JP4008348B2 - Method for detecting broken holes in heat transfer water tubes of boilers - Google Patents

Method for detecting broken holes in heat transfer water tubes of boilers Download PDF

Info

Publication number
JP4008348B2
JP4008348B2 JP2002379160A JP2002379160A JP4008348B2 JP 4008348 B2 JP4008348 B2 JP 4008348B2 JP 2002379160 A JP2002379160 A JP 2002379160A JP 2002379160 A JP2002379160 A JP 2002379160A JP 4008348 B2 JP4008348 B2 JP 4008348B2
Authority
JP
Japan
Prior art keywords
boiler
heat transfer
reference value
water
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002379160A
Other languages
Japanese (ja)
Other versions
JP2004211923A (en
Inventor
滋昭 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002379160A priority Critical patent/JP4008348B2/en
Publication of JP2004211923A publication Critical patent/JP2004211923A/en
Application granted granted Critical
Publication of JP4008348B2 publication Critical patent/JP4008348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ焼却ブラントの廃熱回収ボイラ等における熱交換用の伝熱水管の破孔を早期に検知するための検知方法に関するものである。
【0002】
【従来の技術】
ごみ焼却炉やガス化溶融炉等のごみ焼却ブラントにおいて、廃熱の有効利用の観点から後流側に廃熱回収ボイラが設置されている。この廃熱回収ボイラは、燃焼排ガス等の高温ガスの通路に伝熱水管を配し、伝熱管の内部を流れるボイラ水との間で熱交換を行わせることによって、廃熱を回収するものである。
【0003】
その際、排ガス中の腐食成分により伝熱水管が腐食して破孔し、伝熱水管を通流しているボイラ水が漏洩することがある。
【0004】
このようなボイラ水の漏洩を検知する方法として、発電用商用ボイラにおいては、音響センサによる漏洩検知方法が知られている(例えば、特許文献1または特許文献2参照。)。
【0005】
しかし、音響センサによる漏洩検知方法は、ごみ焼却ブラントの廃熱回収ボイラには複雑かつ高価すぎて適用されていないのが一般的であり、従来は、運転員が計器を監視し、漏水に伴う給水系統のアンバランスから起こるボイラドラム水位の異常降下の現象から、伝熱水管の破孔を推測していた。
【0006】
図4は、そのような従来の運転員による監視システムの一例を示すものである。
【0007】
図4において、ボイラドラム1に給水系配管からボイラ水が供給され、ボイラドラム1内のボイラ水は、ボイラドラム1からボイラ室内の伝熱水管群2に送られ、伝熱水管群2の内部を流れた後、ボイラドラム1に戻ってくる。ボイラ水は、伝熱水管群2の内部を流れる間に、伝熱水管群2の外部を通過する燃焼排ガスと熱交換することによって昇温し、その一部は蒸気となる。
【0008】
そして、ボイラドラム1内の蒸気は、ボイラドラム1から過熱器3へ送られ、過熱器3で過熱されて過熱蒸気となり、減温器4を通過して所定の温度に減温された後、蒸気配管を通って蒸気だめへと送られる。蒸気だめに送られた過熱蒸気は蒸気タービン等に使用される。なお、ボイラによっては、過熱器や減温器を有さないタイプのものもある。
【0009】
そして、ボイラドラム1内の缶水(飽和水)の一部は、ボイラ水質を維持管理するための連続的なブロー(連続ブロー)及びボイラ底部からの間欠的なブロー(缶底ブロー)によりボイラ系外に排出される。
【0010】
なお、前記の給水系配管は、ボイラドラム1への給水配管から途中で分岐して、前記減温器4への給水配管となっており、減温器4に供給された水は蒸気の減温に用いられる。
【0011】
ボイラドラム1への給水配管には流量調整弁5aが、減温器4への給水配管には流量調整弁5bが、缶底ブローの配管には開閉弁6がそれぞれ設けられている。
【0012】
そして、ボイラドラム1への給水量Fwを計測して計器指示するとともに流量調整弁5aの開度を調節する給水量指示調節装置7と、蒸気配管を通って蒸気だめへ送られる蒸発量Fsを計測して計器指示する蒸発量指示装置8と、ボイラドラム1の水位を計測して計器指示するとともにドラム水位が所定数位になるように調節し、ドラム水位が異常になった場合に警報を発するドラム水位指示調節警報装置9が備えられている。
【0013】
そして、空焚き防止というボイラ自身の設備保全のため、ボイラドラム水位が正常水位に保たれるように、蒸発量と供給量の差(制御偏差)がゼロになるようないわゆる三要素制御が行われる。
【0014】
その際に、運転員は、給水量指示調節装置7、蒸発量指示装置8、ドラム水位指示調節警報装置9の計器を監視し、漏水に伴う給水系統のアンバランスから起こるボイラドラム水位の異常降下によって伝熱水管群2の破孔を推測している。
【0015】
【特許文献1】
特開平1−150834号公報
【0016】
【特許文献2】
特開平9−310803号公報
【0017】
【発明が解決しようとする課題】
通常、ボイラドラム水位は空焚き防止というボイラ自身の設備保全のため、正常水位を保つように蒸発量と供給量の差(制御偏差)がゼロになるようないわゆる三要素制御が行われており、伝熱水管の破孔によるボイラ系外への漏水の結果、それが原因で蒸発量が減少することがあっても、漏水によるドラム水位の低下に見合った分、給水量を増やすことになり、水位の異常低下として現れるまでには時間がかかる。
【0018】
その結果、従来の運転員の計器監視による伝熱水管の破孔検知方法では、ドラム水位の異常低下を示す警報が発せられるにしても、漏水に気づくのが遅れてしまい、溢流水によるトラブルが甚大化する傾向にある。
【0019】
また、給水量と蒸発量の瞬時流量の単純な差分を観測するのでは、ボイラというプロセス上の時間遅れによる位相差なのか漏水によるものなのか判断は困難である。
【0020】
本発明は、上記のような問題を解決するためになされたものであり、ごみ焼却ブラントの廃熱回収ボイラ等における熱交換用の伝熱水管の破孔を、従来の運転員の計器監視による方法に比べて、確実かつ早期に検知するすることができるボイラの伝熱水管の破孔検知方法を提供することを目的とするものである。
【0021】
【課題を解決するための手段】
上記の課題を解決するために、本発明は下記の特徴を有する。
【0022】
[1]外部を高温ガスと接触させ内部を通過する被加熱流体との間で熱交換させる伝熱水管を備えたボイラにおいて、ボイラへの流入量とボイラからの流出量との差分流量を経過時間に沿って所定の演算周期毎に積算して差分流量の積算値を算出するとともに、経過時間とともに所定の割合で増加する基準値を前記差分流量の積算値を算出するのと同期して設定し、前記積算値と前記基準値を所定の演算周期毎に比較して、前記積算値が前記基準値を越えたときに前記伝熱水管が破孔したと判断することを特徴とするボイラの伝熱水管の破孔検知方法。
【0023】
[2]所定の時間が経過する毎に、積算値と基準値を一旦リセットし、あらためて積算値の算出と基準値の設定を開始することを特徴とする前記[1]記載のボイラの伝熱水管の破孔検知方法。
【0024】
[3]前記基準値を以下の(1)式により設定することを特徴とする前記[1]記載のボイラの伝熱水管の破孔検知方法。
x(t)=k・t+b ・・・(1)
x(t):経過時間tにおける基準値
k:予め定めておいた漏洩として検知すべき差分流量
b:任意に設定する所定の基底流量
【0025】
【発明の実施の形態】
本発明に係るボイラの伝熱水管の破孔検知方法の一実施形態を図1〜図3を用いて説明する。図1は本発明の一実施形態における破孔検知システムの全体構成図であり、図2はこの破孔検知システムにおける演算処理フロー図、図3は演算処理の状況を示す説明図である。
【0026】
図1において、ボイラドラム1に給水系配管からボイラ水が供給され、ボイラドラム1内のボイラ水は、ボイラドラム1からボイラ室内の伝熱水管群2に送られ、伝熱水管群2の内部を流れた後、ボイラドラム1に戻ってくる。ボイラ水は、伝熱水管群2の内部を流れる間に、伝熱水管群2の外部を通過する燃焼排ガスと熱交換することによって昇温し、その一部は蒸気となる。
【0027】
そして、ボイラドラム1内の蒸気は、ボイラドラム1から過熱器3へ送られ、過熱器3で過熱されて過熱蒸気となり、減温器4を通過して所定の温度に減温された後、蒸気配管を通って蒸気だめへと送られる。蒸気だめに送られた過熱蒸気は蒸気タービン等に使用される。
【0028】
また、ボイラドラム1内の缶水(飽和水)の一部は、ボイラ水質を維持管理するための連続的なブロー(連続ブロー)及びボイラ底部からの間欠的なブロー(缶底ブロー)によりボイラ系外に排出される。
【0029】
なお、前記の給水系配管は、ボイラドラム1への給水配管から途中で分岐して、前記減温器4への給水配管となっており、減温器4に供給された水は蒸気の減温に用いられる。
【0030】
ボイラドラム1への給水配管には流量調整弁5aが、減温器4への給水配管には流量調整弁5bが、缶底ブローの配管には開閉弁6がそれぞれ設けられている。
【0031】
そして、ボイラドラム1への給水量Fwを計測して計器指示するとともに流量調整弁5aの開度を調節する給水量指示調節装置7と、蒸気配管を通って蒸気だめへ送られる蒸発量Fsを計測して計器指示する蒸発量指示装置8と、ボイラドラム1の水位を計測して計器指示するとともにドラム水位が所定水位になるように調節し、ドラム水位が異常になった場合に警報を発するドラム水位指示調節警報装置9が備えられている。
【0032】
そして、空焚き防止というボイラ自身の設備保全のため、ボイラドラム水位が正常水位に保たれるように、蒸発量と供給量の差(制御偏差)がゼロになるようないわゆる三要素制御が行われる。
【0033】
そして、この実施形態においては、流入出量収支を演算するための演算機能10と警報装置11が備えられている。演算機能10には、ボイラドラム1への給水量Fw、減温器4への蒸気減温水量Fdw、蒸気配管を通って蒸気だめへ送られる蒸気量Fs、連続ブロー量Fcb、缶底ブロー量Fbbについてのそれぞれの計測信号が取り込まれている。
【0034】
図2に演算機能10における演算処理フローを示す。演算機能10は、加減算機能21、計時機能22、積算機能23、積算機能24、大小比較機能25、警報条件判定機能26、警報発報機能27の各機能を備えており、それに基づいて以下のような演算処理を行う。
【0035】
(1)まず、加減算機能21により、流入量と流出量の差分流量ΔFを計算する。すなわち、流入量は給水量Fwと蒸気減温水量Fdwの合計であり、流出量は蒸発量Fsと連続ブロー量Fcbと缶底ブロー量Fbbの合計であるので、差分流量ΔFは以下のようになる。すなわち、
ΔF=(Fw+Fdw)−(Fs+Fcb+Fbb)
なお、蒸気減温水量Fdwを計測する計測器を設けていない場合は、蒸気減温水量Fdwは、減温器4への流量調整弁5bの開度又は可変定数(パラメータ)とする。減温器または蒸気過熱器と減温器を有していないボイラの場合は、蒸気減温水量Fdwはゼロとする。
【0036】
また、連続ブロー量Fcbを計測する計測器を設けていない場合は、連続ブロー量Fcbは可変定数(パラメータ)とする。
【0037】
缶底ブロー量Fbbについても、計測する計測器を設けていない場合は、缶底ブロー量Fbbは可変定数(パラメータ)とする。
【0038】
(2)次に、積算機能23により、所定の演算周期毎(例えば、1sec毎)に、差分流量ΔFの時間積算値(時間積分値)y(t)を算出する。
【0039】
y(t)=∫ΔFdt
なお、計時機能22によって、積算開始からの経過時間tが管理されており、上記の積算値y(t)の算出は、経過時間tが所定時間T(例えば、15分間)になる毎に、経過時間tと積算値y(t)が一旦初期値(=0)にリセットされ、あらためて経過時間tにおける積算値y(t)の算出を開始するようになっている。
【0040】
(3)一方、積算機能24により、積算機能23によって差分流量ΔFの積算値y(t)を求めるのと同期して、予め定めておいた漏洩として検知すべき差分流量kを積算し、その積算値を経過時間tにおける基準値x(t)として設定する。その際、誤検知を防止する目的で任意に設定する所定の基底流量bを加算してもよい。すなわち、
x(t)=k・t+b
なお、上記の基準値x(t)の設定も経過時間tが所定時間T(例えば、15分間)になる毎に初期値(=b)にリセットされ、あらためて経過時間tにおける基準値x(t)の設定を開始するようになっている。
【0041】
(4)そして、大小比較機能25により、所定の演算周期毎に算出された差分流量の積算値y(t)と基準値x(t)との大小を比較する。
【0042】
(5)その結果、差分流量ΔFの積算値y(t)が基準値x(t)を超過している場合、すなわち、
y(t)>x(t)
の場合には、警報条件判定機能26により、下記(7)〜(9)に示す条件もチェックの上、破孔・漏洩検知条件が成立したと判定する。
【0043】
(6)それに基づいて、警報発報機能27により、前記の警報装置11が警報を発する。
【0044】
(7)なお、上記(5)において、所定時間Tの間隔で積算を再スタートする際の誤検知を防止する目的で、超過判定を積算開始後、任意に設定した所定の時間Tmが経過してから行うようにしてもよい。
【0045】
(8)また、ボイラが定常運転(一定圧力、一定蒸気量以上であること)でないか、ボイラドラム水位が正常範囲を逸脱した場合は、上記(5)の判定を停止する。図2中、この判定停止条件をBsとしている。
【0046】
(9)さらに、缶底ブローの実施中を示す信号を設け、その信号が成立している間は、上記(5)の判定を停止するか、または上記(3)における基準値を求める積算の際に缶底ブロー量を加算して、缶底ブローの影響を除外する。図2中、この缶底ブロー中信号をSbbとしている。
【0047】
その際、缶底ブロー中信号Sbbとしては、缶底ブローの開閉弁6の開信号又は演算機能10に別途備えたソフト的なスイッチを用いる。
【0048】
なお、缶底ブロー中信号Sbbを設けなくてもよく、その場合には、流出量に缶底ブロー量Fbbを加算せず、計画的に行われる缶底ブローに伴う給水量増加による差分流量超過を検知することで、この破孔検知の機能確認とすることもできる。
【0049】
図3は、上記の演算処理の状況を示す図である。所定の演算周期毎に、差分流量の積算値y(t)と基準値x(t)が算出されて、その積分値y(t)と基準値x(t)が比較されている。
【0050】
その際、経過時間tが所定時間Tになると、経過時間tと積算値y(t)と基準値x(t)が初期値にリセットされ、あらためて積算値y(t)と基準値x(t)の計算を開始している。
【0051】
そして、図3(a)に示すように、積算値y(t)が基準値x(t)より小さい場合は、破孔・漏水は無いと判定し、図3(b)に示すように、積算値y(t)が基準値x(t)を超過した場合には、上記(7)〜(9)の条件を確認の上、破孔・漏水が発生したと判定する。
【0052】
このように、この実施形態においては、伝熱水管の破孔による漏水によって発現する流入量と流出量の差分流量ΔFの積算値y(t)に着目し、差分流量の積算値y(t)と、時間tとともに所定の割合kで増加する基準値x(t)とを比較監視するようにしているので、差分流量ΔFと基準値kとの単純な瞬間値の比較と異なり、漏水に伴うボイラドラム水位制御系、給水系のアンバランスを確実にとらえることができるとともに、伝熱水管の破孔が急激に進んだ場合でも、その度合いに応じて伝熱水管の破孔を早期に検知することができる。
【0053】
さらに、所定時間T毎に積算値y(t)と基準値x(t)をリセットして、計算を再スタートするようにしているので、積分値y(t)と基準値x(t)との比較が明確になり、破孔・漏水の検知精度を向上させることができる。
【0054】
そして、上記による破孔・漏水の検知に基づいて、運転員に警報を発し、破孔・漏水に対する注意を喚起して、破孔・漏水を初期段階で発見することできる。
【0055】
なお、上記の実施形態においては、所定時間T毎に積分値y(t)と基準値x(t)をリセットしているが、場合によっては、リセットせずに、最初から通算での積算値y(t)と基準値x(t)とを比較監視することでもよい。
【0057】
【発明の効果】
本発明は、ごみ焼却ブラントの廃熱回収ボイラ等において、ボイラへの流入量とボイラからの流出量の差分流量を積算した積算値が、時間とともに所定の割合で増加する基準値を越えたときに、前記伝熱水管が破孔したと判断するようにしているので、従来の運転員の計器監視による方法に比べて、伝熱水管の破孔を確実かつ早期に検知するすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における破孔検知システムの全体構成図である。
【図2】本発明の一実施形態における演算処理フロー図である。
【図3】本発明の一実施形態における演算処理の状況を示す説明図である。
【図4】従来技術の説明図である。
【符号の説明】
1 ボイラドラム
2 伝熱水管群
3 過熱器
4 減温器
5a 流量調整弁
5b 流量調整弁
6 開閉弁
7 給水量指示調節装置
8 蒸発量指示装置
9 ドラム水位指示調節警報装置
10 演算機能
11 警報装置
21 加減算機能
22 計時機能
23 積算機能
24 積算機能
25 大小比較機能
26 警報条件判定機能
27 警報発報機能
Bs 判定停止条件
b 基底流量
Fw 給水量
Fdw 蒸気減温水量
Fs 蒸発量
Fcb 連続ブロー量
Fbb 缶底ブロー量
ΔF 差分流量
k 検知すべき差分流量
Sbb 缶底ブロー中信号
T 所定の経過時間
Tm 判定開始時間
t 経過時間
X 所定の経過時間Tにおける基準値
x(t) 経過時間tにおける基準値
Y 所定の経過時間Tにおける差分流量ΔFの積算値
y(t) 経過時間tにおける差分流量ΔFの積算値
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a detection method for early detection of a hole in a heat transfer water pipe for heat exchange in a waste heat recovery boiler of a waste incineration brand.
[0002]
[Prior art]
Waste incinerators such as waste incinerators and gasification melting furnaces are provided with a waste heat recovery boiler on the downstream side from the viewpoint of effective use of waste heat. This waste heat recovery boiler collects waste heat by arranging heat transfer water pipes in the passage of high-temperature gas such as combustion exhaust gas and exchanging heat with boiler water flowing inside the heat transfer pipes. is there.
[0003]
At that time, the heat transfer water pipe is corroded and broken by corrosive components in the exhaust gas, and the boiler water flowing through the heat transfer water pipe may leak.
[0004]
As a method for detecting such leakage of boiler water, a leakage detection method using an acoustic sensor is known for power generation commercial boilers (see, for example, Patent Document 1 or Patent Document 2).
[0005]
However, the leak detection method using an acoustic sensor is generally not applied because it is too complicated and expensive for waste heat recovery boilers of waste incineration blunts. From the phenomenon of an abnormal drop in the water level of the boiler drum caused by an imbalance in the water supply system, a hole in the heat transfer water pipe was inferred.
[0006]
FIG. 4 shows an example of such a conventional operator monitoring system.
[0007]
In FIG. 4, boiler water is supplied to the boiler drum 1 from the water supply system piping, and the boiler water in the boiler drum 1 is sent from the boiler drum 1 to the heat transfer water tube group 2 in the boiler chamber, and the inside of the heat transfer water tube group 2. After flowing through the boiler drum 1, it returns to the boiler drum 1. While the boiler water flows inside the heat transfer water tube group 2, the temperature rises by exchanging heat with the combustion exhaust gas passing through the outside of the heat transfer water tube group 2, and a part of the boiler water becomes steam.
[0008]
Then, the steam in the boiler drum 1 is sent from the boiler drum 1 to the superheater 3, is superheated by the superheater 3 to become superheated steam, passes through the temperature reducer 4, and is reduced to a predetermined temperature. It is sent to the steam sump through the steam pipe. The superheated steam sent to the steam sump is used for a steam turbine or the like. Some boilers do not have a superheater or a temperature reducer.
[0009]
A part of the can water (saturated water) in the boiler drum 1 is generated by continuous blow (continuous blow) for maintaining and managing the boiler water quality and intermittent blow (can bottom blow) from the bottom of the boiler. It is discharged out of the system.
[0010]
The water supply system pipe is branched from the water supply pipe to the boiler drum 1 and becomes a water supply pipe to the temperature reducer 4. The water supplied to the temperature reducer 4 is reduced in steam. Used for temperature.
[0011]
The water supply pipe to the boiler drum 1 is provided with a flow rate adjusting valve 5a, the water supply pipe to the temperature reducer 4 is provided with a flow rate adjusting valve 5b, and the can bottom blow pipe is provided with an opening / closing valve 6.
[0012]
Then, the feed amount Fw supplied to the boiler drum 1 is measured and instructed by a meter, and the feed amount indication adjusting device 7 for adjusting the opening of the flow rate adjusting valve 5a, and the evaporation amount Fs sent to the steam sump through the steam pipe. Evaporation amount indicating device 8 that measures and indicates the instrument, and measures the water level of boiler drum 1 and indicates the instrument, adjusts the drum water level to a predetermined number, and issues an alarm when the drum water level becomes abnormal A drum water level indication adjustment alarm device 9 is provided.
[0013]
In order to maintain the boiler's own equipment to prevent air blow, so-called three-element control is performed so that the difference between the evaporation amount and the supply amount (control deviation) is zero so that the boiler drum water level is maintained at a normal water level. Is called.
[0014]
At that time, the operator monitors the meter of the water supply amount instruction adjusting device 7, the evaporation amount indicating device 8, and the drum water level instruction adjusting alarm device 9, and an abnormal drop in the boiler drum water level caused by the unbalance of the water supply system due to water leakage. Based on this, the hole in the heat transfer water tube group 2 is estimated.
[0015]
[Patent Document 1]
Japanese Patent Laid-Open No. 1-150834
[Patent Document 2]
Japanese Patent Laid-Open No. 9-310803
[Problems to be solved by the invention]
Usually, the boiler drum water level is so-called three-element control that the difference between the evaporation amount and the supply amount (control deviation) becomes zero so as to maintain the normal water level in order to maintain the boiler's own equipment to prevent emptying. As a result of water leakage outside the boiler system due to a hole in the heat transfer water pipe, even if the evaporation amount may decrease due to this, the amount of water supply will be increased by an amount commensurate with the decrease in drum water level due to water leakage. It takes time to appear as an abnormal drop in water level.
[0018]
As a result, in the conventional method for detecting hole breakage in heat transfer water pipes by monitoring the instrument's instrument, even if an alarm indicating an abnormal drop in the drum water level is issued, it is delayed to notice the water leakage, and trouble due to overflowing water is caused. It tends to grow.
[0019]
In addition, by observing a simple difference between the instantaneous flow rate of the water supply amount and the evaporation amount, it is difficult to determine whether it is a phase difference due to a time delay in the process of a boiler or due to water leakage.
[0020]
The present invention has been made in order to solve the above-described problems, and it is based on conventional operator monitoring of a hole in a heat transfer water pipe for heat exchange in a waste heat recovery boiler of a waste incineration blunt or the like. It is an object of the present invention to provide a method for detecting a broken hole in a heat transfer water pipe of a boiler that can be detected reliably and at an early stage as compared with the method.
[0021]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following features.
[0022]
[1] In a boiler provided with a heat transfer water tube that contacts the outside with a high-temperature gas and exchanges heat with the fluid to be heated passing through the inside, the difference flow rate between the inflow to the boiler and the outflow from the boiler has elapsed. Calculates the integrated value of the differential flow rate by integrating every predetermined calculation cycle along the time, and sets the reference value that increases at a predetermined rate with the elapsed time in synchronization with the calculation of the integrated value of the differential flow rate The integrated value and the reference value are compared at every predetermined calculation cycle , and it is determined that the heat transfer water pipe has broken when the integrated value exceeds the reference value. Method for detecting broken holes in heat transfer water pipes.
[0023]
[2] Every time a predetermined time elapses, the integrated value and the reference value are once reset, and the calculation of the integrated value and the setting of the reference value are started again. How to detect water pipe breakage.
[0024]
[3] The method for detecting a broken hole in a heat transfer water pipe of a boiler according to [1], wherein the reference value is set by the following equation (1).
x (t) = k · t + b (1)
x (t): reference value at elapsed time t k: differential flow rate to be detected as a predetermined leak b: predetermined base flow rate set arbitrarily
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a method for detecting a broken hole in a heat transfer water pipe of a boiler according to the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a hole detection system according to an embodiment of the present invention, FIG. 2 is a calculation processing flowchart in this hole detection system, and FIG. 3 is an explanatory diagram showing the state of the calculation processing.
[0026]
In FIG. 1, boiler water is supplied to a boiler drum 1 from a water supply system pipe, and the boiler water in the boiler drum 1 is sent from the boiler drum 1 to a heat transfer water tube group 2 in the boiler chamber, and inside the heat transfer water tube group 2. After flowing through the boiler drum 1, it returns to the boiler drum 1. While the boiler water flows inside the heat transfer water tube group 2, the temperature rises by exchanging heat with the combustion exhaust gas passing through the outside of the heat transfer water tube group 2, and a part of the boiler water becomes steam.
[0027]
Then, the steam in the boiler drum 1 is sent from the boiler drum 1 to the superheater 3, is superheated by the superheater 3 to become superheated steam, passes through the temperature reducer 4, and is reduced to a predetermined temperature. It is sent to the steam sump through the steam pipe. The superheated steam sent to the steam sump is used for a steam turbine or the like.
[0028]
Further, a part of the can water (saturated water) in the boiler drum 1 is generated by continuous blow (continuous blow) for maintaining and managing the boiler water quality and intermittent blow (can bottom blow) from the bottom of the boiler. It is discharged out of the system.
[0029]
The water supply system pipe is branched from the water supply pipe to the boiler drum 1 and becomes a water supply pipe to the temperature reducer 4. The water supplied to the temperature reducer 4 is reduced in steam. Used for temperature.
[0030]
The water supply pipe to the boiler drum 1 is provided with a flow rate adjusting valve 5a, the water supply pipe to the temperature reducer 4 is provided with a flow rate adjusting valve 5b, and the can bottom blow pipe is provided with an opening / closing valve 6.
[0031]
Then, the feed amount Fw supplied to the boiler drum 1 is measured and instructed by a meter, and the feed amount indication adjusting device 7 for adjusting the opening of the flow rate adjusting valve 5a, and the evaporation amount Fs sent to the steam sump through the steam pipe. Evaporation amount indicating device 8 for measuring and indicating the instrument, and measuring the water level of boiler drum 1 and indicating the instrument, adjusting the drum level to a predetermined level, and issuing an alarm when the drum level becomes abnormal A drum water level indication adjustment alarm device 9 is provided.
[0032]
In order to maintain the boiler's own equipment to prevent air blow, so-called three-element control is performed so that the difference between the evaporation amount and the supply amount (control deviation) is zero so that the boiler drum water level is maintained at a normal water level. Is called.
[0033]
In this embodiment, an arithmetic function 10 and an alarm device 11 for calculating the inflow / outflow amount balance are provided. The calculation function 10 includes a water supply amount Fw to the boiler drum 1, a steam dewarming water amount Fdw to the temperature reducer 4, a steam amount Fs sent to the steam sump through the steam pipe, a continuous blow amount Fcb, a can bottom blow amount Each measurement signal for Fbb is captured.
[0034]
FIG. 2 shows a calculation processing flow in the calculation function 10. The calculation function 10 includes an addition / subtraction function 21, a timekeeping function 22, an integration function 23, an integration function 24, a size comparison function 25, an alarm condition determination function 26, and an alarm notification function 27. An arithmetic process like this is performed.
[0035]
(1) First, the addition / subtraction function 21 calculates a difference flow rate ΔF between the inflow amount and the outflow amount. That is, since the inflow amount is the sum of the water supply amount Fw and the steam dewarming water amount Fdw, and the outflow amount is the sum of the evaporation amount Fs, the continuous blow amount Fcb, and the can bottom blow amount Fbb, the differential flow rate ΔF is as follows: Become. That is,
ΔF = (Fw + Fdw) − (Fs + Fcb + Fbb)
In addition, when the measuring device which measures the steam decooling water amount Fdw is not provided, the steam dewarming water amount Fdw is set to the opening degree of the flow regulating valve 5b to the desuperheater 4 or a variable constant (parameter). In the case of a boiler that does not have a temperature reducer or a steam superheater and a temperature reducer, the steam dewarmed water amount Fdw is zero.
[0036]
Further, when a measuring instrument for measuring the continuous blow amount Fcb is not provided, the continuous blow amount Fcb is a variable constant (parameter).
[0037]
Also regarding the can bottom blow amount Fbb, if no measuring instrument is provided, the can bottom blow amount Fbb is a variable constant (parameter).
[0038]
(2) Next, the integration function 23 calculates a time integration value (time integration value) y (t) of the differential flow rate ΔF at every predetermined calculation cycle (for example, every 1 sec).
[0039]
y (t) = ∫ΔFdt
The elapsed time t from the start of integration is managed by the time counting function 22, and the calculation of the integrated value y (t) is performed every time the elapsed time t reaches a predetermined time T (for example, 15 minutes). The elapsed time t and the integrated value y (t) are once reset to the initial value (= 0), and the calculation of the integrated value y (t) at the elapsed time t is started again.
[0040]
(3) On the other hand, the integration function 24 integrates the difference flow rate k to be detected as a predetermined leak in synchronization with the integration function 23 obtaining the integration value y (t) of the difference flow rate ΔF. The integrated value is set as the reference value x (t) at the elapsed time t. At that time, a predetermined base flow rate b arbitrarily set for the purpose of preventing erroneous detection may be added. That is,
x (t) = k · t + b
The setting of the reference value x (t) is also reset to the initial value (= b) every time the elapsed time t reaches a predetermined time T (for example, 15 minutes), and again the reference value x (t at the elapsed time t ) Setting is started.
[0041]
(4) The magnitude comparison function 25 compares the difference value integrated value y (t) calculated for each predetermined calculation cycle with the reference value x (t).
[0042]
(5) As a result, when the integrated value y (t) of the differential flow rate ΔF exceeds the reference value x (t), that is,
y (t)> x (t)
In this case, the alarm condition determination function 26 determines that the hole / leakage detection condition is satisfied after checking the conditions (7) to (9) below.
[0043]
(6) Based on this, the warning device 11 issues a warning by the warning function 27.
[0044]
(7) In addition, in the above (5), for the purpose of preventing erroneous detection when the integration is restarted at intervals of the predetermined time T, a predetermined time Tm arbitrarily set has elapsed after the start of the excess determination. It may be done afterwards.
[0045]
(8) If the boiler is not in a steady operation (constant pressure, constant steam amount or more) or the boiler drum water level deviates from the normal range, the determination of (5) is stopped. In FIG. 2, this determination stop condition is Bs.
[0046]
(9) Further, a signal indicating that the bottom of the can is being blown is provided, and while the signal is established, the determination in (5) is stopped, or the integration for obtaining the reference value in (3) is performed. In this case, the bottom blow amount is added to eliminate the influence of the bottom blow. In FIG. 2, this can bottom blowing signal is Sbb.
[0047]
At that time, as the can bottom blowing signal Sbb, an open signal of the can bottom blowing on-off valve 6 or a soft switch provided separately in the calculation function 10 is used.
[0048]
It is not necessary to provide the can bottom blowing signal Sbb. In this case, the difference flow rate excess due to the increase in the amount of water supply accompanying the can bottom blow that is systematically performed without adding the can bottom blow amount Fbb to the outflow amount. By detecting this, it is possible to confirm the function of detecting this hole.
[0049]
FIG. 3 is a diagram showing the state of the above arithmetic processing. The integrated value y (t) and the reference value x (t) of the differential flow rate are calculated at every predetermined calculation cycle, and the integrated value y (t) and the reference value x (t) are compared.
[0050]
At this time, when the elapsed time t reaches the predetermined time T, the elapsed time t, the integrated value y (t), and the reference value x (t) are reset to initial values, and the integrated value y (t) and the reference value x (t ) Has started calculating.
[0051]
Then, as shown in FIG. 3 (a), when the integrated value y (t) is smaller than the reference value x (t), it is determined that there is no hole breakage / water leakage, and as shown in FIG. 3 (b), When the integrated value y (t) exceeds the reference value x (t), it is determined that a broken hole or water leak has occurred after confirming the conditions (7) to (9).
[0052]
Thus, in this embodiment, paying attention to the integrated value y (t) of the differential flow rate ΔF between the inflow amount and the outflow amount caused by water leakage due to the breakage of the heat transfer water pipe, the integrated value y (t) of the differential flow rate And a reference value x (t) that increases at a predetermined rate k with time t is compared and monitored. Therefore, unlike a simple instantaneous value comparison between the differential flow rate ΔF and the reference value k, it accompanies water leakage. It is possible to detect unbalanced boiler drum water level control system and water supply system, and to detect heat transfer water pipe breakage at an early stage according to the degree to which the heat transfer water pipe breakage suddenly progresses. be able to.
[0053]
Further, since the integrated value y (t) and the reference value x (t) are reset at every predetermined time T and the calculation is restarted, the integrated value y (t) and the reference value x (t) Comparison becomes clear, and the detection accuracy of broken holes and water leakage can be improved.
[0054]
Based on the detection of broken holes / water leakage as described above, an alarm is issued to the operator, and attention is paid to the broken holes / water leaks, so that the broken holes / water leaks can be detected in the initial stage.
[0055]
In the above embodiment, the integral value y (t) and the reference value x (t) are reset every predetermined time T. However, in some cases, the integrated value from the beginning is not reset, It may be possible to compare and monitor y (t) and the reference value x (t).
[0057]
【The invention's effect】
In the waste heat recovery boiler of a waste incineration blunt, etc., when the integrated value obtained by integrating the difference flow rate between the inflow amount to the boiler and the outflow amount from the boiler exceeds a reference value that increases at a predetermined rate with time. In addition, since it is determined that the heat transfer water pipe is broken, it is possible to detect the heat transfer water pipe breakage reliably and early as compared with the conventional method of monitoring by the operator's instrument.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a hole breakage detection system according to an embodiment of the present invention.
FIG. 2 is an operation processing flowchart in one embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a state of arithmetic processing in an embodiment of the present invention.
FIG. 4 is an explanatory diagram of the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler drum 2 Heat transfer water pipe group 3 Superheater 4 Temperature reducer 5a Flow rate adjustment valve 5b Flow rate adjustment valve 6 On-off valve 7 Water supply amount instruction adjustment device 8 Evaporation amount indication device 9 Drum water level indication adjustment alarm device 10 Calculation function 11 Alarm device 21 Addition / Subtraction Function 22 Timekeeping Function 23 Integration Function 24 Integration Function 25 Size Comparison Function 26 Alarm Condition Judgment Function 27 Alarm Notification Function Bs Judgment Stop Condition b Base Flow Fw Feed Water Fdw Steam Dewarming Water Fs Evaporation Fcb Continuous Blow Fbb Can Bottom blow amount ΔF Differential flow rate k Differential flow rate to be detected Sbb Can bottom blowing signal T Predetermined elapsed time Tm Determination start time t Elapsed time X Reference value x (t) at predetermined elapsed time T Reference value Y at elapsed time t Integrated value y (t) of differential flow rate ΔF at a predetermined elapsed time T Integrated value of differential flow rate ΔF at an elapsed time t

Claims (3)

外部を高温ガスと接触させ内部を通過する被加熱流体との間で熱交換させる伝熱水管を備えたボイラにおいて、ボイラへの流入量とボイラからの流出量との差分流量を経過時間に沿って所定の演算周期毎に積算して差分流量の積算値を算出するとともに、経過時間とともに所定の割合で増加する基準値を前記差分流量の積算値を算出するのと同期して設定し、前記積算値と前記基準値を所定の演算周期毎に比較して、前記積算値が前記基準値を越えたときに前記伝熱水管が破孔したと判断することを特徴とするボイラの伝熱水管の破孔検知方法。In a boiler equipped with a heat transfer water tube that contacts the outside with a hot gas and exchanges heat with the heated fluid that passes through the inside, the difference flow rate between the inflow to the boiler and the outflow from the boiler is shown along the elapsed time. Calculating the integrated value of the differential flow rate by integrating every predetermined calculation period , and setting a reference value that increases at a predetermined rate with the elapsed time in synchronization with the calculating of the integrated value of the differential flow rate , The boiler heat transfer water pipe, wherein the integrated value and the reference value are compared at every predetermined calculation cycle , and it is determined that the heat transfer water pipe has broken when the integrated value exceeds the reference value. Hole detection method. 所定の時間が経過する毎に、積算値と基準値を一旦リセットし、あらためて積算値の算出と基準値の設定を開始することを特徴とする請求項1記載のボイラの伝熱水管の破孔検知方法。2. The boiler heat transfer water pipe breakage hole according to claim 1, wherein the integrated value and the reference value are once reset each time a predetermined time elapses, and the calculation of the integrated value and the setting of the reference value are started again. Detection method. 前記基準値を以下の(1)式により設定することを特徴とする請求項1記載のボイラの伝熱水管の破孔検知方法。
x(t)=k・t+b ・・・(1)
x(t):経過時間tにおける基準値
k:予め定めておいた漏洩として検知すべき差分流量
b:任意に設定する所定の基底流量
The said reference value is set by the following (1) Formula, The broken hole detection method of the heat exchanger water pipe of the boiler of Claim 1 characterized by the above-mentioned.
x (t) = k · t + b (1)
x (t): reference value at elapsed time t k: differential flow rate to be detected as a predetermined leak b: predetermined base flow rate set arbitrarily
JP2002379160A 2002-12-27 2002-12-27 Method for detecting broken holes in heat transfer water tubes of boilers Expired - Fee Related JP4008348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379160A JP4008348B2 (en) 2002-12-27 2002-12-27 Method for detecting broken holes in heat transfer water tubes of boilers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379160A JP4008348B2 (en) 2002-12-27 2002-12-27 Method for detecting broken holes in heat transfer water tubes of boilers

Publications (2)

Publication Number Publication Date
JP2004211923A JP2004211923A (en) 2004-07-29
JP4008348B2 true JP4008348B2 (en) 2007-11-14

Family

ID=32815741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379160A Expired - Fee Related JP4008348B2 (en) 2002-12-27 2002-12-27 Method for detecting broken holes in heat transfer water tubes of boilers

Country Status (1)

Country Link
JP (1) JP4008348B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563909B2 (en) * 2010-06-30 2014-07-30 株式会社東芝 Leak detection device
JP2015038422A (en) * 2014-11-25 2015-02-26 三菱重工業株式会社 Heat exchanger and method of estimating residual life of heat exchanger
WO2018003028A1 (en) * 2016-06-29 2018-01-04 東京電力ホールディングス株式会社 Boiler failure determining device, failure determining method, and service method
JP7452703B2 (en) 2020-11-30 2024-03-19 株式会社Ihi Anomaly detection device and anomaly detection method

Also Published As

Publication number Publication date
JP2004211923A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US5353653A (en) Heat exchanger abnormality monitoring system
EP2444869B1 (en) Method and apparatus for generalized performance evaluation of equipment using achievable performance derived from statistics and real-time data
CA2639197C (en) Dual model approach for boiler section cleanliness calculation
US5847266A (en) Recovery boiler leak detection system and method
JP4008348B2 (en) Method for detecting broken holes in heat transfer water tubes of boilers
JP5315844B2 (en) Vapor quality monitoring device
US11371382B2 (en) Steam-using facility monitoring system
KR20140017237A (en) A analytical method for industrial boiler condition using pattern recognition
CN107084382B (en) A kind of component feeds back automatic control boiler drainage
CN107143840B (en) A kind of steam boiler system of intelligent control blowdown reference data
CN108980809B (en) According to the cloud computing boiler system of steam-water ratio auto-control blowdown
CN108006611B (en) A kind of cloud processing steam boiler drainage of adjustment blowing time
CN107289440B (en) A kind of boiler system of cloud computing intelligent control of sewage disposal speed
JP7396212B2 (en) How to detect leakage in boiler heat transfer water pipes
CN111306799A (en) Condensing wall-mounted furnace, water seal assembly and condensate water blocking fault detection method
JP2684239B2 (en) Abnormality diagnosis device for steam-using equipment
CN107101190B (en) A kind of boiler system of cloud computing blowdown reference data
JP4827093B2 (en) Boiler equipment
JP3063514B2 (en) Flow measurement method using pressure sensor
JP5301000B2 (en) Leak site determination apparatus and method
JPH0369898A (en) Operation detector for steam trap
CN107289441B (en) A kind of boiler system of cloud computing intelligent storage blowdown data
JP2684235B2 (en) Abnormality diagnosis device for steam-using equipment
JP2004162948A (en) Steam generating amount measuring device
JP2005106561A (en) Gas leak detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees