JP4006985B2 - 焦電型赤外線検出装置 - Google Patents

焦電型赤外線検出装置 Download PDF

Info

Publication number
JP4006985B2
JP4006985B2 JP2001361701A JP2001361701A JP4006985B2 JP 4006985 B2 JP4006985 B2 JP 4006985B2 JP 2001361701 A JP2001361701 A JP 2001361701A JP 2001361701 A JP2001361701 A JP 2001361701A JP 4006985 B2 JP4006985 B2 JP 4006985B2
Authority
JP
Japan
Prior art keywords
resistance
current
circuit element
voltage conversion
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001361701A
Other languages
English (en)
Other versions
JP2003163546A (ja
Inventor
光輝 畑谷
卓 福井
裕司 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001361701A priority Critical patent/JP4006985B2/ja
Publication of JP2003163546A publication Critical patent/JP2003163546A/ja
Application granted granted Critical
Publication of JP4006985B2 publication Critical patent/JP4006985B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焦電型赤外線検出装置に関する。
【0002】
【従来の技術】
図7は、従来の焦電型赤外線検出装置の回路構成を示すもので、電流電圧変換回路と直流帰還回路とから構成されている。電流電圧変換回路は、演算増幅器OP1を備え、非反転入力端子は接地され、反転入力端子は集電素子に接続され、出力端子は検出信号の信号出力端Poutとなっている。また、演算増幅器OP1の入出力間、すなわち反転入力端子と出力端子との間には、帰還用のコンデンサCfが介設されている。演算増幅器OP1の出力端子と反転入力端子との間には、入力抵抗Riを介して直流帰還回路30が接続されており、信号出力端Poutから出力される電圧信号の動作点を安定させている。
【0003】
直流帰還回路30は、ハイパスフィルタとして機能するもので、演算増幅器OP2と、演算増幅器OP2の出力端子及び反転入力端子の間に介設されたコンデンサC10と、一端が演算増幅器OP2の反転入力端子に接続され、他端が接地された抵抗R10とから構成されている。焦電素子1は、信号入力端Pinと接地間に接続されている。
【0004】
このように構成された焦電型赤外線検出装置は、焦電素子1に赤外線が入射し、焦電素子1の温度が上昇すると、温度上昇分に応じて自発分極が発生し、焦電素子1に分極電荷が発生する。この分極電荷によって、信号入力端Pinを介して演算増幅器1の反転入力端子に電流信号が入力される。電流信号は、演算増幅器OP1及び帰還用のコンデンサCfにより電流電圧変換され、電圧信号として信号出力端Poutに出力される。ところで、信号出力端Poutから出力される電圧信号の動作点は、演算増幅器OP1に混入されるノイズ及び演算増幅器OP1のオフセット成分により、変動する可能性がある。そこで、ハイパスフィルタとしての機能を有する直流帰還回路30を設け、演算増幅器OP1から出力される電圧信号の低周波成分をカットすることにより、信号出力端Poutから出力される電圧信号の動作点の変動を抑制し、安定した電流電圧変換を行っている。
【0005】
ここで、図7に示す焦電型赤外線検出装置のインピーダンス特性Z(s)は数1で示される。
【0006】
【数1】
Figure 0004006985
【0007】
数1で示されるインピーダンス特性Z(s)のグラフは、特開平10−281866号公報に示すように、2次のバンドパスフィルタを構成する。したがって、図7に示す焦電型赤外線検出装置は、2次のバンドパスフィルタとしての機能を有している。
【0008】
ここで、2次のバンドパスフィルタの伝達関数の標準形は、一般的に、数2により表わされる。
【0009】
【数2】
Figure 0004006985
【0010】
上記数1及び数2より、中心周波数ω0付近の伝送特性を示すクオリティファクタQは、数3で表わされる。
【0011】
【数3】
Figure 0004006985
【0012】
インピーダンス特性Z(s)は、クオリティファクタQの値が増加するにつれて、中心周波数ω0付近で急峻となる傾向を有している。
【0013】
【発明が解決しようとする課題】
ところで、焦電型赤外線検出装置は、人体や生体の検出のためには、0.1〜1Hz付近の低周波信号を検出する必要があるが、そのためには、高抵抗の抵抗体を使用しなければならない。すなわち、図7に示す焦電型赤外線検出装置において、入力抵抗Ri及び抵抗R10として高抵抗のものを使用しなければならない。
【0014】
このように高抵抗の抵抗体は、一般的に、温度特性の影響により、わずかな温度変化に対してもその値が大きく変動し、これら回路素子の値がばらついて変動すると、クオリティファクタQの値が変化し、インピーダンス特性Z(s)が変化してしまうため、安定した電流電圧変換が困難となる。
【0015】
本発明は、上記課題を解決するためになされたものであり、焦電素子からの検出電流に対して、安定した電流電圧変換を可能とし、人体や生体の検出のための低周波信号を検出することができる焦電型赤外線検出装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するために請求項1記載の発明は、赤外線を検出する焦電素子と、前記焦電素子からの電流信号を電圧信号に変換すると共に、ローパスフィルタとしての特性を有する電流電圧変換部と、前記電流電圧変換部に直列接続されたハイパスフィルタとを備え、前記電流電圧変換部は、前記焦電素子に接続される演算増幅器と、前記演算増幅器の入出力間に接続された帰還用のコンデンサと、前記コンデンサと並列接続された高抵抗を有する帰還用の第1の抵抗回路素子とを備え、前記電流電圧変換部の遮断周波数を0.1Hzに設定したことを特徴とする焦電型赤外線検出装置である。
【0017】
この発明によれば、焦電素子からの電流信号を電圧信号に変換する電流電圧変換部と電流電圧変換部に直列接続されたハイパスフィルタとを備え、しかも前記電流電圧変換部は、ローパスフィルタとしての特性を有するので、人体や生体の検出のための、例えば0.1Hz〜1Hzの低周波信号が得られる。そして、帰還用コンデンサ及び第1の抵抗回路素子が並列接続され演算増幅器とハイパスフィルタとを直列接続して構成しているため、各回路素子の値が温度特性により変動しても、インピーダンス特性のピーク付近の傾きが急峻とはならず、安定した電流電圧変換が可能となる。このため、本焦電型赤外線検出装置は、人体や生体を検出することができる
【0018】
また、演算増幅器の出力端子に、ハイパスフィルタを直列接続しているため、演算増幅器から出力される電圧信号の動作点の変動分がカットされ、安定した電流電圧変換が可能となる。
【0019】
更に、帰還用のコンデンサ及び高抵抗を有する第1の抵抗回路素子を並列接続したため、電流信号の高周波成分は、帰還用のコンデンサのインピーダンス成分により電圧信号に変換され、電流信号の低周波成分は、第1の抵抗回路素子のインピーダンス成分により電圧信号に変換される。演算増幅器に帰還用のコンデンサのみ接続した場合、電流信号は、コンデンサのインピーダンス成分により電圧信号に変換されるが、コンデンサのインピーダンス成分は低周波になるほど増大するため、電流信号に低周波のノイズが混入すると、この低周波のノイズ成分が大きな電圧信号として出力され、安定した電流電圧変換を行うことができない可能性がある。そこで、帰還用のコンデンサに第1の抵抗回路素子を並列接続し、低周波成分は、第1の抵抗回路素子のインピーダンス成分により電流電圧変換させることにより、低周波の電流信号が大きな電圧信号となって出力されることを防止し、安定した電流電圧変換を可能としている。
【0020】
請求項2記載の発明は、請求項1記載の焦電型赤外線検出装置において、前記第1の抵抗回路素子は、ポリシリコンを抵抗材とするものであることを特徴とする。この発明によれば、製造工程において、ポリシリコンに不純物のドープ処理を行わないようにして、容易に高抵抗の抵抗材が得られる。また、ポリシリコンにより構成したため、回路素子が小型となる。
【0021】
請求項3記載の発明は、請求項1記載の焦電型赤外線検出装置において、前記第1の抵抗回路素子は、互いに逆向きに並列接続されたダイオードにより構成されていることを特徴とする。この発明によれば、通常動作時においては、演算増幅器の入出力端子間の電位差が小さいため、両ダイオードはオフ状態であり、第1の抵抗回路素子の抵抗値は、ダイオードのオフ抵抗により決定され、両ダイオードは高抵抗の抵抗材として機能する。
【0022】
また、ノイズなどの影響により演算増幅器から出力される電圧信号が飽和した場合、演算増幅器の入出力端子間の電位差がダイオードのスレショルド電圧を超え、両ダイオードのうちいずれか一方のダイオードがオンとなり、第1の抵抗回路素子の抵抗値はオンされたダイオードの抵抗値により決定される。このダイオードのオン抵抗は小さく、電流電圧変換回路の時定数を小さくする。この結果、本焦電型赤外線検出装置における電流電圧変換回路の帰還作用は高まり、飽和した電圧信号は速やかに通常動作時の振幅レベルの電圧信号に戻される。
【0023】
また、ダイオードを逆方向に並列接続するという簡素な構成により、第1の抵抗回路素子を構成したため、回路の小型化及び低コスト化が可能となる。
【0024】
請求項4記載の発明は、請求項1記載の焦電型赤外線検出装置において、前記第1の抵抗回路素子は、スイッチトキャパシタにより構成されていることを特徴とする。この発明によれば、第1の抵抗回路素子の抵抗値は、キャパシタの容量とスイッチングを切り替えるサンプリング周波数により決定される。キャパシタの容量及びサンプリング周波数を適当な値に設定することにより、高抵抗が実現される。また、スイッチトキャパシタのキャパシタの容量を小さくするほど、高抵抗となるため、小容量のキャパシタで高抵抗が実現される。この結果、回路の小型化と共に、温度特性による影響が少い高抵抗の第1の抵抗回路素子が得られる。
【0025】
請求項5記載の発明は、請求項1〜4のいずれかに記載の焦電型赤外線検出装置において、前記ハイパスフィルタは、高抵抗を有する第2の抵抗回路素子を有し、この第2の抵抗回路素子は、ポリシリコンを抵抗材とするものであることを特徴とする。この発明によれば、製造工程において、ポリシリコンに不純物のドープ処理を行わないようにして、容易に高抵抗のフィルタが得られる。また、ポリシリコンを用いたため、回路が小型となる。
【0026】
請求項6記載の発明は、請求項1〜4のいずれかに記載の焦電型赤外線検出装置において、前記ハイパスフィルタは、高抵抗を有する第2の抵抗回路素子を有し、この第2の抵抗回路素子は、スイッチトキャパシタにより構成されていることを特徴とする。この発明によれば、第2の抵抗回路素子をスイッチトキャパシタにより構成したため、高抵抗でありながら温度特性による影響が少ない抵抗材が得られる。また、第2の抵抗回路素子を小容量のキャパシタで構成するため、回路が小型となる。
【0027】
【発明の実施の形態】
図1は、本発明に係る焦電型赤外線検出装置の基本構成を示している。この焦電型赤外線検出装置は、赤外線を検出する焦電素子1と、焦電素子1からの入力される電流信号を電圧信号に変換する電流電圧変換回路2とを備えている。電流電圧変換回路2は、電流電圧変換を行う電流電圧変換部21と、電流電圧変換部21に直列接続されたハイパスフィルタ22とから構成されている。
【0028】
電流電圧変換部21は、焦電素子1が反転入力端子に接続される演算増幅器OPと、演算増幅器OPの出力端子と反転入力端子との間に介設された帰還用のコンデンサCfと、コンデンサCfと並列接続された第1の抵抗回路素子Z1とを備えている。演算増幅器OPの非反転入力端子には、演算増幅器OPの動作点の電位をVrに設定するべく基準電位Vrが接続されている。動作点の電位をVrに設定することで、1個の電源による演算増幅器OPの駆動を可能としている。
【0029】
ハイパスフィルタ22は、演算増幅器1の出力側と出力端Poutとの間に介設されたコンデンサC1と、出力端Poutと接地間との間に基準電位Vrを介して接続された第2の抵抗回路素子Z2とから構成されている。また、第2の抵抗回路素子Z2の一端には、ハイパスフィルタ22の基準電位をVrに設定するために基準電位Vrが接続されている。
【0030】
電流電圧変換部21は、演算増幅器OPの出力端子と反転入力端子との間にコンデンサCf及び第1の抵抗回路素子Z1が並列接続されているため、ローパスフィルタとしての特性を有しており、後段に直列接続されたハイパスフィルタ22とで、2次のバンドパスフィルタとしての特性を有している。
【0031】
ローパスフィルタとしての特性を有する電流電圧変換部21の遮断周波数fchは、第1の抵抗回路素子Z1のインピーダンスZ1及びコンデンサCfの容量Cfの関係からfch=1/(2π・Z1・Cf)と表わされ、高域遮断周波数fchより高い周波数成分は、コンデンサCfのインピーダンス成分1/(2π・f・Cf)により電流電圧変換が行われる。S/N比の低減による高安定の電流電圧変換を行うためには、帰還用のコンデンサCfのインピーダンス成分により電流電圧変換を行うのが好ましい。しかも、0.1〜1.0Hzの周波数帯域が人体検知においては重要であるため、本電流電圧変換回路2では、電流電圧変換部21の遮断周波数fch=1/(2π・Z1・Cf)の値を0.1Hzあるいは0.1Hzよりも小さな値に設定し、0.1〜1.0Hzの電流信号をコンデンサCfのインピーダンス成分により電流電圧変換するようにしている。
【0032】
次に、電流電圧変換回路2の動作について説明する。焦電素子1は、赤外光を受光し電流として出力する。焦電素子1から出力された電流信号のうち、高周波成分は、コンデンサCfのインピーダンス成分1/(2π・f・Cf)で電流電圧変換され、低周波成分は、第1の抵抗回路素子Z1により電流電圧変換される。次いで、ハイパスフィルタ22により、動作点の変動分をカットするため遮断周波数fcl=1/(2π・C1・Z2)以下の低周波成分がカットされ、出力端Poutから電圧信号として出力される。
【0033】
このように、本電流電圧変換回路2では、ローパスフィルタとしての特性を有する電流電圧変換部21とハイパスフィルタ22とを直列接続して構成しているため、回路素子の抵抗値、容量値が変動しても、インピーダンス特性のピーク付近の傾きが急峻となならないため、安定した電流電圧変換を行うことができる。
【0034】
(第1実施形態)
図2は、第1実施形態における電流電圧変換回路を示している。第1実施形態に係る電流電圧変換回路2は、第1の抵抗回路素子Z1を、不純物がドープされていないポリシリコンからなる抵抗(以下、ノンドープポリシリ抵抗R1という。)により構成したものである。ノンドープポリシリ抵抗R1は、例えば、集積回路の製造工程において、ポリシリコンに不純物がドープされないようにマスキングを施すだけで、小型かつ高抵抗の抵抗材を容易に得ることができる。このように第1実施形態によれば、高抵抗の抵抗材を容易に得ることができる。
【0035】
(第2実施形態)
図3は、第2実施形態に係る電流電圧変換回路を示している。第2実施形態の電流電圧変換回路2は、第1の抵抗回路素子Z1として、ダイオードDA及びDBをそれぞれ逆方向に並列接続したものである。すなわち、ダイオードDAは、アノードが演算増幅器OPの反転入力端子に接続され、カソードが演算増幅器OPの出力端子に接続されている。ダイオードDBは、アノードが演算増幅器OPの出力端子に接続されており、カソードが演算増幅器OPの反転入力端子に接続されている。
【0036】
ダイオードDA及びDBは、本電流電圧変換回路2の通常動作時においては、オフ常態であり、高抵抗の抵抗材として機能するものである。本電流電圧変換回路は、小さな振幅レベルの信号を取り扱うものであるため、通常動作時においては、演算増幅器OPの反転入力端子及び出力端子間の電位差は、ダイオードDA及びDBのスレショルド電圧Vfよりも小さい。このため、ダイオードDA及びDBはいずれもオフであり、ダイオードDA及びDBのオフ抵抗は大きいため、ダイオードDA及びDBは、高抵抗材として機能するのである。
【0037】
また、ダイオードDA及びDBは、電流信号に含まれるノイズなどの影響により、演算増幅器OPから出力される電圧信号の振幅レベルが演算増幅器に供給される電源電圧以上となり、出力される電圧信号が飽和した場合、演算増幅器OPの出力端子及び反転入力端子間の電位差が、ダイオードDA及びDBのスレショルド電圧Vf以上となって、ダイオードDA及びDBのいずれか一方がオンとなるため、このオン抵抗による抵抗値を有する抵抗材として機能する。例えば、演算増幅器OPの出力端子の電位が反転入力端子の電位に対してスレショルド電圧Vf以上になった場合、ダイオードDBはオンとなり、第1の抵抗回路素子Z1は、このダイオードDBのオン抵抗の抵抗値を有する抵抗材となる。
【0038】
このダイオードDBのオン抵抗は小さいため、電流電圧変換回路2の時定数は小さくなる。この結果、ダイオードDBを介して多くの帰還電流が流れ、帰還作用が高まるため、飽和状態にあった電圧信号は速やかに、通常動作時の振幅レベルを有する電圧信号へ戻される。
【0039】
また、第1の抵抗回路素子Z1を、ダイオードを逆方向に並列接続して構成しているため、回路を簡素に構成することができ、回路の小型化及び低コスト化が可能となる。
【0040】
このように、第2実施形態の電流電圧変換回路2によれば、第1の抵抗回路素子Z1を小型かつ低コストで実現することができるとともに、出力される電圧信号が飽和状態にあっても、速やかに通常動作時の振幅レベルに戻すことのできる抵抗材にすることができる。
【0041】
(第3実施形態)
図4は、第3実施形態に係る電流電圧変換回路を示している。この電流電圧変換回路2は、第1の抵抗回路素子Z1として、スイッチトキャパシタSCを用いたものである。スイッチトキャパシタSCは、例えばMOSFETなどのスイッチング素子とコンデンサとを組み合わせ、クロックパルス(図略)でスイッチング素子をオン・オフ制御することによって、等価的に抵抗材として機能するものである。スイッチトキャパシタSCの等価抵抗値Rの値は、スイッチング素子をスイッチングする周波数(サンプリング周波数)をf、容量をCとすると、R=1/fCと表わされる。サンプリング周波数fを小さくし、かつ、スイッチトキャパシタの容量Cを小さく設定することで、スイッチトキャパシタSCとして高抵抗のものを得ることができる。
【0042】
また、スイッチトキャパシタSCを採用することで、高抵抗でありながら優れた温度特性を有する抵抗材を得ることができるとともに、回路を小型にすることができる。
【0043】
本電流電圧変換回路2においては、サンプリング周波数f=35Hz、容量C=0.1pFとして、等価抵抗値RをR=1/(35Hz×0.1pF)=286GΩとし、第1の抵抗回路素子Z1の抵抗値として好適な値としている。
【0044】
このように、第3実施形態によれば、第1の抵抗回路素子Z1を、小型にすることができるとともに、高抵抗でありながら温度特性の優れた抵抗材にすることができる。
【0045】
(第4実施形態)
図5は、第4実施形態に係る電流電圧変換回路を示している。この電流電圧変換回路2は、第2の抵抗回路素子Z2として、ノンドープポリシリ抵抗R2を用いたものである。ハイパスフィルタ22の第2の抵抗回路素子Z2として、ノンドープポリシリ抵抗R2を用いることにより、第2の抵抗回路素子Z2として高抵抗の抵抗材を容易に得ることができる。
【0046】
(第5実施形態)
図6は、第5実施形態に係る電流電圧変換回路を示している。この電流電圧変換回路2は、第2の抵抗回路素子Z2として、スイッチトキャパシタSCを用いたものである。ハイパスフィルタ22の第2の抵抗回路素子Z2として、スイッチトキャパシタSCを用いることにより、回路を小型にすることができるとともに、高抵抗でありながら温度特性の優れた抵抗材にすることができる。
【0047】
なお、本発明は、以下の態様を採ることができる。
【0048】
(1)上記第1〜第3実施形態では、第2の抵抗回路素子Z2を特に限定していないが、第2の抵抗回路素子Z2として、第4実施形態で示したノンドープポリシリ抵抗R2、あるいは、第5実施形態で示したスイッチトキャパシタSCを用いてもよい。
【0049】
(2)上記第4及び第5実施形態では、第1の抵抗回路素子Z1を特に限定していないが、第1の抵抗回路素子Z1として、第1実施形態に示したノンドープポリシリ抵抗R1、第2実施形態に示したダイオードDA及びDB、第3実施形態に示したスイッチトキャパシタSCを用いてもよい。
【0050】
【発明の効果】
請求項1記載の発明によれば、電流電圧変換部における帰還用のコンデンサに第1の抵抗回路素子を並列接続するとともに、電流電圧変換部がローパスフィルタとしての特性を有し電流電圧変換部における演算増幅器の出力端子にハイパスフィルタを直列接続して構成したので、安定した電流電圧変換を行うことができ、人体や生体の検出に好適な、例えば0.1Hz〜1Hzの低周波信号が得られ、人体や生体を検出することができる。
【0051】
請求項2記載の発明によれば、第1の抵抗回路素子として、ポリシリコンからなる抵抗を用いたため、容易に高抵抗の抵抗材が得ることができまた、回路を小型にすることができる。
【0052】
請求項3記載の発明によれば、第1の抵抗回路素子として、互いに逆方向に接続されたダイオードにより構成したので、回路の小型化及び低コスト化を図ることができるととともに、ノイズの影響により出力電圧が飽和した場合であっても、速やかに通常動作時の振幅レベルに戻すことができる。
【0053】
請求項4記載の発明によれば、第1の抵抗回路素子として、スイッチトキャパシタにより構成したので、回路を小型にすることができるとともに、高抵抗でありながら優れた温度特性を有する抵抗材を得ることができる。
【0054】
請求項5記載の発明によれば、第2の抵抗回路素子をポリシリコン抵抗により構成したため、容易に高抵抗の抵抗材を得ることができるとともに、回路を小型にすることができる。
【0055】
請求項6記載の発明によれば、第2の抵抗回路素子をスイッチトキャパシタにより構成したため、回路を小型にすることができるととともに、高抵抗でありながら優れた温度特性を有する抵抗材を得ることができる。
【図面の簡単な説明】
【図1】 本発明の電流電圧変換回路の基本回路構成を示した図である。
【図2】 本発明の第1実施形態に係る電流電圧変換回路を示した図である。
【図3】 本発明の第2実施形態に係る電流電圧変換回路を示した図である。
【図4】 本発明の第3実施形態に係る電流電圧変換回路を示した図である。
【図5】 本発明の第4実施形態に係る電流電圧変換回路を示した図である。
【図6】 本発明の第5実施形態に係る電流電圧変換回路を示した図である。
【図7】 従来の電流電圧変換回路を示した図である。
【符号の説明】
SC スイッチトキャパシタ
DA ダイオード
DB ダイオード
R1 ノンドープポリシリ抵抗
R2 ノンドープポリシリ抵抗
Vr 基準電圧源
OP 演算増幅器
Cf 帰還用のコンデンサ
C コンデンサ
Z1 第1の抵抗回路素子
Z2 第2の抵抗回路素子
1 焦電素子
2 電流電圧変換回路
21 電流電圧変換部
22 ハイパスフィルタ

Claims (6)

  1. 赤外線を検出する焦電素子と、
    前記焦電素子からの電流信号を電圧信号に変換すると共に、ローパスフィルタとしての特性を有する電流電圧変換部と、
    前記電流電圧変換部に直列接続されたハイパスフィルタとを備え、
    前記電流電圧変換部は、前記焦電素子に接続される演算増幅器と、前記演算増幅器の入出力間に接続された帰還用のコンデンサと、
    前記コンデンサと並列接続された高抵抗を有する帰還用の第1の抵抗回路素子とを備え、
    前記電流電圧変換部の遮断周波数を0.1Hzに設定したことを特徴とする焦電型赤外線検出装置。
  2. 前記第1の抵抗回路素子は、ポリシリコンを抵抗材とするものであることを特徴とする請求項1記載の焦電型赤外線検出装置。
  3. 前記第1の抵抗回路素子は、互いに逆向きに並列接続されたダイオードにより構成されていることを特徴とする請求項1記載の焦電型赤外線検出装置。
  4. 前記第1の抵抗回路素子は、スイッチトキャパシタにより構成されていることを特徴とする請求項1記載の焦電型赤外線検出装置。
  5. 前記ハイパスフィルタは、高抵抗を有する第2の抵抗回路素子を有し、この第2の抵抗回路素子は、ポリシリコンを抵抗材とするものであることを特徴とする請求項1〜4のいずれかに記載の焦電型赤外線検出装置。
  6. 前記ハイパスフィルタは、高抵抗を有する第2の抵抗回路素子を有し、この第2の抵抗回路素子は、スイッチトキャパシタにより構成されていることを特徴とする請求項1〜4のいずれかに記載の焦電型赤外線検出装置。
JP2001361701A 2001-11-27 2001-11-27 焦電型赤外線検出装置 Expired - Fee Related JP4006985B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361701A JP4006985B2 (ja) 2001-11-27 2001-11-27 焦電型赤外線検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361701A JP4006985B2 (ja) 2001-11-27 2001-11-27 焦電型赤外線検出装置

Publications (2)

Publication Number Publication Date
JP2003163546A JP2003163546A (ja) 2003-06-06
JP4006985B2 true JP4006985B2 (ja) 2007-11-14

Family

ID=19172312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361701A Expired - Fee Related JP4006985B2 (ja) 2001-11-27 2001-11-27 焦電型赤外線検出装置

Country Status (1)

Country Link
JP (1) JP4006985B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301216A (ja) * 2007-05-31 2008-12-11 Mitsumi Electric Co Ltd 増幅回路及びそれを用いた熱検知装置
JP2010154394A (ja) * 2008-12-26 2010-07-08 Citizen Finetech Miyota Co Ltd チャージアンプ回路
JP5685717B2 (ja) * 2010-07-01 2015-03-18 パナソニックIpマネジメント株式会社 赤外線検出装置
JP5981394B2 (ja) * 2013-06-24 2016-08-31 日本電信電話株式会社 センサインタフェース回路及び制御方法
DE102013014810B4 (de) * 2013-09-05 2019-03-14 Elmos Semiconductor Aktiengesellschaft Vorrichtung zum Betreiben passiver Infrarotsensoren
CN111025951A (zh) * 2018-10-09 2020-04-17 西安智盛锐芯半导体科技有限公司 一种用于进行信号转换的***
CN114706116B (zh) * 2022-06-07 2022-08-26 山东大学 一种基于fpga的探测器读出电子学***

Also Published As

Publication number Publication date
JP2003163546A (ja) 2003-06-06

Similar Documents

Publication Publication Date Title
US4173739A (en) Overload detecting circuit for a PWM amplifier
EP1448963B1 (en) An infrared detecting circuit
CN210142143U (zh) 一种高精度的电流采样电路
JP4006985B2 (ja) 焦電型赤外線検出装置
JP2586495B2 (ja) 高周波検出回路
EP1285279A2 (en) A measuring circuit
JP2008251770A (ja) 光電変換回路
US20040211886A1 (en) Low noise light receiver
US6501322B1 (en) Analog integrator circuit
CN213600900U (zh) 一种输出方式灵活的新型偏压光电探测器
JPS61228319A (ja) 光電流増幅回路
JP3525049B2 (ja) 光電変換回路
JPH03171908A (ja) 光受信回路
JP3534209B2 (ja) 受光回路
JP3414085B2 (ja) 赤外線検出装置
JP2003508778A (ja) 測光器
JP4581629B2 (ja) 赤外線検知装置
JP3570836B2 (ja) 温度検出制御回路
JPH10318834A (ja) 焦電型赤外線検出装置
JPS6161019A (ja) 光電流増巾回路
WO2022258536A1 (en) An apd bias circuit with dual analog feedback loop control
CN108964784B (zh) 光杂讯消除装置
CN117480620A (zh) 具有双模拟反馈回路控制的apd偏置电路
JPH05322650A (ja) 光センサー装置
JP2918738B2 (ja) 測距装置用光電変換回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees