JP4007693B2 - PWM inverter device - Google Patents

PWM inverter device Download PDF

Info

Publication number
JP4007693B2
JP4007693B2 JP19664398A JP19664398A JP4007693B2 JP 4007693 B2 JP4007693 B2 JP 4007693B2 JP 19664398 A JP19664398 A JP 19664398A JP 19664398 A JP19664398 A JP 19664398A JP 4007693 B2 JP4007693 B2 JP 4007693B2
Authority
JP
Japan
Prior art keywords
command
phase angle
modulation rate
frequency
inputting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19664398A
Other languages
Japanese (ja)
Other versions
JP2000014200A (en
Inventor
正志 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP19664398A priority Critical patent/JP4007693B2/en
Publication of JP2000014200A publication Critical patent/JP2000014200A/en
Application granted granted Critical
Publication of JP4007693B2 publication Critical patent/JP4007693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は交流電動機を制御するPWMインバータ装置に関するもので、特に電圧指令をキャリアに同期させるPWM制御(以下、キャリア同期モードと称す)に関するものである。
【0002】
【従来の技術】
図2は、一従来例を示すブロック図であり、1はベクトル制御手段、2は誘導機、3は積分器、4は極座標変換器、5は加算器、6は変調率指令演算器、7はキャリア周波数演算器、8はキャリア比較手段、9は電力変換器である。以下、図2に従い動作を説明する。
【0003】
ベクトル制御手段1は、磁束指令φ*とトルク指令τ*を入力し、ベクトル制御演算を実施し、d軸電圧指令Vd*とq軸電圧指令Vq*を出力する。極座標変換器4は、d軸電圧指令Vd*とq軸電圧指令Vq*から数1を用いて、変調率指令大きさα0と制御位相角θPIを演算する。
【0004】
【数1】

Figure 0004007693
【0005】
ここで、VDCはインバータ直流電圧である。
積分器3は、周波数指令ω*を数2で積分し、磁束位相角θfを出力する。
【0006】
【数2】
Figure 0004007693
【0007】
加算器5は、極座標変換器の出力である制御位相角θPIと積分器の出力である磁束位相角θfを数3に示すごとく、
【0008】
【数3】
Figure 0004007693
【0009】
と加算し、変調率指令位相角θを出力する。
変調率指令演算器6は、変調率指令大きさα0と変調率指令位相角θから、変調率指令α*を演算する。
キャリア周波数演算器7は、数4に従い、キャリア周波数fcを演算する。
【0010】
【数4】
Figure 0004007693
【0011】
ここで、nは変調率指令α*の1周期に対するキャリア半周期の比である。
キャリア比較手段8は、キャリア周波数演算器7で演算されたキャリア周波数fcで変調率指令α*をキャリア比較し、スイッチングパルスGを出力する。なお、キャリア周波数演算器7に入力されるキャリア切り替え信号SW1は、キャリア周波数を一定とするモードと、キャリア同期モードとを切り替える信号である。
スイッチングパルスGは、電力変換器9に与えられ、誘導機2の速度、トルクを制御する。
【0012】
【発明が解決しようとする課題】
しかしながら、従来技術においては、以下に示す問題点がある。
キャリア周波数fcは、(5)式で演算されるが、(4)式によれば、(5)式中には制御位相角θPIの微分項が入ってくる。制御位相角θPIはベクトル制御手段1の出力から演算され、細かく振動することが予想される。
よって、細かく振動する制御位相角θPIを微分して得られるキャリア周波数fcは、大きく振動するおそれがある。キャリア周波数fcが大きく振動すれば、PWMインバータ負荷に供給される電圧が不安定となる。
本発明は上述した点に鑑みて創案されたもので、その目的とするところは、これらの欠点を解決し、PWMインバータ負荷に供給される電圧が不安定とならないPWMインバータ装置を提供するものである。
【0013】
【課題を解決するための手段】
前述の問題点を解決するために、本発明では以下の手段を施す。
請求項1においては、従来技術に対し、キャリア周波数演算器7に周波数指令ω*を新たに入力する。
【0014】
請求項2においては、磁束指令φ*とトルク指令τ*と検出速度ωmとを入力し、周波数指令ω*を演算する周波数演算器10を追加する。
【0015】
【発明の実施の形態】
図1は本発明の一実施例を示すブロック図である。ここでは、従来技術に対して変更した点のみを説明する。
キャリア周波数演算器7は、周波数指令ω*を入力し、数5にてキャリア周波数fcを演算する。
【0016】
【数5】
Figure 0004007693
【0017】
なお、加算器5の出力である変調率指令位相角θを用いて、変調率指令1周期に対するキャリア半周期の比nを変えることによりキャリアと変調率指令α*の位相合わせを行う。これにより、(6)式中には微分演算がなくなり、キャリア周波数fcは安定となる。
周波数指令演算器10では周波数指令ω*を演算する。ここでは、周波数指令ω*演算の一例を示す。最初に、磁束指令φ*とトルク指令τ*からすべり周波数指令ωs*を数6で演算する。
【0018】
【数6】
Figure 0004007693
【0019】
ここで、R2は誘導機2の二次抵抗値である。その後、検出速度ωmとすべり周波数指令ωs*を数7に示すように、
【0020】
【数7】
Figure 0004007693
【0021】
で加算して周波数指令ω*を得る。このように、周波数指令ω*を磁束指令φ*とトルク指令τ*と検出速度ωmより演算することにより、周波数指令ω*が安定し、キャリア周波数fcは安定する。
【0022】
【発明の効果】
以上説明したように本発明によれば、キャリア同期PWM制御において、安定したキャリア周波数が得られる。また、キャリア周波数が安定することにより、PWMインバータ負荷に安定した電圧を与えることができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すブロック図である。
【図2】従来例を示すブロック図である。
【符号の説明】
1 ベクトル制御手段
2 誘導機
3 積分器
4 極座標変換器
5 加算器
6 変調率指令演算器
7 キャリア周波数演算器
8 キャリア比較手段
9 電力変換器
10 周波数指令演算器
φ* 磁束指令
τ* トルク指令
ωm 検出速度
fc キャリア周波数
Vd* d軸電圧指令
Vq* q軸電圧指令
ω* 周波数指令
α0 変調率指令の大きさ
θPI 制御位相角
θf 磁束位相角
θ 変調率指令位相角
α* 変調率指令
G スイッチングパルス
SW1 キャリア切り替え信号
VDC インバータ直流電圧
n 変調率指令1周期に対するキャリア半周期の比
ωs* すべり周波数指令
R2 二次抵抗値[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a PWM inverter device for controlling an AC motor, and more particularly to PWM control for synchronizing a voltage command with a carrier (hereinafter referred to as carrier synchronization mode).
[0002]
[Prior art]
FIG. 2 is a block diagram showing a conventional example. 1 is a vector control means, 2 is an induction machine, 3 is an integrator, 4 is a polar coordinate converter, 5 is an adder, 6 is a modulation rate command calculator, 7 Is a carrier frequency calculator, 8 is a carrier comparison means, and 9 is a power converter. The operation will be described below with reference to FIG.
[0003]
The vector control means 1 receives the magnetic flux command φ * and the torque command τ *, performs a vector control calculation, and outputs a d-axis voltage command Vd * and a q-axis voltage command Vq *. The polar coordinate converter 4 calculates the modulation factor command magnitude α0 and the control phase angle θPI using Equation 1 from the d-axis voltage command Vd * and the q-axis voltage command Vq *.
[0004]
[Expression 1]
Figure 0004007693
[0005]
Here, VDC is an inverter DC voltage.
The integrator 3 integrates the frequency command ω * by Equation 2 and outputs the magnetic flux phase angle θf.
[0006]
[Expression 2]
Figure 0004007693
[0007]
The adder 5 represents the control phase angle θPI that is the output of the polar coordinate converter and the magnetic flux phase angle θf that is the output of the integrator as shown in Equation 3,
[0008]
[Equation 3]
Figure 0004007693
[0009]
And the modulation factor command phase angle θ is output.
The modulation rate command calculator 6 calculates the modulation rate command α * from the modulation rate command size α0 and the modulation rate command phase angle θ.
The carrier frequency calculator 7 calculates the carrier frequency fc according to Equation 4.
[0010]
[Expression 4]
Figure 0004007693
[0011]
Here, n is the ratio of the carrier half cycle to one cycle of the modulation rate command α *.
The carrier comparison means 8 compares the modulation rate command α * with the carrier frequency fc calculated by the carrier frequency calculator 7 and outputs a switching pulse G. The carrier switching signal SW1 input to the carrier frequency calculator 7 is a signal for switching between a mode in which the carrier frequency is constant and a carrier synchronization mode.
The switching pulse G is given to the power converter 9 and controls the speed and torque of the induction machine 2.
[0012]
[Problems to be solved by the invention]
However, the prior art has the following problems.
The carrier frequency fc is calculated by the equation (5). According to the equation (4), the differential term of the control phase angle θPI is included in the equation (5). The control phase angle θPI is calculated from the output of the vector control means 1 and is expected to vibrate finely.
Accordingly, the carrier frequency fc obtained by differentiating the control phase angle θPI that vibrates finely may vibrate greatly. If the carrier frequency fc vibrates greatly, the voltage supplied to the PWM inverter load becomes unstable.
The present invention was devised in view of the above points, and its object is to solve these drawbacks and provide a PWM inverter device in which the voltage supplied to the PWM inverter load does not become unstable. is there.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention takes the following means.
In claim 1, compared with the prior art, a frequency command ω * is newly input to the carrier frequency calculator 7.
[0014]
In Claim 2, the magnetic flux command φ *, the torque command τ *, and the detection speed ωm are input, and the frequency calculator 10 for calculating the frequency command ω * is added.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an embodiment of the present invention. Here, only the points changed from the prior art will be described.
The carrier frequency calculator 7 receives the frequency command ω * and calculates the carrier frequency fc according to Equation 5.
[0016]
[Equation 5]
Figure 0004007693
[0017]
The carrier and the modulation rate command α * are phase-matched by changing the ratio n of the carrier half cycle to the modulation rate command 1 cycle using the modulation rate command phase angle θ which is the output of the adder 5. Thereby, there is no differential operation in the equation (6), and the carrier frequency fc becomes stable.
The frequency command calculator 10 calculates the frequency command ω *. Here, an example of the frequency command ω * calculation is shown. First, the slip frequency command ωs * is calculated by Equation 6 from the magnetic flux command φ * and the torque command τ *.
[0018]
[Formula 6]
Figure 0004007693
[0019]
Here, R2 is the secondary resistance value of the induction machine 2. After that, as shown in Equation 7, the detection speed ωm and the slip frequency command ωs * are as follows:
[0020]
[Expression 7]
Figure 0004007693
[0021]
To obtain the frequency command ω *. Thus, by calculating the frequency command ω * from the magnetic flux command φ *, the torque command τ *, and the detection speed ωm, the frequency command ω * is stabilized and the carrier frequency fc is stabilized.
[0022]
【The invention's effect】
As described above, according to the present invention, a stable carrier frequency can be obtained in carrier synchronous PWM control. Further, since the carrier frequency is stabilized, a stable voltage can be given to the PWM inverter load.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a block diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vector control means 2 Induction machine 3 Integrator 4 Polar coordinate converter 5 Adder 6 Modulation rate command calculator 7 Carrier frequency calculator 8 Carrier comparison means 9 Power converter 10 Frequency command calculator φ * Magnetic flux command τ * Torque command ωm Detection speed fc Carrier frequency Vd * d-axis voltage command Vq * q-axis voltage command ω * frequency command α0 magnitude of modulation rate command θPI control phase angle θf magnetic flux phase angle θ modulation rate command phase angle α * modulation rate command G switching pulse SW1 Carrier switching signal VDC Inverter DC voltage n Ratio of carrier half cycle to one modulation rate command cycle ωs * Slip frequency command R2 Secondary resistance value

Claims (2)

磁束指令とトルク指令を入力しd軸電圧指令とq軸電圧指令を出力するベクトル制御手段と、前記d軸電圧指令と前記q軸電圧指令を入力し変調率指令大きさと制御位相角を出力する極座標変換器と、周波数指令を入力し磁束位相角を出力する積分器と、前記制御位相角と前記磁束位相角を加算し変調率指令位相角を出力する加算器と、前記変調率指令大きさと前記変調率指令位相角を入力し変調率指令を出力する変調率指令演算器と、前記変調率指令位相角を入力しキャリア周波数を出力するキャリア周波数演算器と、前記変調率指令と前記キャリア周波数を入力しスイッチングパルスを出力するキャリア比較手段と、前記スイッチングパルスを入力する電力変換器とから構成されるPWMインバータ装置において、
前記キャリア周波数演算器の入力に前記周波数指令を追加することを特徴とするPWMインバータ装置。
Vector control means for inputting a magnetic flux command and a torque command and outputting a d-axis voltage command and a q-axis voltage command; inputting the d-axis voltage command and the q-axis voltage command; and outputting a modulation factor command magnitude and a control phase angle A polar coordinate converter, an integrator that inputs a frequency command and outputs a magnetic flux phase angle, an adder that adds the control phase angle and the magnetic flux phase angle and outputs a modulation rate command phase angle, and the modulation rate command size A modulation rate command calculator for inputting the modulation rate command phase angle and outputting a modulation rate command, a carrier frequency calculator for inputting the modulation rate command phase angle and outputting a carrier frequency, the modulation rate command and the carrier frequency In a PWM inverter device composed of carrier comparison means for inputting a switching pulse and outputting a switching pulse, and a power converter for inputting the switching pulse,
The PWM inverter device, wherein the frequency command is added to an input of the carrier frequency calculator.
前記周波数指令を前記磁束指令と前記トルク指令と検出速度とから演算する周波数指令演算器を追加することを特徴とする請求項1記載のPWMインバータ装置。The PWM inverter device according to claim 1, further comprising a frequency command calculator for calculating the frequency command from the magnetic flux command, the torque command, and a detected speed.
JP19664398A 1998-06-26 1998-06-26 PWM inverter device Expired - Lifetime JP4007693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19664398A JP4007693B2 (en) 1998-06-26 1998-06-26 PWM inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19664398A JP4007693B2 (en) 1998-06-26 1998-06-26 PWM inverter device

Publications (2)

Publication Number Publication Date
JP2000014200A JP2000014200A (en) 2000-01-14
JP4007693B2 true JP4007693B2 (en) 2007-11-14

Family

ID=16361194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19664398A Expired - Lifetime JP4007693B2 (en) 1998-06-26 1998-06-26 PWM inverter device

Country Status (1)

Country Link
JP (1) JP4007693B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189304B1 (en) 2001-03-29 2013-04-24 NTN Corporation Bearing device for drive wheel
JP4607691B2 (en) * 2005-07-13 2011-01-05 日立アプライアンス株式会社 Control device for permanent magnet synchronous motor
JP4999500B2 (en) * 2007-03-07 2012-08-15 東洋電機製造株式会社 PWM controller
JP4450102B1 (en) * 2008-10-17 2010-04-14 トヨタ自動車株式会社 Motor drive control device
JP4877411B1 (en) 2010-09-30 2012-02-15 ダイキン工業株式会社 Link voltage measurement method
CN105634355B (en) * 2014-11-05 2020-03-06 博世力士乐(西安)电子传动与控制有限公司 Frequency converter and control device and control method for frequency converter

Also Published As

Publication number Publication date
JP2000014200A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP4065903B2 (en) Vector control device for induction motor, vector control method for induction motor, and drive control device for induction motor
JP3627683B2 (en) Motor control device
JP5549384B2 (en) Electric motor control device and electric motor control system
JP3582505B2 (en) Motor control device
JPWO2009040884A1 (en) Electric motor control device
JP6428491B2 (en) Control device for rotating electrical machine
JP2004343833A (en) Motor controller
JP2001186799A (en) Controller for alternating-current motor
JP3586078B2 (en) Power converter
Foo et al. Robust constant switching frequency-based field-weakening algorithm for direct torque controlled reluctance synchronous motors
CN108575113A (en) Control device of electric motor
JP4007693B2 (en) PWM inverter device
JP3765437B2 (en) Control system for synchronous motor for machine tool spindle drive
JPH09215398A (en) Inverter controller
JP5230682B2 (en) Control device for synchronous motor
JP3672457B2 (en) Control device for permanent magnet type synchronous motor
Liu et al. Modeling and implementation of a microprocessor-based CSI-fed induction motor drive using field-oriented control
JP3783641B2 (en) Motor control device
JP6695497B2 (en) Motor controller
JP3676946B2 (en) Induction motor control device
JP2006121855A (en) Ac motor control device
JP2003264999A (en) Vector control device for ac motor
JP3990044B2 (en) Inverter device
JPH11285299A (en) Vector controller of induction motor, and its vector control method
JP3861228B2 (en) Induction motor control method and control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

EXPY Cancellation because of completion of term