JP4008320B2 - Rolled and drawn wire rods for bearings - Google Patents

Rolled and drawn wire rods for bearings Download PDF

Info

Publication number
JP4008320B2
JP4008320B2 JP2002266368A JP2002266368A JP4008320B2 JP 4008320 B2 JP4008320 B2 JP 4008320B2 JP 2002266368 A JP2002266368 A JP 2002266368A JP 2002266368 A JP2002266368 A JP 2002266368A JP 4008320 B2 JP4008320 B2 JP 4008320B2
Authority
JP
Japan
Prior art keywords
rolling
wire
rolled
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002266368A
Other languages
Japanese (ja)
Other versions
JP2004100016A (en
Inventor
俊夫 村上
茂信 難波
正貴 下津佐
大輔 小椋
雅雄 外山
富士雄 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002266368A priority Critical patent/JP4008320B2/en
Publication of JP2004100016A publication Critical patent/JP2004100016A/en
Application granted granted Critical
Publication of JP4008320B2 publication Critical patent/JP4008320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、伸線加工された軸受用伸線材およびその素材となる圧延線材に係り、特に伸線加工前に1次球状化焼鈍を省略して伸線することができる、生引き可能な軸受用圧延線材に関する。
【0002】
【従来の技術】
軸受用線材は、球軸受の鋼球やコロ軸受のコロ等の素材として用いられており、一般的に、鋳塊から熱間圧延した圧延線材を1次球状化焼鈍した後、伸線加工を施し、さらに2次球状化焼鈍した後、仕上伸線することによって製造される。前記鋼球、コロ等の転動部品は、前記伸線材を適宜のサイズに切断し、切断片を概略部品形状に鍛造した後、熱処理が施され、仕上加工されて製造される。
【0003】
軸受用線材を形成する軸受用鋼は、過共析鋼であり、難加工材であるため、圧延線材を直接伸線加工すること(「生引き」という。)は困難であり、材質を軟化し、加工性を改善するため、伸線加工する前に上記のように1次球状化焼鈍が施される。
【0004】
しかし、この球状化焼鈍は、処理時間、コストがかかるため、近年、コスト削減のために1次球状化焼鈍を省略することができる圧延線材が望まれている。
圧延線材を生引き可能にするには、加工性を向上させる必要がある。従来、粗大な初析セメンタイトが破壊の起点になり、圧延線材の加工性を劣化させるものと考えられていた。かかる観点から、初析セメンタイトの面積率、サイズを抑え、加工性を向上させた圧延線材が、例えば特開平8−260046号公報、特開平9−263887号公報に開示され、さらにパーライトのラメラ間隔を0.05〜0.2μm に規制した圧延線材が特開2001−234286号公報に記載されている。
【0005】
【特許文献1】
特開平8−260046号公報(特許請求の範囲)
【特許文献2】
特開平9−263887号公報(特許請求の範囲)
【特許文献3】
特開2001−234286号公報(特許請求の範囲)
【0006】
【発明が解決しようとする課題】
しかしながら、このような圧延線材を用いて伸線し、球状化焼鈍された伸線材を素材として製作された転動部品は、転動疲労特性が劣化し、軸受の耐久性が低下するという問題がある。
本発明は、かかる問題に鑑みなされたもので、最終製品である転動部品に優れた転動疲労特性を付与することができる、生引きが可能な圧延線材および伸線材を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、生引きを可能とする鋼の組織を鋭意研究したところ、加工性劣化の原因は、従来信じられていたように粗大な初析セメンタイトの生成にあるのではなく、パーライト内から生じていることを知見した。本発明は、かかる知見を基に、加工性を改善するには、パーライト内におけるマイクロクラックの進展が可能な最小単位であるコロニーを微細化することによって、球状化焼鈍を省略しても、伸線加工によって破壊し難い過共析鋼組織を得ることができるとの着想の下に完成されたものである。
【0008】
すなわち、本発明の軸受用圧延線材は、 mass%で、
C:0.8〜1.3%、
Si:0.1〜1.0%、
Mn:0.2〜2.0%、
Cr:0.8〜2.0%
を含み、残部Feおよび不可避的不純物からなり、組織が初析セメンタイトおよびパーライトからなり、初析セメンタイトが面積率で3%超、9%以下で、パーライトのコロニーが6μm 以下とされたものである。また、本発明の伸線材は、上記圧延線材を用いて伸線加工した軸受用伸線材であって、鋼材密度が7.70g/cm3 以上であり、かつ平均炭化物粒径が0.65μm 未満とされたものである。
【0009】
【発明の実施の形態】
まず、本発明の圧延線材および伸線材の鋼組成について説明する。以下、単位はmass%である。
【0010】
C:0.8〜1.3%
Cは軸受鋼に必要な強度を確保するために必要な元素であり、0.8%未満では強度不足を招来し、一方1.3%超では強度が過大となり、伸線加工性が劣化するようになる。このため、C量の下限を0.8%、上限を1.3%とする。
【0011】
Si:0.1〜1.0%
Siは脱酸剤として添加され、0.1%未満では脱酸作用が過小であり、一方1.0%超添加すると強度が過大となり、伸線加工性が低下する。このため、Si量の下限を0.1%、上限を1.0%とする。
【0012】
Mn:0.2〜2.0%
Mnは脱酸の効果と焼入れ性確保のために添加される。0.2%未満では十分な効果が得られず、一方2.0%超では圧延後の冷却時に過冷組織が発生して、延性が劣化するようになる。このため、Mn量の下限を0.2%、上限を2.0%とする。
【0013】
Cr:0.8〜2.0%
Crは焼入れ性の向上と、オーステナイト中のセメンタイトの安定性を向上させ、セメンタイトを球状化を促進するために添加される。0.8%未満では十分な効果が得られず、一方2.0%超では焼入れ性が過大となり、圧延後の冷却時に過冷組織が発生し、強度が過大となり、延性が低下する。このため、Cr量の下限を0.8%、上限を2.0%とする。
【0014】
本発明の線材は、上記合金成分の他、典型的には残部Feおよび不可避的不純物で形成されるが、上記作用効果を害しない元素およびその含有範囲として、例えば、Mo:0.2%以下、V:0.1%以下、B:0.0030%以下の1種以上を単独で、あるいは複合して添加することができる。なお、不純物であるP、Sは伸線加工性を阻害するため、少ないほどよい。
【0015】
本発明にかかる過共析鋼の組織は、通常、図1に示すように、旧オーステナイト粒界1に沿って初析セメンタイト2が生成し、その内側にパーライト組織が形成されている。パーライト組織には、旧オーステナイト粒内のフェライトの方位が同じ領域(ノジュールという。)3がいくつか形成され、その一つのノジュール3にはラメラが平行に揃った領域(コロニーという。)4がいくつか形成されている。
【0016】
前記コロニー4は破壊組織単位であり、本発明ではコロニーのサイズを6μm 以下に微細化するので、破壊組織単位が微細化され、延性が向上し、生引き伸線しても、断線しないことはもちろん、密度低下が起こらないようになる。6μm 超では組織が粗大なために延性が劣化し、生引き伸線することができても、伸線材の密度低下が起こり、この伸線材から製造した転動部品の転動疲労特性が悪化する。このため、本発明ではコロニーサイズの上限を6μm とする。コロニーは微細なほどよく、好ましくは2〜5μm とするのがよい。
【0017】
また、初析セメンタイトの析出量が増えるほどパーライト中のC量が低下し、強度が低下するので、生引き伸線性がより向上する。このため、初析セメンタイト量を面積率で3%超とする。初析セメンタイトの面積率が3%以下では強度が1300MPa以上になり、伸線加工性が低下するので、3%超とすることが好ましい。初析セメンタイトの析出量は多ければ多いほど強度が低下するが、熱力学的には9%が限界である。望ましくは5%以上にすることで、強度を1200MPa以下に低下させることができる。
【0018】
次に、本発明の圧延線材の推奨される製造条件について説明する。
本発明の圧延線材は、前記組成の鋼を溶製して鋳造し、図2に示すように、▲1▼鋳造片に1100〜1200℃程度で10〜20hr保持するソーキング処理(鋳造により発生した偏析を軽減するために高温で長時間保持する熱処理)を施した後、鋳造片の温度を制御して、圧延終了温度700〜850℃にて分塊圧延を終了し、線材圧延に適した大きさの鋼片(線材圧延前の鋼塊であり、ビレットと呼ばれる。)を製造する。そして、▲2▼この鋼片を、850〜1000℃に加熱し、圧延温度を制御し、圧延終了温度を700〜850℃として線材圧延(熱間圧延)を行い、▲3▼圧延後、3℃/s以下の冷却速度にて500℃以下まで連続冷却することによって製造される。なお、従来の分塊圧延では、鋳造片の温度コントロールは行われず、鋳造片の温度はソーキングを行った均熱炉を出た段階で1100〜1200℃程度、鋳造片の圧延終了時の温度は900〜1000℃程度である。
【0019】
前記分塊圧延の圧延終了温度を750〜850℃と低温域に設定するのは、線材圧延前の鋼片組織を微細化するためである。750℃未満では鋳造片の強度が高くなるため、圧延に必要な荷重が過大となり、一方850℃超では圧延後にオーステナイトが再結晶し、粗大に成長してしまうため、線材圧延前の組織を微細化することができない。好ましくは775〜825℃である。
【0020】
分塊圧延によって得られた鋼片は、線材圧延に際し、その強度を低下させることが必要であるために加熱されるが、850〜1000℃に加熱することによって、強度を低下させつつ、分塊圧延によって微細化された組織の粗大化を抑制することができる。850℃未満の加熱では粗圧延をするために十分な軟らかさを確保することができず、一方1000℃超に加熱すると、加熱により形成されたオーステナイトが粗大化し、最終組織のパーライトコロニーを微細化することができず、延性が得られないようになる。
線材圧延の圧延終了温度を700〜850℃とするのは、未再結晶温度域での圧延を行い、旧オーステナイト粒を圧延方向にパンケーキ状に伸展させ、単位体積あたりの旧オーステナイト粒界面積を増大させ、パーライトの核生成サイトを多量に導入し、形成されるパーライトのコロニーサイズを微細化するためである。850℃超では、圧延後、パーライト変態が起こるまでに再結晶が起こるため旧オーステナイト粒が等軸状になり、十分な核生成サイトが得られず、一方700℃未満では圧延前にパーライト変態が生じ、変形抵抗が高くなる。好ましくは750〜800℃である。
【0021】
線材圧延後の冷却速度は、オーステナイトからパーライトへの変態を制御する因子である。冷却速度が3℃/s超ではでは冷却中にパーライト変態が完全に終了せずにベイナイトやマルテンサイトが形成され、延性が劣化するおそれがある。冷却速度が小さい分には問題はないが、製造に時間がかかり過ぎるようになるので、1〜2℃/sとするのが好ましい。この冷却速度は、パーライト変態が完全に終了している500℃以下まで維持することが必要である。もっとも、冷却終了温度を500℃以下の範囲で高温にした方が温度を管理する時間が短時間になるので、不必要に低温まで前記冷却速度を維持する必要はない。
【0022】
また、既述のとおり、圧延線材の組織において、初析セメンタイトを3面積%超析出させることによって線材の強度を低下させることができる。このように初析セメンタイトを多量に析出させるには、線材圧延終了後、700℃までの冷却速度を1.8℃/s以下で徐冷するとよい。1.8℃/s超では、初析セメンタイトが十分に析出しないため、強度低下に寄与しないようになるからである。冷却速度が遅いほど強度低下の効果は大きいので、冷却速度は遅ければ遅いほど望ましい。もっとも、生産性を考慮すると、0.01℃/s以上とするのがよい。好ましくは0.1〜0.3℃/sとするのがよい。700℃未満の冷却については、前記のとおり、500℃以下までを3℃/s以下で冷却すればよい。
【0023】
上記のようにして製造された圧延線材は、酸洗後、1次球状化焼鈍が施されることなく、要求される線径に応じて総減面率が10〜80%程度となるように直接伸線加工され、球状化焼鈍されて、本発明の伸線材とされる。前記球状化焼鈍は、常法のとおり、750〜850℃で保持後、550〜700℃までを5〜30℃/hで徐冷すればよい。
【0024】
このようにして製造された伸線材の密度および炭化物粒径について説明する。伸線材の密度は、伸線時に導入された欠陥量の指標になり、欠陥量が多いと、き裂が既に発生していることになり、伸線材から加工される転動部材の転動疲労特性が劣化する。なお、転動疲労の過程は、▲1▼き裂の発生、▲2▼き裂の進展、▲3▼マクロなき裂の進展と剥離の各段階に分けられ、き裂の発生が転動疲労の発端となる。
本発明の伸線材では、密度は7.70g/cm3 以上であり、球状化焼鈍後に伸線した線材と同程度の欠陥導入量に抑えられており、球状化焼鈍材と同等の転動疲労寿命が得られる。密度は高いほど好ましいが、上限は鉄の密度である7.786g/cm3 に止まる。7.70g/cm3 未満では、欠陥量が多く、高振動下、高疲労下での繰り返し疲労において、き裂発生の起点が多く、破壊の進行が早くなるため、転勤疲労寿命が低下する。
【0025】
また、本発明の伸線材の炭化物平均粒径は、0.65μm 未満であり、炭化物粒径が細かいほど耐転動疲労特性は向上する。炭化物粒径は、球状化焼鈍の回数が多いほど大きくなり、従来のように球状化焼鈍を2回行ったものでは、平均粒径が1.0μm 程度になるが、本発明のように球状化焼鈍回数が1回になることで炭化物粒径が均一微細になり、0.65μm 未満に止まる。なお、球状化焼純が終了した段楷の炭化物の面積率は炭素量に比例し、本発明では20〜30%となる。炭化物の単位面積あたりの個数は面積率と炭化物の平均粒径が決まれば計算により算出することができる。
【0026】
次に、実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。
【0027】
【実施例】
表1に示す鋼組成(残部Fe)を有する鋼を連続鋳造し、その鋳造片(200mm角)を1150℃で15hr保持するソーキング処理を行った後、同表に示す分塊圧延終了温度にて鋳造片を分塊圧延し、55mm角の鋼片を得た。次いで同表に示す鋼片加熱温度、線材圧延終了温度にて線材圧延を行い、同表に示す冷却条件にて冷却し、直径8mmの圧延線材を得た。
【0028】
得られた圧延線材を酸洗後、伸線加工した。伸線の総減面率は約34%であり、パススケジュールは、1パス目:8.0mmから7.5mm、2パス目:7.5mmから7.0mm、3パス目:7.0mmから6.5mmとした。その後、球状化焼鈍を施した。焼鈍条件は8000℃、3時間保持後、600℃まで10℃/sで冷却した。さらに、この伸線材を切断、鍛造、研磨して直径6.35mmの軸受鋼球を製作し、820℃で30分保持後油冷し、150℃で30分保持する焼き戻しを施した。
【0029】
下記の方法にて、上記圧延線材の引張強度、初析セメンタイト(初析θ)面積率、コロニーサイズを調べた。また、上記伸線材の線材密度、炭化物平均粒径を調べた。さらに、前記鋼球を用いて転動疲労寿命を測定した。これらの測定結果を表2に示す。同表中には、生引伸線性についても示した。生引き伸線性は、直径8mmの線材100kgを伸線し、破断した回数を測定し、断線ゼロを○、断線1〜5回を△、断線6回以上を×として示す。なお、表中の試料No. 1は、1次球状化焼鈍後に伸線した従来例を示し、生引伸線性が×のものについては伸線材の密度等および転動疲労寿命の測定は行わなかった。
【0030】
引張強度は、JISZ2201(金属材料引張試験片)9号試験片を用いてJISZ2241(金属材料引張試験方法)によって測定された。
【0031】
コロニーサイズおよび初析セメンタイト面積率は、組織観察片を鏡面に研磨した後、2%ナイタールで腐食した後、走査型電子顕微鏡(JEOL製JSM−5410)で倍率5000倍で10視野を観察することとし、コロニー(ラメラが平行に並んだ領域)サイズは切片法により測定し、初析セメンタイト(旧オーステナイト粒界に沿って生成したセメンタイト)の面積を画像解析用ソフトウェア(商品名Image-Pro)を用いて測定した。
【0032】
球状炭化物平均粒径は、抽出レプリカ法を用いてセメンタイトを抽出し、前記走査型電子顕微鏡でランダムに10視野観察し、全炭化物の直径を測定し、それらの平均値を求めた。
【0033】
線材の密度は、表面スケールを取り除くため酸洗を施した後、JISZ8807の固体密度測定方法を用いて測定した。
【0034】
転動疲労寿命は、図3に示すように、スラスト式寿命試験機を用い、1鋼種につき20個測定し、メジアン寿命を採用した。前記試験機は、円板状の基盤(材質SUJ2)11に鋼球12を載置し、これに荷重(1個当たり1000N)をかけながら基盤を1000rpmで回転させるものであり、鋼球表面に剥離(フレーキング)が発生した時点での総回転数を転動疲労寿命とした。なお、表2では、試料No. 1(従来例)の寿命を1とし、これとの寿命比を示した。
【0035】
【表1】

Figure 0004008320
【0036】
【表2】
Figure 0004008320
【0037】
表1および表2より、成分および組織条件を満足する試料No. 2,5,9,10(実施例)は、生引伸線性に優れ、しかも伸線材から製作した鋼球の転動寿命も従来例(No. 1)に比して、1.6倍のものが1点あるものの、他は2倍超と優れている。No. 3,4,6,8,11は本発明成分範囲を満足するものの、製造条件が適切でないため組織条件を満足しておらず、生引伸線性に劣り、No. 3については転動疲労寿命が著しく劣化している。また、No. 12〜19は製造条件は適切であるものの、本発明成分範囲を満足しておらず、生引伸線性が概ね劣り、良好なもの(No. 12,19)では転動疲労寿命が悪化している。
前記比較例について具体的に見ると、No. 3は分塊圧延終了温度が高いため、No. 4は線材圧延の際の鋼片加熱温度が高いため、またNo. 6は線材圧延終了温度が高いため、各々コロニーサイズが粗大化し、生引伸線性が劣化している。また、No. 8およびNo. 11は、冷却速度が過大であるため、過冷組織が形成され、やはり生引伸線性が劣化している。
また、試料No. 12はC量が過少であるため、十分な硬さを確保することができず、転動寿命が低下している。No. 13はC量が過多であるため、強度が過大となり、延性が劣化して生引伸線性が劣化している。No. 14および16はSi量、Mn量が過少であるため、介在物に起因した破断が発生し、生引伸線性に問題がある。No. 15はSi量が過多のため、強度が過大となり、延性が劣化するため、生引伸線性が劣化している。No. 17,18はMn量、Cr量が過多のため強度が過大となり、生引伸線性に問題がある。また、No. 19はCr量が過少なため、炭化物の球状化ができず、転動疲労寿命が低下している。
【0038】
【発明の効果】
本発明の軸受用圧延線材は、所定の成分の下、初析セメンタイトが面積率で3%超、9%以下とし、破壊の単位となるパーライトのコロニーサイズを6μm 以下としたので、強度が1300MPa未満となって、優れた生引き伸線性が得られると共に、この圧延線材を伸線加工し、得られた伸線材を素材として加工することによって優れた転動疲労特性を有する転動部品を得ることができる。
【図面の簡単な説明】
【図1】過共析鋼の組織を示す模式図である。
【図2】本発明の圧延線材の製造方法を示す加工熱処理線図である。
【図3】転動寿命の測定要領を示す説明図である。
【符号の説明】
1 旧オーステナイト粒界
2 初析セメンタイト
3 ノジュール
4 コロニー[0001]
[Technical field to which the invention belongs]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drawn wire for a bearing that has been drawn and a rolled wire used as the material, and in particular, a bearing that can be drawn by omitting primary spheroidizing annealing before the drawing. It relates to a rolled wire rod.
[0002]
[Prior art]
The bearing wire is used as a material for a ball of a ball bearing or a roller of a roller bearing. In general, a rolled wire that has been hot-rolled from an ingot is subjected to primary spheroidizing annealing, followed by wire drawing. It is manufactured by subjecting it to secondary spheroidizing annealing and then finish drawing. The rolling parts such as the steel balls and the rollers are manufactured by cutting the wire drawing material into an appropriate size, forging the cut pieces into an approximate part shape, and then performing heat treatment and finishing.
[0003]
The bearing steel that forms the bearing wire is hypereutectoid steel, which is difficult to process, so it is difficult to directly draw the rolled wire (called “raw drawing”) and soften the material. In order to improve workability, primary spheroidizing annealing is performed as described above before drawing.
[0004]
However, since this spheroidizing annealing requires processing time and cost, in recent years, a rolled wire rod that can omit the primary spheroidizing annealing is desired for cost reduction.
It is necessary to improve workability in order to allow the rolled wire rod to be raw. In the past, coarse pro-eutectoid cementite was considered to be the starting point of fracture and to deteriorate the workability of the rolled wire rod. From this point of view, rolled wire rods with reduced area ratio and size of pro-eutectoid cementite and improved workability are disclosed in, for example, JP-A-8-260046 and JP-A-9-263887, and further, pearlite lamellar spacing. Japanese Unexamined Patent Publication No. 2001-234286 describes a rolled wire rod having a thickness of 0.05 to 0.2 μm.
[0005]
[Patent Document 1]
JP-A-8-260046 (Claims)
[Patent Document 2]
Japanese Patent Laid-Open No. 9-263887 (Claims)
[Patent Document 3]
JP 2001-234286 A (Claims)
[0006]
[Problems to be solved by the invention]
However, the rolling parts that are drawn using such a rolled wire and made from a spheroidized annealed wire have a problem that the rolling fatigue characteristics deteriorate and the durability of the bearing decreases. is there.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a rolled wire rod and a wire rod that can be subjected to raw drawing, which can impart excellent rolling fatigue characteristics to a rolling component that is a final product. And
[0007]
[Means for Solving the Problems]
The present inventor has intensively studied the structure of steel that can be bred, and the cause of the workability deterioration is not the formation of coarse pro-eutectoid cementite as believed in the past, but from within the pearlite. I found out that it occurred. In order to improve the workability based on such knowledge, the present invention refines the colony, which is the smallest unit capable of developing microcracks in pearlite, so that even if the spheroidizing annealing is omitted, the elongation is reduced. It was completed based on the idea that a hypereutectoid steel structure that is difficult to break by wire processing can be obtained.
[0008]
That is, the rolled wire rod for bearings of the present invention is mass%,
C: 0.8 to 1.3%
Si: 0.1 to 1.0%,
Mn: 0.2 to 2.0%,
Cr: 0.8 to 2.0%
Includes, and a balance of Fe and unavoidable impurities, the tissue is composed of pro-eutectoid cementite and pearlite, 3% more than the pro-eutectoid cementite area ratio, 9% or less, in which colonies of pearlite is a 6μm or less . The wire drawing material of the present invention is a wire drawing material for bearings drawn using the above rolled wire material, and has a steel material density of 7.70 g / cm 3 or more and an average carbide particle size of less than 0.65 μm. It is said that.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, the steel composition of the rolled wire rod and wire rod of the present invention will be described. Hereinafter, the unit is mass%.
[0010]
C: 0.8 to 1.3%
C is an element necessary for ensuring the strength required for the bearing steel. If less than 0.8%, the strength is insufficient. On the other hand, if it exceeds 1.3%, the strength becomes excessive and the wire drawing workability deteriorates. It becomes like this. For this reason, the lower limit of the C amount is 0.8%, and the upper limit is 1.3%.
[0011]
Si: 0.1 to 1.0%
Si is added as a deoxidizer, and if it is less than 0.1%, the deoxidation action is too small. On the other hand, if it exceeds 1.0%, the strength becomes excessive and the wire drawing processability is lowered. For this reason, the lower limit of the Si amount is 0.1%, and the upper limit is 1.0%.
[0012]
Mn: 0.2 to 2.0%
Mn is added to ensure the effect of deoxidation and ensure hardenability. If it is less than 0.2%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 2.0%, a supercooled structure is generated during cooling after rolling, and the ductility deteriorates. For this reason, the lower limit of the amount of Mn is 0.2%, and the upper limit is 2.0%.
[0013]
Cr: 0.8 to 2.0%
Cr is added to improve hardenability, improve the stability of cementite in austenite, and accelerate cementation of cementite. If it is less than 0.8%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 2.0%, the hardenability becomes excessive, a supercooled structure is generated during cooling after rolling, the strength becomes excessive, and the ductility is lowered. For this reason, the lower limit of the Cr amount is 0.8% and the upper limit is 2.0%.
[0014]
The wire of the present invention is typically formed with the balance of Fe and unavoidable impurities in addition to the alloy components described above, but as an element that does not impair the above-described effects and the content range, for example, Mo: 0.2% or less , V: 0.1% or less, B: 0.0030% or less can be added alone or in combination. In addition, since P and S which are impurities inhibit wire drawing workability, it is so preferable that there are few.
[0015]
In the hypereutectoid steel according to the present invention, as shown in FIG. 1, proeutectoid cementite 2 is usually generated along the prior austenite grain boundary 1, and a pearlite structure is formed on the inside thereof. In the pearlite structure, several regions (referred to as nodules) 3 having the same orientation of ferrite in the prior austenite grains are formed, and one nodule 3 includes several regions (referred to as colonies) 4 in which lamellas are arranged in parallel. Is formed.
[0016]
The colony 4 is a fractured tissue unit, and in the present invention, the size of the colony is refined to 6 μm or less. Therefore, the fractured tissue unit is refined, the ductility is improved, and even if the raw drawing is performed, it does not break. Of course, no decrease in density occurs. When the thickness exceeds 6 μm, the ductility deteriorates due to the coarse structure, and even if the wire drawing can be performed, the density of the wire drawing material decreases, and the rolling fatigue characteristics of the rolling parts manufactured from this wire drawing material deteriorate. . For this reason, in this invention, the upper limit of colony size shall be 6 micrometers. The finer the colonies, the better, preferably 2 to 5 μm.
[0017]
Moreover, since the amount of C in pearlite decreases and the strength decreases as the amount of pro-eutectoid cementite increases, the raw drawing property is further improved. For this reason, the amount of pro-eutectoid cementite is made more than 3% by area ratio. When the area ratio of pro-eutectoid cementite is 3% or less, the strength is 1300 MPa or more, and the wire drawing workability is lowered. The greater the amount of pro-eutectoid cementite deposited, the lower the strength, but the thermodynamic limit is 9%. Desirably, the strength can be reduced to 1200 MPa or less by setting it to 5% or more.
[0018]
Next, recommended manufacturing conditions for the rolled wire rod of the present invention will be described.
The rolled wire rod according to the present invention is prepared by melting and casting the steel having the above composition and, as shown in FIG. 2, (1) a soaking process (generated by casting) that holds the cast piece at about 1100 to 1200 ° C. for about 10 to 20 hours. After heat treatment for a long time at a high temperature in order to reduce segregation, the temperature of the cast piece is controlled, and the bulk rolling is finished at a rolling finish temperature of 700 to 850 ° C., which is suitable for wire rolling. A steel slab (a steel ingot before wire rod rolling, called billet) is manufactured. (2) This steel slab is heated to 850 to 1000 ° C., the rolling temperature is controlled, the rolling end temperature is set to 700 to 850 ° C., wire rolling (hot rolling) is performed, and (3) after rolling, 3 It is manufactured by continuously cooling to 500 ° C. or less at a cooling rate of ° C./s or less. In the conventional partial rolling, the temperature control of the cast piece is not performed, and the temperature of the cast piece is about 1100 to 1200 ° C. when the soaking is performed in the soaking furnace, and the temperature at the end of rolling of the cast piece is It is about 900-1000 degreeC.
[0019]
The reason for setting the rolling end temperature of the above-mentioned block rolling to a low temperature range of 750 to 850 ° C. is to refine the steel slab structure before wire rod rolling. If the temperature is lower than 750 ° C, the strength of the cast piece becomes high, so that the load necessary for rolling becomes excessive. On the other hand, if the temperature exceeds 850 ° C, austenite recrystallizes after rolling and grows coarsely. Can not be converted. Preferably it is 775-825 degreeC.
[0020]
The steel slab obtained by the block rolling is heated because it is necessary to reduce the strength during the wire rolling, but by heating to 850 to 1000 ° C., the block is reduced while reducing the strength. The coarsening of the structure refined by rolling can be suppressed. Heating below 850 ° C does not ensure sufficient softness for rough rolling, while heating above 1000 ° C coarsens austenite formed by heating and refines the pearlite colony of the final structure. It is not possible to obtain ductility.
The rolling end temperature of wire rod rolling is set to 700 to 850 ° C. The rolling is performed in a non-recrystallization temperature range, the old austenite grains are expanded in a pancake shape in the rolling direction, and the interface area between the old austenite grains per unit volume is set. This is because a large amount of pearlite nucleation sites are introduced and the size of the pearlite colony formed is reduced. Above 850 ° C, recrystallization occurs after rolling until pearlite transformation occurs, so that the prior austenite grains become equiaxed, and sufficient nucleation sites cannot be obtained. On the other hand, below 700 ° C, pearlite transformation occurs before rolling. And deformation resistance is increased. Preferably it is 750-800 degreeC.
[0021]
The cooling rate after wire rod rolling is a factor that controls the transformation from austenite to pearlite. When the cooling rate exceeds 3 ° C./s, pearlite transformation is not completely completed during cooling, and bainite and martensite are formed, and ductility may be deteriorated. Although there is no problem if the cooling rate is low, it takes too much time for production, so it is preferable to set the temperature to 1 to 2 ° C./s. It is necessary to maintain this cooling rate to 500 ° C. or less at which the pearlite transformation is completely completed. However, since it takes a shorter time to manage the temperature when the cooling end temperature is set to a high temperature in the range of 500 ° C. or lower, it is not necessary to maintain the cooling rate to an unnecessarily low temperature.
[0022]
Further, as described above, the strength of the wire can be reduced by precipitating more than 3 area% of proeutectoid cementite in the structure of the rolled wire. Thus, in order to precipitate a large amount of pro-eutectoid cementite, it is preferable to slowly cool the cooling rate to 700 ° C. at 1.8 ° C./s or less after the end of wire rod rolling. This is because if it exceeds 1.8 ° C./s, the pro-eutectoid cementite does not sufficiently precipitate, so that it does not contribute to the strength reduction. The slower the cooling rate, the greater the effect of reducing the strength. Therefore, the slower the cooling rate, the better. However, considering productivity, it is good to set it as 0.01 degrees C / s or more. Preferably it is 0.1-0.3 degreeC / s. About cooling below 700 degreeC, what is necessary is just to cool to 500 degrees C or less at 3 degrees C / s or less as above-mentioned.
[0023]
The rolled wire manufactured as described above is not subjected to primary spheroidizing annealing after pickling, so that the total area reduction is about 10 to 80% depending on the required wire diameter. Direct wire drawing and spheroidizing annealing are performed to obtain the wire drawing material of the present invention. The spheroidizing annealing may be performed at a temperature of 750 to 850 ° C. and then gradually cooled to 550 to 700 ° C. at 5 to 30 ° C./h as usual.
[0024]
The density and carbide particle size of the wire drawing material thus manufactured will be described. The density of the wire drawing material is an index of the amount of defects introduced at the time of wire drawing, and if the amount of defects is large, cracks have already occurred, and rolling fatigue of rolling members processed from the wire drawing material Characteristics deteriorate. The process of rolling fatigue is divided into the following stages: (1) crack initiation, (2) crack growth, and (3) macro crack growth and delamination. The beginning of.
In the drawn wire of the present invention, the density is 7.70 g / cm 3 or more, and the amount of defects introduced is the same as that of the wire drawn after spheroidizing annealing, and the rolling fatigue equivalent to that of the spheroidizing annealed material is achieved. Life expectancy is obtained. The higher the density, the better, but the upper limit is limited to the iron density of 7.786 g / cm 3 . If it is less than 7.70 g / cm 3 , the amount of defects is large, and in repeated fatigue under high vibration and high fatigue, there are many starting points of crack generation and the progress of fracture is accelerated, so that the transfer fatigue life is reduced.
[0025]
In addition, the carbide average particle size of the wire drawing material of the present invention is less than 0.65 μm, and the smaller the carbide particle size, the better the rolling fatigue resistance. The carbide particle size increases as the number of spheroidizing annealing is increased, and the average particle size becomes about 1.0 μm in the case where the spheroidizing annealing is performed twice as in the prior art. By making the number of annealing times one, the carbide particle size becomes uniform and fine, and it remains below 0.65 μm. In addition, the area ratio of the carbide in the stage after the spheroidizing refractory is proportional to the amount of carbon, and is 20 to 30% in the present invention. The number of carbides per unit area can be calculated by calculation if the area ratio and the average particle size of the carbides are determined.
[0026]
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
[0027]
【Example】
After continuously casting a steel having the steel composition shown in Table 1 (remainder Fe) and performing a soaking process in which the cast piece (200 mm square) is held at 1150 ° C. for 15 hours, at the end of the rolling temperature shown in the same table The cast piece was rolled into blocks to obtain 55 mm square steel pieces. Subsequently, wire rolling was performed at the steel slab heating temperature and the wire rolling end temperature shown in the same table, and cooling was performed under the cooling conditions shown in the same table to obtain a rolled wire having a diameter of 8 mm.
[0028]
The obtained rolled wire was pickled and then drawn. The total area reduction of wire drawing is about 34%, and the pass schedule is from the first pass: 8.0 mm to 7.5 mm, the second pass: 7.5 mm to 7.0 mm, and the third pass: 7.0 mm It was set to 6.5 mm. Thereafter, spheroidizing annealing was performed. Annealing conditions were 8000 ° C., held for 3 hours, and then cooled to 600 ° C. at 10 ° C./s. Further, this wire drawing material was cut, forged and polished to produce a bearing steel ball having a diameter of 6.35 mm, held at 820 ° C. for 30 minutes, then oil-cooled, and tempered at 150 ° C. for 30 minutes.
[0029]
The tensile strength, pro-eutectoid cementite (prime-deposition θ) area ratio, and colony size of the rolled wire rod were examined by the following method. Further, the wire density and carbide average particle diameter of the wire drawing material were examined. Furthermore, the rolling fatigue life was measured using the steel balls. These measurement results are shown in Table 2. In the same table, the raw drawability is also shown. The raw drawability is obtained by drawing 100 kg of a wire having a diameter of 8 mm, measuring the number of breaks, ◯ indicating zero breakage, Δ for one to five breaks, and x for six or more breaks. Sample No. 1 in the table shows a conventional example of wire drawing after primary spheroidizing annealing, and the density of the wire drawing material and the rolling fatigue life were not measured for those having a raw drawability of x. .
[0030]
The tensile strength was measured by JISZ2241 (metal material tensile test method) using a JISZ2201 (metal material tensile test piece) No. 9 test piece.
[0031]
The colony size and pro-eutectoid cementite area ratio are determined by observing 10 fields of view with a scanning electron microscope (JSMOL JSM-5410) at a magnification of 5000 times after the tissue observation piece is polished to a mirror surface and corroded with 2% nital. The size of the colony (region where the lamellae are arranged in parallel) is measured by the intercept method, and the area of proeutectoid cementite (cementite generated along the former austenite grain boundary) is calculated using image analysis software (trade name Image-Pro). And measured.
[0032]
For the average particle size of the spherical carbide, cementite was extracted using the extraction replica method, 10 fields of view were randomly observed with the scanning electron microscope, the diameter of all the carbides was measured, and the average value was obtained.
[0033]
The density of the wire was measured using the solid density measuring method of JISZ8807 after pickling to remove the surface scale.
[0034]
As shown in FIG. 3, the rolling fatigue life was measured by 20 pieces per steel type using a thrust life tester, and the median life was adopted. In the test machine, a steel ball 12 is placed on a disk-shaped base (material SUJ2) 11, and the base is rotated at 1000 rpm while applying a load (1000 N per piece) to the surface of the steel ball. The total number of revolutions when peeling (flaking) occurred was defined as the rolling fatigue life. In Table 2, the life of Sample No. 1 (conventional example) is assumed to be 1, and the life ratio with this is shown.
[0035]
[Table 1]
Figure 0004008320
[0036]
[Table 2]
Figure 0004008320
[0037]
From Tables 1 and 2, Sample Nos. 2, 5 , 9 , and 10 (Examples) that satisfy the components and the structural conditions are excellent in raw drawing performance, and the rolling life of steel balls manufactured from the drawn wire is also conventional. Compared to the example (No. 1), there is one point of 1.6 times, but the others are more than twice as good. Nos. 3, 4, 6, 8, and 11 satisfy the composition range of the present invention, but the manufacturing conditions are not appropriate, so that the structural conditions are not satisfied, the raw drawing property is inferior. The service life has deteriorated significantly. In addition, although No. 12 to 19 are suitable for production conditions, they do not satisfy the component range of the present invention, the raw drawing property is generally inferior, and those having good (No. 12, 19) have a rolling fatigue life. It is getting worse.
Looking specifically at the comparative example, No. 3 has a high end rolling temperature, No. 4 has a higher billet heating temperature during wire rolling, and No. 6 has a lower end rolling temperature. Since it is high, the colony size is coarsened and the raw drawing property is deteriorated. In No. 8 and No. 11, since the cooling rate is excessive, a supercooled structure is formed, and the raw drawing property is also deteriorated.
Sample No. 12 has an insufficient amount of C, so that sufficient hardness cannot be ensured and the rolling life is reduced. In No. 13, since the amount of C is excessive, the strength becomes excessive, the ductility deteriorates, and the raw drawing property deteriorates. In Nos. 14 and 16, since the amounts of Si and Mn are too small, breakage due to inclusions occurs, and there is a problem in the drawability. In No. 15, since the Si amount is excessive, the strength becomes excessive and the ductility deteriorates, so that the raw drawing property deteriorates. Nos. 17 and 18 are excessive in strength due to excessive amounts of Mn and Cr, and there is a problem in the drawability. In No. 19, since the amount of Cr is too small, the spheroidizing of the carbide cannot be performed, and the rolling fatigue life is reduced.
[0038]
【The invention's effect】
The rolling rolled wire for bearings of the present invention has a strength of 1300 MPa because the pro-eutectoid cementite has an area ratio of more than 3% and not more than 9% under a predetermined component, and the pearlite colony size as a unit of fracture is not more than 6 μm. As a result, it is possible to obtain a rolling component having excellent rolling fatigue characteristics by drawing the rolled wire and using the obtained drawn wire as a raw material. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the structure of hypereutectoid steel.
FIG. 2 is a thermomechanical diagram showing a method for producing a rolled wire according to the present invention.
FIG. 3 is an explanatory diagram showing a measuring procedure of rolling life.
[Explanation of symbols]
1 Old austenite grain boundary 2 Proeutectoid cementite 3 Nodule 4 Colony

Claims (2)

mass%で、
C:0.8〜1.3%、
Si:0.1〜1.0%、
Mn:0.2〜2.0%、
Cr:0.8〜2.0%
を含み、残部Feおよび不可避的不純物からなり、組織が初析セメンタイトおよびパーライトからなり、初析セメンタイトが面積率で3%超、9%以下で、パーライトのコロニーが6μm 以下である軸受用圧延線材。
mass%
C: 0.8 to 1.3%
Si: 0.1 to 1.0%,
Mn: 0.2 to 2.0%,
Cr: 0.8 to 2.0%
, Balance Fe and inevitable impurities, the structure is composed of pro-eutectoid cementite and pearlite, the pro-eutectoid cementite is more than 3% and less than 9% in area ratio, and the pearlite colony is less than 6 μm .
請求項1に記載した圧延線材を用いて伸線加工した軸受用伸線材であって、
鋼材密度が7.70g/cm3 以上であり、かつ平均炭化物粒径が0.65μm 未満である軸受用伸線材。
A wire drawing material for bearings drawn using the rolled wire material according to claim 1 ,
A wire drawing material for bearings having a steel material density of 7.70 g / cm 3 or more and an average carbide particle size of less than 0.65 μm.
JP2002266368A 2002-09-12 2002-09-12 Rolled and drawn wire rods for bearings Expired - Fee Related JP4008320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266368A JP4008320B2 (en) 2002-09-12 2002-09-12 Rolled and drawn wire rods for bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266368A JP4008320B2 (en) 2002-09-12 2002-09-12 Rolled and drawn wire rods for bearings

Publications (2)

Publication Number Publication Date
JP2004100016A JP2004100016A (en) 2004-04-02
JP4008320B2 true JP4008320B2 (en) 2007-11-14

Family

ID=32265196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266368A Expired - Fee Related JP4008320B2 (en) 2002-09-12 2002-09-12 Rolled and drawn wire rods for bearings

Country Status (1)

Country Link
JP (1) JP4008320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256119A (en) * 2014-07-16 2016-01-20 鞍钢股份有限公司 Control method of net-shaped cementite in ultrahigh-carbon cord steel wire rod

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646866B2 (en) * 2006-01-24 2011-03-09 株式会社神戸製鋼所 BEARING STEEL WIRE EXCELLENT IN DRAWING AND METHOD FOR PRODUCING THE SAME
US9593389B2 (en) 2007-12-20 2017-03-14 Posco Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel
KR101271837B1 (en) * 2010-12-21 2013-06-07 주식회사 포스코 Hyper eutectoid steel wire having high strength and ductility and method for manufacturing the same
KR101271978B1 (en) * 2010-12-21 2013-06-05 주식회사 포스코 Hyper eutectoid wire rod having high strength and ductility and method for manufacturing the same
WO2012160677A1 (en) * 2011-05-25 2012-11-29 株式会社神戸製鋼所 Bearing steel with excellent cold workability
KR101328320B1 (en) * 2011-12-20 2013-11-11 주식회사 포스코 Hyper eutectoid wire rod having high strength and method for manufacturing the same
US9169530B2 (en) 2012-01-20 2015-10-27 Nippon Steel & Sumitomo Metal Corporation Rolled wire rod and manufacturing method thereof
KR101543853B1 (en) 2013-09-26 2015-08-11 주식회사 포스코 High carbon and chromium bearing steel without spheroidizing heat treatment and method for manufacturing the same
SG11201605570XA (en) 2014-01-10 2016-08-30 Nippon Steel & Sumitomo Metal Corp Bearing part
SG11201702762WA (en) 2014-10-20 2017-06-29 Nippon Steel & Sumitomo Metal Corp Steel wire rod for bearings having excellent drawability and coil formability after drawing
JP6193842B2 (en) * 2014-12-11 2017-09-06 株式会社神戸製鋼所 Steel wire rod for bearing
KR101767763B1 (en) 2015-12-22 2017-08-14 주식회사 포스코 Pearlite steel material having excellent ductility and impact toughness, and method for manufacturing the same
CN107142417B (en) * 2017-07-07 2018-06-01 中天钢铁集团有限公司 A kind of file carbon, C steel wire rod and preparation method thereof
KR102153195B1 (en) * 2018-12-18 2020-09-07 주식회사 포스코 Steel wire rod enabling omission of softening heat treatment and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256119A (en) * 2014-07-16 2016-01-20 鞍钢股份有限公司 Control method of net-shaped cementite in ultrahigh-carbon cord steel wire rod

Also Published As

Publication number Publication date
JP2004100016A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP6160783B2 (en) Steel sheet and manufacturing method thereof
JP5026626B2 (en) Steel wire excellent in cold forgeability and manufacturing method thereof
JP5776623B2 (en) Steel wire rods / bars with excellent cold workability and manufacturing method thereof
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
JP4008320B2 (en) Rolled and drawn wire rods for bearings
JP2006200039A (en) High carbon steel wire material having excellent wire drawability and manufacturing process thereof
JP3971571B2 (en) Steel wire for high strength spring
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JP6226082B2 (en) Steel wire rod for bearings with excellent wire formability and coil formability after wire drawing
JP5986434B2 (en) Seamless steel pipe for hollow spring
JP2004190127A (en) Wire rod and steel bar for bearing having spherodized carbide structure, and manufacturing method therefor
JP2016216809A (en) Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor
JP3950682B2 (en) Manufacturing method of hot rolled wire rod for bearing
JP5124847B2 (en) Rolling method of high carbon chromium bearing steel
JP3815095B2 (en) Direct spheroidizing annealing method for low alloy wire
JP2003129176A (en) Steel wire or rod superior in wire drawability capable of omitting heat treatment prior to wire drawing, and bearing parts
JP7334868B2 (en) steel parts
JP7329780B2 (en) Cold-rolled steel and steel parts
JP7389909B2 (en) Bearing wire rod and its manufacturing method
US20240254588A1 (en) Wire rod having excellent drawability, and manufacturing method therefor
JP3582371B2 (en) Method for manufacturing high carbon chromium steel wire and mechanical structural parts
JP2024521184A (en) Wire rod with excellent drawability and its manufacturing method
JP4023224B2 (en) Hot-rolled steel sheet and automotive parts with excellent rotary ironing workability
JP2022122482A (en) Hot rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4008320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees