity of the feed water level. When the electrical resistance value between the sensors is equal to or lower than the predetermined resistance value, it is determined that the water level in the cooling tank is equal to or higher than the feed water level, and the resistance value between the pair of ice sensors is equal to or higher than the predetermined resistance value. And the water temperature When water temperature capacitors is detected continues for a predetermined time or longer or more predetermined temperature, the water level of the cooling tank is to determined to be equal to or less than water supply level.

そして、この構成では、既存の一対の氷センサと水温センサとにより冷却用タンク内の水位が検知でき、冷却用タンク内の給水水位を知るためのフロートスイッチ等の水位センサを設ける必要がなくなり、コストダウンが図れる。   In this configuration, the water level in the cooling tank can be detected by the existing pair of ice sensors and the water temperature sensor, and there is no need to provide a water level sensor such as a float switch for knowing the feed water level in the cooling tank. Cost can be reduced.

請求項2記載の冷水機は、請求項1記載の冷水機において、一対の氷センサ間の抵抗値が210KΩ以下である時は、冷却用タンク内の水位は給水水位以上にあると判断し、また、一対の氷センサ間の抵抗値が210KΩ以上で、且つ、前記水温センサが検知する水温が8℃以上を20分以上継続した時は、前記冷却用タンク内の水位は給水水位以下であると判断するものである。   When the resistance value between the pair of ice sensors is 210 KΩ or less in the chilled water machine according to claim 1, the water level in the cooling tank according to claim 2 is determined to be equal to or higher than the feed water level. In addition, when the resistance value between the pair of ice sensors is 210 KΩ or more and the water temperature detected by the water temperature sensor continues at 8 ° C. or more for 20 minutes or more, the water level in the cooling tank is below the water supply water level. It is to be judged.

そして、この構成では、既存の一対の氷センサと水温センサとにより冷却用タンク内の水位がより正確に検知でき、冷却用タンク内の給水水位を知るためのフロートスイッチ等の水位センサを設ける必要がなくなり、コストダウンが図れる。   In this configuration, the water level in the cooling tank can be detected more accurately by the existing pair of ice sensors and the water temperature sensor, and it is necessary to provide a water level sensor such as a float switch for knowing the feed water level in the cooling tank. , And cost can be reduced.

請求項1記載の冷水機によれば、既存の一対の氷センサと水温センサとにより冷却用タンク内の水位が検知でき、冷却用タンク内の給水水位を知るためのフロートスイッチ等の水位センサを設ける必要がなくなり、コストダウンが図れる。   According to the chilled water machine of claim 1, the water level in the cooling tank can be detected by the existing pair of ice sensors and the water temperature sensor, and a water level sensor such as a float switch for knowing the feed water level in the cooling tank is provided. There is no need to provide it and the cost can be reduced.

請求項2記載の冷水機によれば、既存の一対の氷センサと水温センサとにより冷却用タンク内の水位がより正確に検知でき、冷却用タンク内の給水水位を知るためのフロートスイッチ等の水位センサを設ける必要がなくなり、コストダウンが図れる。   According to the chilled water machine of claim 2, the water level in the cooling tank can be detected more accurately by the existing pair of ice sensors and the water temperature sensor, and a float switch for knowing the feed water level in the cooling tank, etc. There is no need to provide a water level sensor, and the cost can be reduced.

以下、本発明の一実施の形態を図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1において、飲料注出装置としての冷水機は、図示しない機体内に冷却水を貯留する冷却用タンク1と、この冷却用タンク1内の冷却水中には表面に氷層を生成させる冷却コイル2と、冷却用タンク1内を通過する冷水コイル3とを有し冷水が流通する冷水管路4、および上面開口を通じて攪拌翼としてのアジテータ5、氷センサ24、水温センサ26等が配置されている。   In FIG. 1, a chilled water machine as a beverage dispensing device includes a cooling tank 1 for storing cooling water in an unillustrated body, and a cooling coil for generating an ice layer on the surface of the cooling water in the cooling tank 1. 2 and a chilled water pipe 3 having a chilled water coil 3 passing through the inside of the cooling tank 1, and an agitator 5 as an agitating blade, an ice sensor 24, a water temperature sensor 26, etc. are arranged through the upper surface opening. Yes.

冷却コイル2は、冷媒が通過されるパイプがコイル状に巻回されており、両端が機体内に配設される冷凍サイクル6に接続されている。この冷凍サイクル6は、圧縮機7、凝縮器8、ドライヤ9、キャピラリチューブ10等から構成され凝縮器8には冷却モータ11で駆動される冷却ファン12が配設されている。そして、冷凍サイクル6の作動により、冷却コイル2を介して冷却用タンク1内の冷却水が冷却されるとともに、冷却コイル2の表面に所定量の氷が蓄氷され、冷凍サイクル停止中も氷の蓄熱により冷却水が低温に維持される。   The cooling coil 2 has a pipe through which a refrigerant is passed wound in a coil shape, and both ends thereof are connected to a refrigeration cycle 6 disposed in the airframe. The refrigeration cycle 6 includes a compressor 7, a condenser 8, a dryer 9, a capillary tube 10, and the like, and a cooling fan 12 driven by a cooling motor 11 is disposed in the condenser 8. The operation of the refrigeration cycle 6 cools the cooling water in the cooling tank 1 via the cooling coil 2, and a predetermined amount of ice is stored on the surface of the cooling coil 2, so that the ice can be maintained even when the refrigeration cycle is stopped. Cooling water is maintained at a low temperature by heat storage.

冷水管路4は、パイプがコイル状に巻回されて形成されて冷却用タンク5内を通過する冷水コイル3と、この冷水コイル3の上流側の一端には給水源である水道管に直結される給水管13と、この給水管13の流路を開閉する給水電磁弁14と、冷水の注出量を検知する流量センサ15と、冷水コイル3の下流側の他端には冷水継手16と、この冷水継手16には給水管13を通って冷水コイル3で冷水化された冷水を冷水電磁弁17を介してお茶等の飲料用に供される冷水パイプ18とから構成されている。そして、お茶等の飲料は冷水パイプ18からの冷水と、キャニスタ19に収納された飲料原料を原料モータ20の作動により必要量供給し、ロート21内で混合してカップ22内に供給される。   The cold water pipe 4 is formed by winding a pipe in a coil shape and passes through the cooling tank 5 and is connected directly to a water pipe as a water supply source at one end on the upstream side of the cold water coil 3. A water supply pipe 13, a water supply electromagnetic valve 14 that opens and closes the flow path of the water supply pipe 13, a flow rate sensor 15 that detects the amount of cold water dispensed, and a cold water joint 16 at the other downstream end of the cold water coil 3. The chilled water joint 16 includes a chilled water pipe 18 through which the chilled water cooled by the chilled water coil 3 through the water supply pipe 13 is supplied to a beverage such as tea via a chilled water electromagnetic valve 17. The beverage such as tea is supplied in the cup 22 by supplying the required amount of the cold water from the cold water pipe 18 and the beverage raw material stored in the canister 19 by the operation of the raw material motor 20.

アジテータ5は攪拌モータ23により回転され冷却水中に下向きの水流が発生するように回転されて冷却用タンク1内の冷水全体を均一に冷却する。   The agitator 5 is rotated by the agitating motor 23 so as to generate a downward water flow in the cooling water, thereby uniformly cooling the entire cold water in the cooling tank 1.

24は一対の氷センサで、この一対の氷センサ24の図示左側の氷センサ24は、冷却用タンク1の給水水位Aよりも下方で、且つ、冷却コイル2の近傍に配置され冷却コイル2の表面に生成された氷の量を検知できる位置に配置されている。また、図示右側の氷センサ24は、給水水位A近傍で、且つ、冷却コイル2の近傍に配置され冷却コイル2の表面に生成された氷25の量を検知できる位置に配置されている。そして、水、氷、空気における氷センサ24の電極間の電気抵抗差に基づき夫々検知信号を出力し、冷却用タンク1内の冷却水の水位検知と冷凍サイクル6の運転制御の両方を行うようになっている。因みに水、氷、空気の電気抵抗値の関係は、水<氷<空気となっている。   Reference numeral 24 denotes a pair of ice sensors. The ice sensor 24 on the left side of the pair of ice sensors 24 is disposed below the feed water level A of the cooling tank 1 and in the vicinity of the cooling coil 2. It is located at a position where the amount of ice produced on the surface can be detected. Further, the ice sensor 24 on the right side of the figure is disposed in the vicinity of the water supply level A and in the vicinity of the cooling coil 2 and at a position where the amount of ice 25 generated on the surface of the cooling coil 2 can be detected. A detection signal is output based on the electrical resistance difference between the electrodes of the ice sensor 24 in water, ice, and air, and both the detection of the coolant level in the cooling tank 1 and the operation control of the refrigeration cycle 6 are performed. It has become. Incidentally, the relationship between the electrical resistance values of water, ice and air is water <ice <air.

26は水温センサで、この水温センサ26は、冷却用タンク1内に設けられ冷却用タンク1内の冷却水の温度を測定し、冷凍サイクル6の運転を制御し冷水の温度を管理するものである。   The water temperature sensor 26 is provided in the cooling tank 1 and measures the temperature of the cooling water in the cooling tank 1, controls the operation of the refrigeration cycle 6 and manages the temperature of the cooling water. is there.

27は制御装置で、この制御装置27は、氷センサ24、水温センサ26、流量センサ15等から出力される信号を受けて、給水電磁弁14、冷水電磁弁17、原料モータ20、圧縮機7、冷却モータ11、攪拌モータ23等を制御するものである。   The control device 27 receives signals output from the ice sensor 24, the water temperature sensor 26, the flow rate sensor 15, and the like, and receives a signal from the water supply electromagnetic valve 14, the cold water electromagnetic valve 17, the raw material motor 20, and the compressor 7. The cooling motor 11 and the stirring motor 23 are controlled.

なお、28はオーバーフローパイプで手動により給水する場合、冷却用タンク1内の水位が満水水位Bを越えて水が溢れ出したことにより満水状態であることを視認するものである。   When water is supplied manually by an overflow pipe 28, it is visually confirmed that the water level in the cooling tank 1 exceeds the full water level B and the water overflows.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

先ず、最初の給水時または排水後の給水時、冷却用タンク1内へヤカン等を用いてオーバーフローパイプ28からの溢れ出しの状態を視ながら満水水位Bになるように給水を行う。   First, at the time of the first water supply or at the time of water supply after drainage, water is supplied so as to reach the full water level B while watching the overflow state from the overflow pipe 28 using a kettle or the like into the cooling tank 1.

そして、この給水が完了すると、この状態で制御装置27から冷凍サイクル6に運転信号が送信されると冷凍サイクルの運転は開始される。すなわち、冷凍サイクル6は、冷媒ガスを圧縮機7により圧縮し、常温の空気で冷やしても容易に液化できる高温高圧の冷媒ガスとし、これを凝縮器8に送り凝縮器8で冷却され凝縮熱を放出して液化される。凝縮器8で放熱される熱量は冷媒が蒸発器として機能する冷却コイル2で奪ってきた蒸発熱と圧縮するために加えられた仕事の合計であり、これを冷却モータ11で駆動される冷却ファン12で空気を送ることで強制的に奪い取られる。凝縮器8で液化された高圧の冷媒は、ドライヤ9を通すことで冷媒中の水分を除去し、キャピラリチューブ10を通る間に膨張して低圧となり蒸発しやすい状態になる。   When this water supply is completed, when an operation signal is transmitted from the control device 27 to the refrigeration cycle 6 in this state, the operation of the refrigeration cycle is started. In other words, the refrigeration cycle 6 compresses the refrigerant gas by the compressor 7 to form a high-temperature and high-pressure refrigerant gas that can be easily liquefied even if cooled with normal temperature air, and sends it to the condenser 8 to be cooled by the condenser 8 and condensed. Is released and liquefied. The amount of heat dissipated by the condenser 8 is the sum of the evaporation heat that the refrigerant has taken away by the cooling coil 2 functioning as an evaporator and the work applied to compress it, and this is the cooling fan driven by the cooling motor 11 12 is forced to take away by sending air. The high-pressure refrigerant liquefied by the condenser 8 removes moisture in the refrigerant by passing through the dryer 9, expands while passing through the capillary tube 10, becomes low pressure, and easily evaporates.

次に、この低温低圧の冷媒液は圧力の低い冷却コイル2に放出されることで冷却コイル2の熱を奪って蒸発しガス化するため、冷却コイル2が冷やされる。以後このサイクルが繰り返され、蒸発器となる冷却コイル2の周りに氷25が生成され、この氷25が蓄氷されて氷センサ24の位置まで達すると一対の氷センサ24間の電気抵抗値が水より大きく空気よりも小さい値を検知すれば氷14が所定量であるとして冷凍サイクル6の運転が停止される。同時に攪拌モータ23を駆動してアジテータ5を回転して冷却用タンク1内の冷却水を循環させ冷水コイル3の冷却効果が高められる。また、冷凍サイクル6の停止中にも氷25の蓄熱量を利用して冷却水が低温に維持される。また、冷凍サイクル6の運転は水温センサ26により冷却水の水温が例えば0℃で運転が停止され6℃で運転が開始されるように制御される。そして、この制御は例えば約20分のサイクルで繰り返し行われる。   Next, since the low-temperature and low-pressure refrigerant liquid is discharged to the cooling coil 2 having a low pressure, it takes heat of the cooling coil 2 and evaporates and gasifies, so that the cooling coil 2 is cooled. Thereafter, this cycle is repeated, and ice 25 is generated around the cooling coil 2 serving as an evaporator. When the ice 25 is stored and reaches the position of the ice sensor 24, the electric resistance value between the pair of ice sensors 24 is increased. If a value larger than water and smaller than air is detected, the operation of the refrigeration cycle 6 is stopped assuming that the ice 14 has a predetermined amount. At the same time, the agitator motor 23 is driven to rotate the agitator 5 to circulate the cooling water in the cooling tank 1 to enhance the cooling effect of the cooling water coil 3. Further, the cooling water is maintained at a low temperature by using the heat storage amount of the ice 25 even when the refrigeration cycle 6 is stopped. The operation of the refrigeration cycle 6 is controlled by the water temperature sensor 26 so that the operation is stopped when the coolant temperature is, for example, 0 ° C. and the operation is started at 6 ° C. This control is repeatedly performed, for example, in a cycle of about 20 minutes.

次に、このように、冷却用タンク内1の冷却水が低温に維持されている状態において、図示しない飲料注出釦が操作されると原料モータ20が所定時間駆動されキャニスタ19から所定量の飲料用原料をロート21に供給される。   Next, in the state where the cooling water in the cooling tank 1 is maintained at a low temperature as described above, when a beverage dispensing button (not shown) is operated, the raw material motor 20 is driven for a predetermined time, and a predetermined amount from the canister 19 is reached. Beverage ingredients are supplied to the funnel 21.

一方、冷水管路4からの冷水は、給水電磁弁14および冷水電磁弁17が所定時間開かれ、水道水がその給水圧により矢印で示すように、給水管13を通過し冷水コイル3を通過する間に冷却用タンク1内の冷却水との間で熱交換されて冷却され、冷水継手16および冷水パイプ18を通じてロート21に供給され、ロート21内で飲料用原料と冷水が混合され、カップ22内に注出される。   On the other hand, the cold water from the cold water pipe 4 is opened for a predetermined time by the water supply electromagnetic valve 14 and the cold water electromagnetic valve 17, and the tap water passes through the water supply pipe 13 and passes through the cold water coil 3 as indicated by the arrow due to the water supply pressure. In the meantime, heat is exchanged with the cooling water in the cooling tank 1 to be cooled and supplied to the funnel 21 through the cold water joint 16 and the cold water pipe 18, and the beverage ingredients and the cold water are mixed in the funnel 21, and the cup 22 is poured out.

そして、このように冷水の注出が長時間に亘り行われると、冷却用タンク1内の冷却水の水位が自然蒸発等により徐々に低下し、給水水位A以下になると冷凍サイクル6が停止される。   If the cooling water is poured out for a long time in this way, the water level of the cooling water in the cooling tank 1 gradually decreases due to natural evaporation or the like, and the refrigeration cycle 6 is stopped when the water supply level A or lower. The

次に、このような冷却用タンク1内の冷却水の低下に対して氷センサ24および水温センサ26を用いて冷却用タンク1内への給水時期を検知する作用について図2のフローチャートを用いて説明する。   Next, the action of detecting the water supply timing into the cooling tank 1 using the ice sensor 24 and the water temperature sensor 26 in response to such a decrease in the cooling water in the cooling tank 1 will be described with reference to the flowchart of FIG. explain.

すなわち、実験結果に基づく氷センサ24間の電気抵抗値の実測値により冷却用タンク1内の冷却水の水位を判断することとする。先ず、ステップ1により一対の氷センサ24間の電気抵抗値が210KΩ以下であるか否かを測定し、イエスであれば冷却用タンク1内には氷なしで、且つ、冷却用タンク1内水位は給水水位A以上にあると判断しステップ1に戻る。   That is, the water level of the cooling water in the cooling tank 1 is determined based on the actual measured value of the electrical resistance value between the ice sensors 24 based on the experimental results. First, it is determined in step 1 whether or not the electrical resistance value between the pair of ice sensors 24 is 210 KΩ or less. If yes, there is no ice in the cooling tank 1 and the water level in the cooling tank 1 is determined. Is determined to be above the water supply level A, and the process returns to step 1.

次に、ステップ1により一対の氷センサ24間の電気抵抗値が210KΩ以上であれば冷却用タンク1内には氷ありと判断する。しかし、電気抵抗値が210KΩ以上であるだけでは氷があって且つ、冷却水が給水水位A以上にあるのか、一対のセンサ24の右側のセンサ24が給水水位A以下になり空気中に露出して電気抵抗値が210KΩ以上になったかは不明であり、冷却水が給水水位A以下になったかは判断できない。   Next, if the electrical resistance value between the pair of ice sensors 24 is 210 KΩ or more in step 1, it is determined that there is ice in the cooling tank 1. However, if the electrical resistance value is 210 KΩ or more, there is ice and the cooling water is at the feed water level A or higher, or the sensor 24 on the right side of the pair of sensors 24 falls below the feed water level A and is exposed to the air. Whether the electric resistance value is 210 KΩ or more is unknown, and it cannot be determined whether the cooling water has become the feed water level A or less.

そこで、ステップ3に移り冷却用タンク1内の冷却水の水位が給水水位Aより低下して冷凍サイクル6の運転が停止し冷却用タンク1内の水温が上昇したか否かを判断することになる。すなわち、まず、水温センサ26の水温が冷凍サイクル6の制御温度範囲0℃〜6℃以上であるかを判断する。ここでは、誤差などを考慮して水温センサ26の水温が8℃以上であるか否かを判断する。水温センサ26の水温が8℃以下であればノーでステップ3に戻る。また、水温センサ26の水温が8℃以上であればイエスでステップ4に移り水温8℃以上が冷凍サイクル6の制御時間20分を越えているか否かを判断する。冷凍サイクル6の制御時間20分以内であればノーでステップ4に戻る。また、冷凍サイクル6の制御時間20分を越えていればイエスで冷却用タンク1内の水位は給水水位A以下と判断する(ステップ5)。そして、最初の給水時または排水後の給水時と同様、冷却用タンク1内へヤカン等を用いてオーバーフローパイプ28からの溢れ出しの状態を視ながら満水水位Bになるように給水を行う(ステップ6)。   Therefore, the process proceeds to step 3 to determine whether or not the cooling water level in the cooling tank 1 is lower than the feed water level A, the operation of the refrigeration cycle 6 is stopped, and the water temperature in the cooling tank 1 is increased. Become. That is, first, it is determined whether the water temperature of the water temperature sensor 26 is within the control temperature range of 0 ° C. to 6 ° C. of the refrigeration cycle 6. Here, it is determined whether the water temperature of the water temperature sensor 26 is 8 ° C. or higher in consideration of errors and the like. If the water temperature of the water temperature sensor 26 is 8 ° C. or lower, the process returns to step 3 with no. On the other hand, if the water temperature of the water temperature sensor 26 is 8 ° C. or higher, the process proceeds to YES in step 4 to determine whether the water temperature of 8 ° C. or higher exceeds the control time 20 minutes of the refrigeration cycle 6. If the control time of the refrigeration cycle 6 is within 20 minutes, return to step 4 with no. If the control time of the refrigeration cycle 6 exceeds 20 minutes, the water level in the cooling tank 1 is determined to be YES or lower than the feed water level A (step 5). Then, as in the case of the first water supply or the water supply after drainage, water is supplied to the full water level B while watching the overflow from the overflow pipe 28 using a kettle or the like into the cooling tank 1 (step) 6).

なお、氷がある時に冷却水の入れ替えをした場合は、水があるのに水なしと判断する場合が考えられるが、この場合は使用者が水を抜いたことが解っているため問題が生じることがない。   If the cooling water is replaced when there is ice, it may be judged that there is no water even though there is water. However, in this case, the user knows that the water has been drained, which causes a problem. There is nothing.

したがって、専用のフロートスイッチ等の水位センサを設けることなく一対の氷センサ24および水温センサ26により給水水位を検知することができコストダウンが図れる。   Therefore, the water supply water level can be detected by the pair of ice sensors 24 and the water temperature sensor 26 without providing a water level sensor such as a dedicated float switch, and the cost can be reduced.

本発明の一実施形態を示す冷水機の構成図ある。It is a block diagram of the cold water machine which shows one Embodiment of this invention. 同上冷水機の作用を説明するフローチャートである。It is a flowchart explaining the effect | action of a chiller.

符号の説明Explanation of symbols

1 冷却用タンク
2 冷却コイル
3 冷水コイル
4 冷水管路
6 冷凍サイクル
7 圧縮機
8 凝縮器
9 ドライヤ
10 キャピラルチューブ
11 冷却モータ
12 冷却ファン
13 給水管
14 給水電磁弁
17 冷水電磁弁
18 冷水パイプ
23 攪拌モータ
24 氷センサ
25 氷
26 水温センサ
27 制御装置
28 オーバーフローパイプ
DESCRIPTION OF SYMBOLS 1 Cooling tank 2 Cooling coil 3 Chilled water coil 4 Chilled water pipe 6 Refrigeration cycle 7 Compressor 8 Condenser 9 Dryer 10 Capillal tube 11 Cooling motor 12 Cooling fan 13 Water supply pipe 14 Water supply solenoid valve 17 Chilled water solenoid valve 18 Chilled water pipe 23 Stirring motor 24 Ice sensor 25 Ice 26 Water temperature sensor 27 Control device 28 Overflow pipe

Claims (2)

冷却水を貯留する冷却用タンクと、この冷却用タンク内の冷却水中に配置され表面に氷層を生成させる冷却コイルと、一端が給水源に接続されるとともに他端から冷水が注出され、中間部に前記冷却タンク内を通過する冷水コイルを有する給水管路と、前記冷却コイルにより生成された氷の量を検知する一対の氷センサと、前記冷却用タンク内の水温を検知する水温センサとを備えた冷水機において、前記一対の氷センサの一方を給水水位より下方に配置するとともに、他方の氷センサを給水水位近傍に配置し、前記一対の氷センサ間の電気抵抗値が所定の抵抗値以下である時は、前記冷却用タンク内の水位は給水水位以上にあると判断し、また、一対の氷センサ間の抵抗値が所定の抵抗値以上で、且つ、前記水温センサが検知する水温が所定温度以上を所定時間以上継続した時は、前記冷却用タンク内の水位は給水水位以下であると判断することを特徴とする冷水機。   A cooling tank that stores cooling water, a cooling coil that is placed in the cooling water in the cooling tank and generates an ice layer on the surface, one end is connected to a water supply source, and cold water is poured out from the other end, A water supply pipe having a cold water coil passing through the cooling tank at an intermediate portion, a pair of ice sensors for detecting the amount of ice generated by the cooling coil, and a water temperature sensor for detecting the water temperature in the cooling tank And the other ice sensor is disposed in the vicinity of the water supply level, and an electrical resistance value between the pair of ice sensors is a predetermined value. When the resistance value is equal to or less than the resistance value, it is determined that the water level in the cooling tank is equal to or higher than the supply water level, and the resistance value between the pair of ice sensors is equal to or greater than a predetermined resistance value and is detected by the water temperature sensor. Where the water temperature is When continuing the above temperature for a predetermined time or more, water cooler, characterized in that it is determined that the water level of the cooling tank is less water supply level. 前記一対の氷センサ間の抵抗値が210KΩ以下である時は、前記冷却用タンク内の水位は給水水位以上にあると判断し、また、一対の氷センサ間の抵抗値が210KΩ以上で、且つ、前記水温センサが検知する水温が8℃以上を20分以上継続した時は、前記冷却用タンク内の水位は給水水位以下であると判断することを特徴とする請求項1記載の冷水機。   When the resistance value between the pair of ice sensors is 210 KΩ or less, it is determined that the water level in the cooling tank is equal to or higher than the feed water level, and the resistance value between the pair of ice sensors is 210 KΩ or more, and The chilled water machine according to claim 1, wherein when the water temperature detected by the water temperature sensor is kept at 8 ° C or higher for 20 minutes or longer, the water level in the cooling tank is determined to be lower than the water supply water level.
JP2003276134A 2003-07-17 2003-07-17 Water cooler Expired - Fee Related JP4008393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276134A JP4008393B2 (en) 2003-07-17 2003-07-17 Water cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276134A JP4008393B2 (en) 2003-07-17 2003-07-17 Water cooler

Publications (2)

Publication Number Publication Date
JP2005037087A JP2005037087A (en) 2005-02-10
JP4008393B2 true JP4008393B2 (en) 2007-11-14

Family

ID=34212555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276134A Expired - Fee Related JP4008393B2 (en) 2003-07-17 2003-07-17 Water cooler

Country Status (1)

Country Link
JP (1) JP4008393B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563759B2 (en) * 2008-12-08 2014-07-30 ホシザキ電機株式会社 Drinking water dispenser
US10041719B2 (en) * 2016-04-07 2018-08-07 Haier Us Appliance Solutions, Inc. Water supply system for an ice making assembly
CN112984890B (en) * 2019-12-12 2023-03-17 青岛海尔电冰箱有限公司 Refrigerator
CN112460904A (en) * 2020-12-17 2021-03-09 珠海格力电器股份有限公司 Refrigerator refrigerating method, refrigerator and ice making box

Also Published As

Publication number Publication date
JP2005037087A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
US6725675B2 (en) Flaked ice making machine
JP5376779B2 (en) Beverage dispenser
EP3110297B1 (en) Beverage system for providing cold beverage
JP4008393B2 (en) Water cooler
KR100756993B1 (en) Water supplying control apparatus for a ice maker and control method thereof
JP2017165445A (en) Beverage dispenser
JP2001133109A (en) Cold water pour-out device
JP2003192097A (en) Cold drink feed device
KR100636553B1 (en) Water supplying control apparutus for a ice maker and control method thereof
JP5219356B2 (en) Cold water supply device
JP4445688B2 (en) Cold beverage supply device
JP4794913B2 (en) Beverage cooler
JP2004053176A (en) Water cooling machine
JPH06227595A (en) Beverage feeding device
JPH08170868A (en) Beverage cooler
JP2001002193A (en) Beverage feeder
JPH05288441A (en) Controller of ice making machine
JP2003165600A (en) Cold beverage supplying device
JPS5844188B2 (en) beverage chiller
JP2007267638A (en) Device for producing frozen confectionery
JP2004042996A (en) Cold beverage supplying device
JP6131694B2 (en) Cup-type beverage vending machine
JP5194644B2 (en) Cooling system
JPH04236065A (en) Liquid supplying amount control method upon cooling operation in cooling or cooling and heating device
JP2001025362A (en) Apparatus for producing frozen dessert

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4008393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees