JP4005692B2 - Fused slag molding method, molding apparatus and mold used therefor - Google Patents

Fused slag molding method, molding apparatus and mold used therefor Download PDF

Info

Publication number
JP4005692B2
JP4005692B2 JP07640898A JP7640898A JP4005692B2 JP 4005692 B2 JP4005692 B2 JP 4005692B2 JP 07640898 A JP07640898 A JP 07640898A JP 7640898 A JP7640898 A JP 7640898A JP 4005692 B2 JP4005692 B2 JP 4005692B2
Authority
JP
Japan
Prior art keywords
mold
release material
slag
molten slag
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07640898A
Other languages
Japanese (ja)
Other versions
JPH11226926A (en
Inventor
正樹 片岡
健治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP07640898A priority Critical patent/JP4005692B2/en
Publication of JPH11226926A publication Critical patent/JPH11226926A/en
Application granted granted Critical
Publication of JP4005692B2 publication Critical patent/JP4005692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物等を溶融処理する際の溶融スラグの成形法及びこれに用いる成形装置、モールド(以下単にスラグ成形方法、成形装置、モールドと略称する)の改良に関する。
【0002】
【従来の技術】
近年、廃棄物等の最終処分場の逼迫により、焼却灰の溶融処理が行われている。この溶融処理の際に発生するスラグは、水による急速冷却の水冷法、空気による急速冷却の空冷法、鋳銑機で成形する除冷法等がある。水冷法或いは空冷法の急速冷却によると、平均粒径2mm程度の細粒子のスラグが得られ、鋳銑機で成形する除冷法では、大粒子のスラグが得られる。
【0003】
【発明が解決しようとする課題】
従来の鋳銑機で成形する除冷法では、鋳銑機とスラグが反応して付着することがあるので、鋳銑機の設計に当たって、付着防止の工夫がなされている。すなわち鋳銑機のモールドの重量を溶融スラグの重量に対して十分大きくとり、溶融スラグをモールドで冷却して、鋳銑機とスラグが反応して付着することを防止するものである。 しかしこの方法では、大粒径のスラグを成形する場合には、モールドの重量が大きくなり、装置として大型設備となる。又スラグを結晶化するために温度を保持する必要がある場合には、スラグがモールドに付着するという課題を有していた。
又、モールドの材質からみると、高温の溶融スラグがシリカ、アルミナ等を主成分とする耐火材製モールドに接すると、耐火材の一部は特定の温度以上では、スラグ中に溶解し、溶融スラグと耐火材の剥離を困難にする。同様に高温の溶融スラグが、鉄を主成分とする金属製モールドに接すると、鉄の表面が酸化物になって特定の温度以上で鉄の酸化物が溶融スラグに溶解し、モールドとスラグの剥離が困難になる。これに対し、従来は、モールドを十分冷却した後、溶融スラグを供給するとか、モールド温度が特定温度を超えないように、溶融スラグに対して、十分な量のモールドにする方法がとられていた。金属製モールドの場合は、金属の熱伝導度が良いので、金属全体の温度はほぼ均一になり、あらかじめ冷却された金属の量を増加してやれば、金属温度は特定温度以下になり、付着を防止できるが、経済的でない。耐火材製のモールドの場合は、耐火材の熱伝導度が小さいため、耐火材内部に温度分布が生じ、溶融スラグの接する近傍では特定温度以上になって溶融スラグと反応するため、剥離しにくくなるという課題を有していた。
これに対して、本発明では大粒径のスラグを成形する場合において、簡易で安価な設備にもかかわらずモールドに対し溶融スラグの剥離性が優れ、モールドの材質を耐火材又は金属いずれにも適用可能な成形方法、成形装置、モールドを得ることを目的とする。
【0004】
【課題を解決するための手段】
前記目的を得るため、
請求項1の発明にあっては、予めモールド内面形状に合わせて成形済みのセルロース材よりなる離型材を上流側より下流側に連続的に搬送されている該モールドに嵌着せしめ、上流側において溶融炉よりのスラグを前記離型材内部に収納せしめ周辺雰囲気を低酸素濃度に保持して該離型材の一部を燃焼せしめ、上流及び下流側の中間部に保温する保持ゾーンを設けスラグを結晶化させ、下流側において周辺雰囲気を高酸素濃度に保持して前記離型材の残余部を燃焼せしめて得られた成形物を下流端末より取出す溶融スラグ成形方法により解決した。
請求項2の発明にあっては、上流側周辺雰囲気の低酸素濃度が16%以下、下流側周辺雰囲気の高酸素濃度が20%以上である請求項1に記載の溶融スラグ成形方法とするのが好ましい。
請求項3の発明にあっては、保持ゾーンは950〜1050℃に保温されている請求項1又は2に記載の溶融スラグ成形方法とするのが好ましい。
【0005】
請求項4の発明にあっては、内部に移動するコンベア上に連続して装着された多数のモールドと、前記コンベア上流側端部より移動方向に配設された離型材供給口と溶融物取入口と、前記溶融物取入口とコンベアの下流側端部の間に所定長さの保持ゾーンを形成するジャケットと該ジャケット後端部にジャケット取入口と前端部にジャケット排出口と、前記コンベアの下流側端部反転箇所下方に回動可能に配設された排出ダンパーと、前記溶融物取入口近傍に設けられた不活性ガス供給口とを備え、前記離型材供給口から前記モールド内面形状に合わせて成形済みの離型材が供給され、前記溶融物取入口に溶融炉よりのスラグが供給され、前記ジャケット取入口及び排出口に保持ゾーン保温ガスが供給及び排出され、前記コンベア反転箇所まで移送された前記モールドの反転により落下する成形物を前記排出ダンパーにより受取り及び排出可能とした溶融スラグ成形方法に用いる成形装置により解決した。
請求項5の発明にあっては、モールドの内面形状に合わせた型枠と加圧可能なラムとを備え、前記型枠にセルロース材を投入し前記ラムで加圧してプレス成形し脱型して前記モールドに嵌着可能な離型材を得るプレス装置を付設した請求項4に記載の溶融スラグ成形方法に用いる成形装置により解決した。
請求項6の発明にあっては、金属又は耐火材製の容器本体の内面のスラグ収納部形状に合わせて成形済みのセルロース材よりなる離型材が嵌着されていることを特徴とする溶融スラグ成形方法に用いるモールドにより解決した。
請求項7の発明にあっては、離型材の厚みが3mm以上であることを特徴とする請求項6に記載の溶融スラグ成形方法に用いるモールドとするのが好ましい。請求項8の発明にあっては、セルロース材として細片状の紙、木材及びパルプのいずれかを用いた請求項6又は7に記載の溶融スラグ成形方法に用いるモールドとすることができる。
【0006】
【発明の実施の形態】
本発明の実施の形態を図面に基づき説明する。
図1は、本発明の成形装置の一例の概略側断面図である。
図2は、本発明の成形装置に用いるモールドの一例の概略側断面図である。
図3は、図1の成形装置のA・A′概略断面図である。
以下において、溶融物を供給する溶融炉側を上流側又は後、成形スラグの排出側を下流側又は前として説明する。
図1、3において、成形装置1の内部には、モーター3により前進方向X及び戻り方向Yにコンベア14を連続して移動させ、コンベア14上に連続して多数の単位モールド2が装着され移動可能とし、上流側端部より離型材供給口6a、溶融炉4よりの溶融物取入口4a、所定長さの保持ゾーンZを形成するジャケット19aが順次コンベア14の上面及び側面の移動方向に配設されている。コンベア14の下流側端部の反転箇所において、下方に実線で示す水平方向に置かれた板状の排出ダンパー15が閉状態に配設され、コンベア14の移動によって移送されて来たモールド16が反転して内部より落下する成形物17を排出ダンパー15が一旦受取り、次いで排出ダンパー15を下方回動方向Rに回動し二点鎖線で示す位置に移動して開状態とすることにより上面に載置された成形物17を置き場18に落下せしめることができる。ここで、置き場18に代えて移送コンベアを設け成形物17を受取って離隔位置まで搬送し排出可能としてもよい。
コンベア14は、成形物17が落下して空になったモールド16と共に戻り方向Yに移動して、上流側端部の当初位置に復元する。
【0007】
さらに成形装置1には、離型材供給口6aの下流で溶融物取入口4a近傍に窒素ガス供給口7aが、溶融物取入口4aとジャケット19a後端部との間に成形排ガス排出口11aがそれぞれ設けられている。ジャケット19aには、後述するように上流側に溶融炉排ガス10と成形排ガス11を合わせて導入するジャケット取入口19bと、下流側にジャケット排ガス19を排出するジャケット排出口19cが設けられている。
ここで用いられるモールド2又は16は、図2に示すように、金属又は耐火材製の容器本体2bの内面に直方体、円筒体、円錐台、角錐台、皿状体又は半球体等のスラグ収納部2aが形成されている。金属としては例えば熱伝導率18Kcal/mH℃のSUS304が、耐火材としては熱伝導率11Kcal/mH℃のSiC等が用いられる。
一方、図2に示すように、成形装置1とは別体のプレス装置9により、モールド2の内面形状に合わせた型枠9aに例えば細片状のセルロース材の古紙20を水に溶解し紙粘土状にして入れ、ラム9bで加圧してプレス成形し、脱型して得られるモールド2に嵌着可能な離型材6を準備しておく。ここで離型材6は、セルロース材であればよく、古紙20に代えて、細片状の未使用紙、木材、パルプ等を用いてもよく、木材、パルプでは粒度により接着剤をバインダーとして必要とする場合がある。
【0008】
次に、成形装置1を用いた成形方法について説明する。
モールド2内面に合わせて成形済みの離型材6を、離型材供給口6aから下方にコンベア14の移動によって連続的に搬送されている上流側の単位モールド2に落下嵌着せしめ、成形装置1外の溶融炉4より落下するスラグ5を溶融物取入口4aから送られてきた単位モールド2の離型材6内部に収納せしめる。ここで、溶融物取入口4a直前の不活性ガス供給口7aより成形装置1外におかれたボンベ8より供給される例えば窒素ガス7が導入され、モールド2にスラグ5が収納される周辺雰囲気を低酸素濃度を9〜16%に保持するように調整する。窒素ガスに代えて、排ガス処理済みの溶融炉排ガス若しくは燃焼炉排ガス又は炭酸ガス等の不活性ガスを用いてもよい。
図2について、離型材6がセットされたモールド2にスラグ5が供給されたときの状態を示す。スラグ5と接触した離型材6は、コンベア14の移動によってモールド2が上流側から下流側に移動する中間部の保持ゾーンZにおいて、一部が熱分解ガス12となり成形装置1内部に発生する。しかし離型材6の残り部分は、酸素濃度が燃焼に寄与するより低いため、炭素13となりスラグ5との接触部分に残留するのでスラグ5とモールド2との反応を防止することができる。
溶融炉排ガス10と窒素ガス7及び熱分解ガス12を含む成形排ガス11を合わせた保持ゾーン保温ガス21は、保持ゾーンZにおいてモールド2を保温するための熱源としてジャケット取入口19bからジャケット19a中に導入され保温に使用される。これにより保持ゾーン内部温度Tは好ましくは950〜1050℃に保持され、スラグ5の結晶化を促進させることができる。保持ゾーン保温ガス21は、溶融炉排ガス10、窒素ガス7及び熱分解ガス12を含む成形排ガス11を用いるのが省エネルギー上望ましいがこれに限定されず、その何れか又は別の熱源よりのガスを用いてもよい。
【0009】
さらに、コンベア14が移動しモールド2が下流側に移送されてモールド16としてコンベア14の下流側端部の反転箇所に至り、水平方向閉状態に置かれた排出ダンパー15がモールド16から落下する結晶化された成形物17を一旦受け取り、次いで下方回動方向Rに回動し二点鎖線で示す開状態の位置に移動して載置されている成形物17を置き場18に落下排出せしめて貯留する。
ここで、保持ゾーンZの下流側にある成形装置1内部には排出ダンパー15の開状態による大気の漏れ込みにより周辺雰囲気が高酸素濃度が20%以上に達し、前記した離型材6および炭素13が完全に燃焼する。このため排出直前のモールド16内部には成形物17のみが存在することになる。排出ダンパー15により排出した成形物17は置き場8に放置され常温で徐々に冷却される。
保持ゾーンZの温度保持に寄与した保持ゾーン保温ガス21はジャケット排ガス19としてジャケット排出口19cより排出され、系外の排ガス処理設備に送られ排ガス処理した後大気中に放出される。
【0010】
【実施例】
表3に示す組成の下水汚泥A又は都市ごみBを原料としたスラグを用い、溶融スラグ量として200Kg/Hr.の処理能力をもった本発明の成形装置1により、モールドと溶融スラグとの剥離性を比較して評価を行った。
モールド2は、材質を熱伝導率18Kcal/mH℃のSUS304を用い、又形状寸法として、図2に示す円錐台で大円径200mm×小円形100mm×高さ250mmのものを選択使用した。
使用するモールド内面形状に合わせ古紙をプレスして成形した離型材6を予め準備し、前記した成形装置1に供給した。
表1では、周辺雰囲気の酸素濃度12%の条件で、離型材の厚みを3〜10mmの範囲で段階的に変化させ、比較のため離型材を用いない場合を加えた。
表2では、離型材厚み5mmで一定とし、周辺雰囲気の酸素濃度を8〜20%の範囲で段階的に変化させた。
それぞれの場合について、モールドと溶融スラグの剥離性を比較して評価し表1及び2に示した。
【0011】
【表1】

Figure 0004005692
表1に、離型材の厚みmmと剥離性の関係を示す。この場合、離型材の厚み5mm以上の場合に剥離性が良かった。これは離型材3mmではスラグ供給時に離型材が燃焼してしまい、離型材不使用の場合と同様にスラグとモールドの一部が反応してしまったためと思われる。
【0012】
【表2】
Figure 0004005692
表2に、周辺酸素濃度%と剥離性の関係を示す。この場合、周辺酸素濃度16%では一部が反応したため、実施例では酸素濃度は9%から15%とした。但し、離型材の厚みを8mmにすれば、酸素濃度17%でも使用が可能であった。
【0013】
【表3】
Figure 0004005692
表3に、本実施例の下水汚泥A又は都市ごみBを原料としたスラグの組成を示す。
【0014】
本実施例においては、離型材の厚みは3mm以上、好ましくは5mm以上、周辺酸素濃度は16%以下、好ましくは15%以下の条件であれば剥離性が良好であった。
【0015】
次に、本発明の成形方法、成形装置、モールドの作用について説明する。
本発明は、前記構成をとることによって、高温の溶融スラグにより離型材の紙や木材等の可燃分を、熱分解ガスと炭素に分解し、発生した熱分解ガスはモールドと溶融スラグの間を通って排出される。炭素は、溶融スラグに溶解しないのでモールドと溶融スラグの間に残り、溶融スラグとモールドを分離することで相互の反応を防止するので、モールドからスラグを容易に分離することができる。又離型材の紙や木材等が熱分解される時、分解熱をスラグより受け取りスラグ温度を下げるので、付着防止にはより効果的である。
周辺雰囲気を酸化状態で操作すると、溶融スラグと紙や木材等が接触した時紙や木等が燃焼するので、上流側では窒素ガスを導入して低酸素状態で燃焼をおさえて行い、下流側では高酸素状態下で再加熱を行うことで、上記炭素や未燃分を完全に燃焼させることができる。この結果、保持ゾーンZで結晶化した成形物には離型材が全く残存せず、しかもモールドと結晶化した成形物を完全に離形分離可能なように作用する。
【0016】
【発明の効果】
本発明の溶融スラグ成形方法及びこれに用いる成形装置、モールドによれば、大粒径のスラグを成形する場合において、簡易で安価な設備にもかかわらずモールドに対し溶融スラグの剥離性が優れ、モールドの材質を耐火材又は金属いずれにも適用可能という顕著な効果を有する。
【図面の簡単な説明】
【図1】本発明の成形装置の一例の概略側断面図である。
【図2】本発明の成形装置に用いるモールドの一例の概略側断面図である。
【図3】図1の成形装置のA・A′概略断面図である。
【符号の説明】
1 成形装置
2、16 モールド
2a スラグ収納部
2b 容器本体
3 モーター
4 溶融炉
4a 溶融物取入口
5 スラグ
6 離型材
6a 離型材供給口
7 窒素ガス
7a 不活性ガス供給口
8 ボンベ
9 プレス装置
9a 型枠
9b ラム
10 溶融炉排ガス
11 成形排ガス
11a 成形排ガス排出口
12 熱分解ガス
13 炭素
14 コンベア
15 排出ダンパー
17 成形物
18 置き場
19 ジャケット排ガス
19a ジャケット
19b ジャケット取入口
19c ジャケット排出口
20 古紙
T 保持ゾーン内部温度
X、Y 移動方向
Z 保持ゾーン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming molten slag when melting waste or the like, a molding apparatus used therefor, and a mold (hereinafter simply referred to as slag molding method, molding apparatus, and mold).
[0002]
[Prior art]
In recent years, incineration ash has been melted due to the tightness of final disposal sites for waste and the like. The slag generated during the melting treatment includes a water cooling method using rapid cooling with water, an air cooling method using rapid cooling with air, and a cooling method using a casting machine. According to the rapid cooling of the water cooling method or the air cooling method, fine particle slag having an average particle size of about 2 mm is obtained, and large particle slag is obtained by the cooling method in which molding is performed by a casting machine.
[0003]
[Problems to be solved by the invention]
In the conventional cooling method using a casting machine, the casting machine and the slag may react and adhere to each other, and therefore, in the design of the casting machine, measures are taken to prevent adhesion. That is, the weight of the mold of the casting machine is sufficiently large with respect to the weight of the molten slag, and the molten slag is cooled by the mold to prevent the casting machine and the slag from reacting and adhering. However, in this method, when molding a slag having a large particle size, the weight of the mold increases, and the apparatus becomes a large facility. Moreover, when it is necessary to hold | maintain temperature in order to crystallize slag, it had the subject that slag adheres to a mold.
Also, from the viewpoint of the mold material, when the high-temperature molten slag comes into contact with a mold made of refractory material mainly composed of silica, alumina, etc., part of the refractory material melts and melts in the slag above a certain temperature. Makes slag and refractory material difficult to peel. Similarly, when high-temperature molten slag comes into contact with a metal mold containing iron as a main component, the iron surface becomes an oxide, and the iron oxide dissolves into the molten slag at a specific temperature or higher. Peeling becomes difficult. On the other hand, conventionally, after the mold is sufficiently cooled, a molten slag is supplied, or a method of forming a sufficient amount of mold with respect to the molten slag so that the mold temperature does not exceed a specific temperature is taken. It was. In the case of a metal mold, the metal has good thermal conductivity, so the temperature of the entire metal is almost uniform, and if the amount of precooled metal is increased, the metal temperature will be below a specific temperature to prevent adhesion Yes, but not economical. In the case of a mold made of refractory material, since the thermal conductivity of the refractory material is small, temperature distribution occurs inside the refractory material, and it reacts with the molten slag at a temperature above the molten slag, so it is difficult to peel off Had the problem of becoming.
On the other hand, in the case of molding a slag having a large particle size in the present invention, the slag is excellent in the peelability of the molten slag with respect to the mold in spite of simple and inexpensive equipment, and the mold material can be any refractory or metal. An object is to obtain an applicable molding method, molding apparatus, and mold.
[0004]
[Means for Solving the Problems]
To obtain the purpose,
In the invention of claim 1, a release material made of a cellulose material that has been molded in advance in accordance with the shape of the inner surface of the mold is fitted into the mold that is continuously conveyed from the upstream side to the downstream side. The slag from the melting furnace is housed inside the release material, the surrounding atmosphere is kept at a low oxygen concentration, a part of the release material is combusted, and a holding zone is provided to hold the heat in the intermediate portion on the upstream and downstream sides to crystallize the slag. This was solved by a molten slag molding method in which a molded product obtained by burning the remaining part of the release material while maintaining the ambient atmosphere at a high oxygen concentration on the downstream side is taken out from the downstream end.
In the invention of claim 2, the molten slag molding method according to claim 1, wherein the low oxygen concentration in the upstream ambient atmosphere is 16% or less and the high oxygen concentration in the downstream ambient atmosphere is 20% or more. Is preferred.
In the invention of claim 3, it is preferable to use the molten slag molding method according to claim 1 or 2 in which the holding zone is kept at a temperature of 950 to 1050 ° C.
[0005]
In the invention of claim 4, a large number of molds continuously mounted on a conveyor moving inside, a mold release material supply port disposed in a moving direction from the upstream end of the conveyor, and a melt collecting A jacket that forms a holding zone of a predetermined length between the inlet, the melt inlet and the downstream end of the conveyor; a jacket inlet at the rear end of the jacket; a jacket outlet at the front end; A discharge damper disposed rotatably at the downstream end portion reversal point; and an inert gas supply port provided in the vicinity of the melt intake port, from the mold release material supply port to the mold inner surface shape In addition, a molded release material is supplied, slag from the melting furnace is supplied to the melt inlet, holding zone heat-retaining gas is supplied and discharged to the jacket inlet and outlet, and the conveyor reversal point is reached. It was solved by a molding apparatus used in the transported molded product receipt by the exhaust damper and drainable and molten slag forming method of dropping by the mold inverted.
In the invention of claim 5, a mold frame adapted to the shape of the inner surface of the mold and a pressurizable ram are provided. Cellulose material is put into the mold frame, pressurized by the ram, press-molded and demolded. The problem is solved by the molding apparatus used for the molten slag molding method according to claim 4, further comprising a press apparatus for obtaining a release material that can be fitted into the mold.
In the invention of claim 6, a molten slag comprising a release material made of a cellulose material that has been molded in accordance with the shape of the slag housing portion on the inner surface of a container body made of metal or refractory material. The problem was solved by the mold used in the molding method.
In the invention according to claim 7, it is preferable that the mold used for the molten slag forming method according to claim 6 is characterized in that the release material has a thickness of 3 mm or more. In invention of Claim 8, it can be set as the mold used for the molten slag shaping | molding method of Claim 6 or 7 which used either piece-like paper, wood, and a pulp as a cellulose material.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic sectional side view of an example of the molding apparatus of the present invention.
FIG. 2 is a schematic sectional side view of an example of a mold used in the molding apparatus of the present invention.
FIG. 3 is a schematic cross-sectional view of the molding apparatus of FIG.
In the following description, the melting furnace side for supplying the melt will be described as upstream or rear, and the discharge side of the molding slag as downstream or front.
1 and 3, a conveyor 14 is continuously moved in a forward direction X and a return direction Y by a motor 3 inside the molding apparatus 1, and a number of unit molds 2 are continuously mounted on the conveyor 14 and moved. A release material supply port 6a from the upstream end, a melt inlet 4a from the melting furnace 4, and a jacket 19a forming a holding zone Z having a predetermined length are sequentially arranged in the moving direction of the upper surface and side surfaces of the conveyor 14. It is installed. A plate-like discharge damper 15 placed in the horizontal direction indicated by a solid line below is disposed in a closed state at the reverse position of the downstream end of the conveyor 14, and the mold 16 transferred by the movement of the conveyor 14 is disposed. The discharge damper 15 once receives the molded product 17 that is reversed and falls from the inside, and then the discharge damper 15 is rotated in the downward rotation direction R and moved to the position indicated by the two-dot chain line to open the upper surface. The placed molded product 17 can be dropped onto the storage place 18. Here, a transfer conveyor may be provided in place of the storage place 18, and the molded product 17 may be received, transported to a separation position, and discharged.
The conveyor 14 moves in the return direction Y together with the mold 16 emptied by dropping the molded product 17, and restores the original position of the upstream end.
[0007]
Further, the molding apparatus 1 has a nitrogen gas supply port 7a in the vicinity of the melt inlet 4a downstream of the release material supply port 6a, and a molded exhaust gas discharge port 11a between the melt inlet 4a and the rear end of the jacket 19a. Each is provided. As will be described later, the jacket 19a is provided with a jacket intake port 19b for introducing the melting furnace exhaust gas 10 and the formed exhaust gas 11 together on the upstream side, and a jacket discharge port 19c for discharging the jacket exhaust gas 19 on the downstream side.
As shown in FIG. 2, the mold 2 or 16 used here stores slag such as a rectangular parallelepiped, a cylinder, a truncated cone, a truncated pyramid, a dish or a hemisphere on the inner surface of a metal or refractory material container body 2b. Part 2a is formed. For example, SUS304 having a thermal conductivity of 18 Kcal / mH ° C. is used as the metal, and SiC having a thermal conductivity of 11 Kcal / mH ° C. is used as the refractory material.
On the other hand, as shown in FIG. 2, a waste paper 20 made of, for example, a piece of cellulose material is dissolved in water in a mold 9 a that matches the shape of the inner surface of the mold 2 by a press device 9 separate from the molding device 1 A mold release material 6 is prepared which can be put in a clay form, pressed with a ram 9b and press-molded, and fitted into the mold 2 obtained by demolding. Here, the release material 6 may be a cellulosic material, and instead of the waste paper 20, strip-like unused paper, wood, pulp, or the like may be used, and wood or pulp requires an adhesive as a binder depending on the particle size. It may be.
[0008]
Next, a molding method using the molding apparatus 1 will be described.
The mold release material 6 that has been molded in accordance with the inner surface of the mold 2 is dropped and fitted to the upstream unit mold 2 that is continuously conveyed by the movement of the conveyor 14 downward from the mold release material supply port 6a. The slag 5 falling from the melting furnace 4 is housed in the release material 6 of the unit mold 2 sent from the melt intake 4a. Here, an ambient atmosphere in which, for example, nitrogen gas 7 supplied from a cylinder 8 placed outside the molding apparatus 1 is introduced from an inert gas supply port 7 a immediately before the melt inlet 4 a and the slag 5 is accommodated in the mold 2. Is adjusted to maintain a low oxygen concentration of 9 to 16%. Instead of nitrogen gas, an inert gas such as an exhaust gas-treated melting furnace exhaust gas or combustion furnace exhaust gas or carbon dioxide gas may be used.
FIG. 2 shows a state when the slag 5 is supplied to the mold 2 on which the release material 6 is set. Part of the release material 6 in contact with the slag 5 is generated in the molding apparatus 1 as a pyrolysis gas 12 in an intermediate holding zone Z where the mold 2 moves from the upstream side to the downstream side by the movement of the conveyor 14. However, since the remaining part of the release material 6 is lower than the oxygen concentration contributing to combustion, it becomes carbon 13 and remains in the contact part with the slag 5, so that the reaction between the slag 5 and the mold 2 can be prevented.
A holding zone heat retaining gas 21 including the melting furnace exhaust gas 10 and the molding exhaust gas 11 containing the nitrogen gas 7 and the pyrolysis gas 12 is fed into the jacket 19a from the jacket inlet 19b as a heat source for keeping the mold 2 warm in the holding zone Z. Introduced and used for heat insulation. Thereby, the holding zone internal temperature T is preferably held at 950 to 1050 ° C., and the crystallization of the slag 5 can be promoted. Although it is desirable for energy saving to use the melting furnace exhaust gas 10, the nitrogen gas 7 and the pyrolysis gas 12 as the holding zone thermal insulation gas 21, it is not limited to this, and the gas from any one or another heat source is used. It may be used.
[0009]
Further, the conveyor 14 is moved, the mold 2 is transferred to the downstream side, reaches the reversal point of the downstream end portion of the conveyor 14 as the mold 16, and the discharge damper 15 placed in the horizontally closed state drops from the mold 16. The molded product 17 is temporarily received, then rotated in the downward rotation direction R, moved to the open position indicated by the two-dot chain line, and the molded product 17 placed and dropped is discharged to the storage 18 and stored. To do.
Here, in the molding apparatus 1 on the downstream side of the holding zone Z, the ambient atmosphere reaches a high oxygen concentration of 20% or more due to air leakage due to the open state of the discharge damper 15, and the release material 6 and the carbon 13 described above. Burns completely. For this reason, only the molded product 17 exists in the mold 16 immediately before discharge. The molded product 17 discharged by the discharge damper 15 is left in the place 8 and gradually cooled at room temperature.
The holding zone heat retaining gas 21 that contributes to holding the temperature in the holding zone Z is discharged as a jacket exhaust gas 19 from the jacket discharge port 19c, sent to an exhaust gas treatment facility outside the system, exhausted, and then released into the atmosphere.
[0010]
【Example】
Using slag made from sewage sludge A or municipal waste B as the composition shown in Table 3, the amount of molten slag was 200 kg / hr. Evaluation was performed by comparing the releasability between the mold and the molten slag by using the molding apparatus 1 of the present invention having the above-described processing capability.
As the mold 2, SUS304 having a thermal conductivity of 18 Kcal / mH ° C. was used, and the shape and size of a truncated cone shown in FIG. 2 having a large circle diameter of 200 mm, a small circle of 100 mm, and a height of 250 mm were selectively used.
A release material 6 formed by pressing waste paper according to the shape of the mold inner surface to be used was prepared in advance and supplied to the molding apparatus 1 described above.
In Table 1, the thickness of the release material was changed stepwise in the range of 3 to 10 mm under the condition of the ambient atmosphere having an oxygen concentration of 12%, and a case where no release material was used was added for comparison.
In Table 2, the mold release material thickness was fixed at 5 mm, and the oxygen concentration in the surrounding atmosphere was changed stepwise in the range of 8 to 20%.
In each case, the peelability between the mold and the molten slag was compared and evaluated and shown in Tables 1 and 2.
[0011]
[Table 1]
Figure 0004005692
Table 1 shows the relationship between the thickness mm of the release material and the peelability. In this case, the releasability was good when the release material had a thickness of 5 mm or more. This is probably because the release material burned when the slag was supplied with the release material of 3 mm, and the slag and a part of the mold reacted in the same manner as when the release material was not used.
[0012]
[Table 2]
Figure 0004005692
Table 2 shows the relationship between the peripheral oxygen concentration% and the peelability. In this case, since a part of the reaction occurred at the surrounding oxygen concentration of 16%, the oxygen concentration was changed from 9% to 15% in the examples. However, if the release material was 8 mm thick, it could be used even at an oxygen concentration of 17%.
[0013]
[Table 3]
Figure 0004005692
Table 3 shows the composition of slag using sewage sludge A or municipal waste B as a raw material.
[0014]
In this example, the release material had good peelability when the thickness of the release material was 3 mm or more, preferably 5 mm or more, and the peripheral oxygen concentration was 16% or less, preferably 15% or less.
[0015]
Next, the operation of the molding method, molding apparatus, and mold of the present invention will be described.
In the present invention, by adopting the above-described configuration, the combustible matter such as paper or wood as a release material is decomposed into pyrolysis gas and carbon by a high-temperature molten slag, and the generated pyrolysis gas is between the mold and the molten slag. Discharged through. Since carbon does not dissolve in the molten slag, it remains between the mold and the molten slag, and the mutual reaction is prevented by separating the molten slag and the mold, so that the slag can be easily separated from the mold. Further, when the release material, such as paper or wood, is thermally decomposed, the decomposition heat is received from the slag and the slag temperature is lowered, which is more effective in preventing adhesion.
When the ambient atmosphere is operated in an oxidized state, paper or wood is burned when the molten slag comes into contact with paper or wood, so the upstream side introduces nitrogen gas to suppress combustion in a low oxygen state, and the downstream side Then, by reheating in a high oxygen state, the carbon and unburned components can be completely burned. As a result, the mold release material does not remain at all in the molded product crystallized in the holding zone Z, and the mold and the crystallized molded product can be completely separated and separated.
[0016]
【The invention's effect】
According to the molten slag molding method of the present invention and the molding apparatus and mold used therefor, when molding a slag having a large particle diameter, the peelability of the molten slag is excellent with respect to the mold despite simple and inexpensive equipment, It has a remarkable effect that the material of the mold can be applied to either a refractory material or a metal.
[Brief description of the drawings]
FIG. 1 is a schematic sectional side view of an example of a molding apparatus of the present invention.
FIG. 2 is a schematic sectional side view of an example of a mold used in the molding apparatus of the present invention.
FIG. 3 is a schematic cross-sectional view of the forming apparatus of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Molding apparatus 2, 16 Mold 2a Slag accommodating part 2b Container body 3 Motor 4 Melting furnace 4a Melt intake 5 Slag 6 Release material 6a Release material supply port 7 Nitrogen gas 7a Inert gas supply port 8 Cylinder 9 Press device 9a type Frame 9b Ram 10 Melting furnace exhaust gas 11 Molded exhaust gas 11a Molded exhaust gas outlet 12 Pyrolysis gas 13 Carbon 14 Conveyor 15 Exhaust damper 17 Molded product 18 Place 19 Jacket exhaust gas 19a Jacket 19b Jacket intake 19c Jacket exhaust port 20 Waste paper T Inside the holding zone Temperature X, Y Movement direction Z Holding zone

Claims (8)

予めモールド内面形状に合わせて成形済みのセルロース材よりなる離型材を上流側より下流側に連続的に搬送されている該モールドに嵌着せしめ、上流側において溶融炉よりのスラグを前記離型材内部に収納せしめ周辺雰囲気を低酸素濃度に保持して該離型材の一部を燃焼せしめ、上流及び下流側の中間部に保温する保持ゾーンを設けスラグを結晶化させ、下流側において周辺雰囲気を高酸素濃度に保持して前記離型材の残余部を燃焼せしめて得られた成形物を下流端末より取出すことを特徴とする溶融スラグ成形方法。A release material made of a cellulose material that has been molded in advance according to the shape of the inner surface of the mold is fitted into the mold that is continuously conveyed from the upstream side to the downstream side, and the slag from the melting furnace is placed inside the release material on the upstream side. The surrounding atmosphere is kept at a low oxygen concentration and a part of the mold release material is combusted, and a holding zone for keeping heat in the intermediate part on the upstream and downstream sides is provided to crystallize the slag, and the surrounding atmosphere is increased on the downstream side. A molten slag molding method, wherein a molded product obtained by burning the remaining portion of the release material while maintaining the oxygen concentration is taken out from a downstream terminal. 上流側周辺雰囲気の低酸素濃度が16%以下、下流側周辺雰囲気の高酸素濃度が20%以上であることを特徴とする請求項1に記載の溶融スラグ成形方法。The molten slag molding method according to claim 1, wherein the low oxygen concentration in the upstream peripheral atmosphere is 16% or less, and the high oxygen concentration in the downstream peripheral atmosphere is 20% or more. 保持ゾーンは950〜1050℃に保温されていることを特徴とする請求項1又は2に記載の溶融スラグ成形方法。The molten slag molding method according to claim 1 or 2, wherein the holding zone is kept at a temperature of 950 to 1050 ° C. 内部に移動するコンベア上に連続して装着された多数のモールドと、前記コンベア上流側端部より移動方向に配設された離型材供給口と溶融物取入口と、前記溶融物取入口とコンベアの下流側端部の間に所定長さの保持ゾーンを形成するジャケットと該ジャケット後端部にジャケット取入口と前端部にジャケット排出口と、前記コンベアの下流側端部反転箇所下方に回動可能に配設された排出ダンパーと、前記溶融物取入口近傍に設けられた不活性ガス供給口とを備え、前記離型材供給口から前記モールド内面形状に合わせて成形済みの離型材が供給され、前記溶融物取入口に溶融炉よりのスラグが供給され、前記ジャケット取入口及び排出口に保持ゾーン保温ガスが供給及び排出され、前記コンベア反転箇所まで移送された前記モールドの反転により落下する成形物を前記排出ダンパーにより受取り及び排出可能としたことを特徴とする溶融スラグ成形方法に用いる成形装置。A number of molds continuously mounted on a conveyor moving inside, a mold release material supply port and a melt intake port disposed in a moving direction from the upstream end of the conveyor, the melt intake port and the conveyor A jacket that forms a holding zone of a predetermined length between the downstream end of the belt, a jacket intake port at the rear end of the jacket, a jacket discharge port at the front end, and a downward rotation of the downstream end of the conveyor. A discharge damper disposed in a possible manner and an inert gas supply port provided in the vicinity of the melt intake port, and a molded release material is supplied from the release material supply port according to the shape of the inner surface of the mold. The slag from the melting furnace is supplied to the melt inlet, the holding zone heat-retaining gas is supplied to and discharged from the jacket inlet and the outlet, and transferred to the conveyor reversal point. Forming apparatus using the molded product falling by rolling the molten slag forming method is characterized in that the receipt and can be discharged by the discharge damper. モールドの内面形状に合わせた型枠と加圧可能なラムとを備え、前記型枠にセルロース材を投入し前記ラムで加圧してプレス成形し脱型して前記モールドに嵌着可能な離型材を得るプレス装置を付設したことを特徴とする請求項4に記載の溶融スラグ成形方法に用いる成形装置。A mold release material that includes a mold that matches the inner shape of the mold and a pressurizable ram, and that can be put into the mold by applying a cellulose material to the mold, pressurizing with the ram, press-molding, demolding A molding apparatus for use in the molten slag molding method according to claim 4, wherein a press apparatus for obtaining the above is attached. 金属又は耐火材製の容器本体の内面のスラグ収納部形状に合わせて成形済みのセルロース材よりなる離型材が嵌着されていることを特徴とする溶融スラグ成形方法に用いるモールド。A mold for use in a molten slag molding method, wherein a release material made of a cellulose material that has been molded is fitted in accordance with the shape of a slag housing portion on the inner surface of a metal or refractory material container body. 離型材の厚みが3mm以上であることを特徴とする請求項6に記載の溶融スラグ成形方法に用いるモールド。The mold used for the molten slag molding method according to claim 6, wherein the release material has a thickness of 3 mm or more. セルロース材として細片状の紙、木材及びパルプのいずれかを用いたことを特徴とする請求項6又は7に記載の溶融スラグ成形方法に用いるモールド。The mold used for the molten slag molding method according to claim 6 or 7, wherein any one of a piece of paper, wood and pulp is used as the cellulose material.
JP07640898A 1998-02-18 1998-02-18 Fused slag molding method, molding apparatus and mold used therefor Expired - Fee Related JP4005692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07640898A JP4005692B2 (en) 1998-02-18 1998-02-18 Fused slag molding method, molding apparatus and mold used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07640898A JP4005692B2 (en) 1998-02-18 1998-02-18 Fused slag molding method, molding apparatus and mold used therefor

Publications (2)

Publication Number Publication Date
JPH11226926A JPH11226926A (en) 1999-08-24
JP4005692B2 true JP4005692B2 (en) 2007-11-07

Family

ID=13604433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07640898A Expired - Fee Related JP4005692B2 (en) 1998-02-18 1998-02-18 Fused slag molding method, molding apparatus and mold used therefor

Country Status (1)

Country Link
JP (1) JP4005692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5735142B2 (en) * 2011-02-25 2015-06-17 アウムント・フエルデルテヒニク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング How to treat aluminum slag

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928817Y2 (en) * 1981-05-01 1984-08-20 日本碍子株式会社 Equipment that continuously produces crystallized products from waste molten slag
JP3207460B2 (en) * 1991-09-06 2001-09-10 株式会社神戸製鋼所 Method and apparatus for producing hard aggregate from waste as raw material using molten slag container

Also Published As

Publication number Publication date
JPH11226926A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
RU2007119767A (en) METHOD AND DEVICE FOR PRODUCING A MELTED IRON
EP1096215A3 (en) Apparatus and method for producing metal through reduction
WO2001073137A3 (en) Method of producing metallic iron and raw material feed device
CA2176364A1 (en) Heat treating and removing cores from castings
IE860137L (en) Ceramic tile manufacture
JP4005692B2 (en) Fused slag molding method, molding apparatus and mold used therefor
US3747542A (en) Method and device for the treatment of refuse
US3556025A (en) Incinerator for refuse
KR20080035162A (en) Method and device for making pig iron and zinc oxide from material including iron oxide and zinc oxide
JPS5534647A (en) Continuous sintering furnace for powder metallurgy
JP3527149B2 (en) Industrial waste treatment method
JP2001289416A (en) Waste treatment facility
JP3291220B2 (en) Insulation material for molten metal
WO2018218115A1 (en) System and method for briquetting cyclone dust from decoating systems
JPS55146315A (en) Melting method for industrial waste
JPH0643675Y2 (en) Recovery device for sensible heat of molten slag in electric furnace
JPS5712216A (en) Method of melting waste
JP4392137B2 (en) Method and apparatus for treating combustible dust in waste melting furnace
JP3878390B2 (en) In-furnace deposit removal method for rotary kiln reduction furnace
JP3905845B2 (en) Melting equipment
JP2963274B2 (en) Cooling method of molten material extracted from waste melting furnace
JP2962483B2 (en) Waste treatment method
JPS5697720A (en) Melting treatment of industrial waste and others
JP2000229212A (en) Dust discharging device for ash melting furnace
JP3806253B2 (en) Waste plastic blowing method to waste melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees