JP4004292B2 - Substrate grinding equipment - Google Patents

Substrate grinding equipment Download PDF

Info

Publication number
JP4004292B2
JP4004292B2 JP2002013136A JP2002013136A JP4004292B2 JP 4004292 B2 JP4004292 B2 JP 4004292B2 JP 2002013136 A JP2002013136 A JP 2002013136A JP 2002013136 A JP2002013136 A JP 2002013136A JP 4004292 B2 JP4004292 B2 JP 4004292B2
Authority
JP
Japan
Prior art keywords
grinding
grindstone
substrate
wheel type
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002013136A
Other languages
Japanese (ja)
Other versions
JP2003218079A (en
Inventor
三郎 関田
弘孝 小此木
守幸 柏
Original Assignee
株式会社岡本工作機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社岡本工作機械製作所 filed Critical 株式会社岡本工作機械製作所
Priority to JP2002013136A priority Critical patent/JP4004292B2/en
Publication of JP2003218079A publication Critical patent/JP2003218079A/en
Application granted granted Critical
Publication of JP4004292B2 publication Critical patent/JP4004292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウエハ、ゲルマニウムウエハ、アルミニウムウエハ、ガラス基板等の半導体基板を研削するのに適した平面研削装置関する。
【0002】
【従来の技術】
半導体基板の研削には、基板のチャック機構とスピンドルに軸承されたカップホイ−ル型砥石および研削液供給機構を備える平面研削装置が使用されている(特開平2−274462号、同3−154773号、同11−254318号、同11−307489号、同11−309664号、特開2000−94342号公報)。
【0003】
かかる平面研削装置の一例として、例えば、図8に示す平面研削装置が挙げられる(特開平11−254318号公報)。
図中、1は平面研削装置、Aは本体基台、2は回転軸、3はウエハ(基板)、4はチャック、5はカップホイ−ル型砥石、6は本体ケ−シング、7は昇降装置、8はスピンドル、9は軸受、10はスピンドルケ−シング、11はカップホイ−ル型砥石を取り付けるヘッド、12はスピンドルケ−シングを昇降機構に据え付ける取付部材、13は後述する傾斜調整ボルト駆動用モ−タ−、14はスピンドル軸を回転駆動させるビルド・イン・モ−タ−、15はX軸方向の傾斜調整ボルト、15aは皿バネ、15'はY軸方向の傾斜調整ボルト、16は昇降装置を垂直方向に昇降可能とする凹状溝を有するレ−ル、18はスピンドル軸ケ−シングに設けられた半球状凸部、19は昇降装置の前面に前記半球状凸部と若干の隙間を持って嵌合できるように形成された半球状凹部、21はロッド、22は空気軸受である。
【0004】
研削テ−ブル4上に載せられたウエハ3の表面にスピンドル8を昇降装置により下降させてカップホイ−ル型砥石をウエハ面に圧接し、両スピンドル軸2,8を同一方向または逆方向に回転させることによりウエハ表面に砥石を摺動させてウエハ表面を研削する。
【0005】
カップホイ−ル型砥石5としては、図9に示すカップ状砥石基体の前記環状周壁部5aの端面5bに扇状の砥石刃5d複数を環状に接着剤で隣接する砥石刃5d,5d間に研削液の流通するスリット5fを形成させるようにして固定したカップホイ−ル型砥石(実開昭61−144959号、同61−144961号、同61−144962号、特開昭62−181875号公報)が使用されている。前記砥石刃は、高さが3〜7mm、幅が3〜10mm、長さが3〜7mmの環状扇体であるのが一般である。
これら公報には、研削液の供給方法について記載はなされていない。
【0006】
特開平9−38866号公報は、砥石ヘッドの本体部の一面上に、外周側に向かうに従ってカップ状砥石の回転方向とは反対方向に向かう羽根部が設けられ、カップ状砥石の砥石基体(台金)上側に設けた研削液導入孔より研削液をポンプにより圧送供給して前記羽根部上を研削液が流れ、基板と砥石刃の摺接部分に研削液を供給する構造の砥石ヘッドが記載されている。
【0007】
また、特開平11−254281号公報は、砥石基体の周壁部端面に砥石刃の複数を環状に隣り合う砥石刃間に隙間を設けたカップホイ−ル型砥石の砥石刃と基板が摺接する部分に研削液を供給する手段として、該カップホイ−ル型砥石の砥石基体に環状の液分岐室を設け、この液分岐室に一定間隔をおいて円弧状に研削液供給孔を設け、この液分岐室にカップホイ−ル型砥石の中心を軸承する中空スピンドルを接続したセンタ−研削液供給機構を有する砥石ヘッドを用い、カップホイ−ル型砥石の基体に設けた研削液供給孔より前記カップホイ−ル型砥石の砥石刃に向けて砥石基体の周壁部内側より研削液を供給するとともに、チャック外に設けた気体供給ノズルより前記カップホイ−ル型砥石の砥石刃と基板との摺接面に向けて砥石基体の周壁部内側より気体流を吹き付ける内部気体供給機構とを備える研削装置を開示する。
【0008】
更に、カップ状砥石基体(台金)の環状の周壁部の端部に環状に砥石刃複数を固定したカップホイ−ル型砥石であって、前記砥石基体は底壁の外面に周壁部と同心に設けられた環状溝(a)と該環状溝内に供給される研削液を周壁部の内側へ導入するために該環状溝の底面から前記底壁を貫通して設けられ、該周壁部の他端側へ向かう程度外周側へ傾斜して、かつ、周壁部に同心に多数等間隔に設けられた研削液導入孔(b)を有し、底壁とは反対面の周壁の上面に固定された環状の砥石は周壁の頂面より突出している部分において周壁部および環状溝が共有する軸心と該軸心に直交する環状砥石の起立面に対し、軸心側から砥石外側に向かって30〜60度傾斜した研削液排出用スリット(c)が多数等間隔に設けられているカップホイ−ル型砥石も使用されている(特開2000−94342号公報)。
【0009】
このカップホイ−ル型砥石において、スリットの高さが3〜10mmであり、砥石幅2〜7mm、スリットで区分けされた砥石刃の長さが10〜50mmである。研削液導入孔の径は2〜6mm、周壁高さは25〜45mmである。
【0010】
図7に示す研削装置は、後者のカップホイ−ル型砥石を備えた研削装置1の砥石ヘッド構造を示すものである。
【0011】
図7に示す平面研削装置のヘッド構造において、6は本体ケ−シング、8はスピンドル軸、9は軸受、11はカップホイ−ル型砥石の取付板、12はスピンドル軸ケ−シング取付部材、13は傾斜調整ボルト駆動用モ−タ−、14はスピンドル軸を回転駆動させるビルド・イン・モ−タ−、22は空気軸受、23は空気供給管、24は取付板11とスピンドル軸を軸承する固定板25との連結軸、26はスピンドル軸ケ−シング10冷却液供給管、27は空気軸受22と該空気軸受の周壁下に設けた囲板(砥石カバ−)28とからなるヘッドH内に設けられた空間部、50はカップホイ−ル型砥石、51は周壁部、52は底壁、53はカップ状基体(台金)、55は砥石、56は環状溝、57は研削液導入孔、59は研削液供給ノズル、60は研削液供給管、61は研削液取入口であり、この研削液供給管は図示されていないが、昇降機構の取付部材に固定されており、研削液タンクと可撓性ホ−スで接続されている。
【0012】
カップホイ−ル型砥石50は、ビルド・イン・モ−タ−14の回転駆動をスピンドル軸8、固定板25、連結軸24、取付板11を経て伝達し、回転させる。
ヘッドは取付部材12に固定されているので砥石50が回転しても、ヘッド自信は回転駆動しない。従って、研削液供給ノズル59と研削液供給タンクを連結する可撓性ホ−スが捻れて破損することはない。
研削液供給ノズル59より砥石50の環状溝56に供給された研削液は、導入孔57,57…を経て砥石周壁内56面に導かれ、さらにスリット50fを通過して砥石の周壁外側へ排出される。
【0013】
カップホイ−ル型砥石50の砥石刃55群の直径rは基板の半径の4/3〜2倍と大きく、カップホイ−ル型砥石の砥石刃が前記基板の略中心点を通過するようにスピンドル8を回転させる。
基板の研削は、前記チャック4に保持された基板を水平方向に回転させつつ、研削液を基板表面に供給しつつカップホイ−ル型砥石を該砥石の砥石刃55が前記基板の略中心点oを通過するようにスピンドルを回転させてカップホイ−ル型砥石を基板面上で摺動させて基板表面を研削する。
【0014】
砥石刃間のスリットが斜めではなく平行なスリットであり、台金に研削液供給ようの環状溝とこの環状溝の上部より砥石刃に向けて斜め孔を穿ったカップホイ−ル型砥石も公知である(特開平6−23674号)。
【0015】
図4に示すように、直径が300mm、400mm、表面にデバイスパタ−ン3aが設けられ、このデバイスパタ−ンにダイサ−切り込み溝(ッストリ−ト)3bが設けられた半導体基板の裏面研削は、デバイスパタ−ン表面を保護フィルム(粘着テ−プ)80で覆い、保護フィルム80がチャック面に接するように、かつ、基板裏面3cがカップホイ−ル型砥石55(5)に対向するように半導体基板3をポ−ラスセラミックチャック4上に載置し、カップホイ−ル型砥石による基板の裏面研削が行なわれる。
【0016】
このように、従来のカップホイ−ル型砥石を用いる研削装置においては、カップホイ−ル型砥石の砥石刃に向けて砥石基体の周壁部内側より研削液を供給する内部研削液供給機構が採用されている。
【0017】
近年、薄肉のスマ−トカ−ドが金融決済カ−ドや遊園地入場決済カ−ドとして利用されるようになり、半導体ウエハのシリコン基板として厚みが120〜220μmの基板が用いられている。
さらに薄い基板が求められるようになり、セミコン ジャパン 2000年や2001年の展示場では40〜80μmのシリコン基板が展示されるようになり、厚み50〜100μmのシリコン基板については、経済性のある研削スピ−ドで加工できる段階に入った。
【0018】
【発明が解決しようとする課題】
市場では、次世代のスマ−トカ−ドとして20μm〜50μm未満と極薄の基板の登場が望まれている。
かかる極薄の基板を経済性のある研削スピ−ドで加工するには、従来のカップホイ−ル型砥石の砥石刃に向けて砥石基体の周壁部内側より研削液を供給する研削液供給手段を備える研削装置では、砥石刃と基板の摺接面に研削液が届きにくく、砥石刃と基板の摺接面の冷却が充分でなく、2〜3枚目の基板の研削加工で基板が破損してしまい、連続して基板を研削加工できない。
【0019】
さらに、求められる基板の厚みが20μm〜50μm未満と極薄となったため、基板径が300mm以上と拡径した半導体基板では、保護フィルム80と半導体基板3のデバイスパタ−ン3aのダイサ−溝(ストリ−ト)に研削屑を含んだ研削液が浸入し、研削屑が悪さを働いて裏面研削時に、または研削後の基板搬送時に半導体基板3が割れてしまう現象が生じやすくなることが判明した。
【0020】
この割れの原因は、半導体基板の端部(エッジ部)3dが丸みを帯びた尖りを有しており、研削時に保護フィルム80の端部が基板のデバイスパタ−ン3a面より剥離し、保護フィルム80と半導体基板3のデバイスパタ−ン3a間に研削屑を含んだ研削液が浸入し、ダイサ−溝3bを通って研削液が浸透し、特に、研削屑がデバイスパタ−ンのダイサ−溝3bに留まった際は、ヘッドHより半導体基板にかかる圧力が研削屑に集中し、基板の強度の弱いダイサ−溝3b部に外部応力が作用するため、半導体基板の割れに繋がるものと思われる。
【0021】
本発明は、基板が50μm以上であろうと、50μm未満であろうと基板の厚みにかかわらず基板を研削できる研削装置の提供を目的とする。
【0022】
【課題を解決するための手段】
本発明の請求項1は、ポ−ラスセラミックチャックに保持された基板を水平方向に回転させつつ、かつ、研削液を基板表面に供給しつつ、基板の半径よりも大きい直径を有するカップホイ−ル型砥石の砥石刃が前記基板の略中心点を通過するようにカップホイ−ル型砥石を基板面上で摺動させて基板表面を研削する研削装置において、 前記カップホイ−ル型砥石は、砥石基体の周壁部端面に砥石刃の複数を環状に隣り合う砥石刃間に隙間を設けたカップホイ−ル型砥石であり、研削液の供給機構としてカップホイ−ル型砥石の砥石刃に向けて砥石基体の周壁部内側より研削液を供給する内部研削液供給機構と、前記ポ−ラスセラミックチャック外に設けた研削液供給ノズルより前記カップホイ−ル型砥石の砥石刃に向けて砥石基体の周壁部外側より研削液を供給する外部研削液供給機構とを備え、更に、前記ポ−ラスセラミックチャックの直径方向の前記カップホイール型砥石の砥石刃が通過できる断面凹状の溝を有する液切り堰を備えており、この溝の寸法は、該溝の側壁が前記カップホイール型砥石の刃先の側面より10〜1000μm、溝の底部が刃先の下面より10〜1000μm離れ、溝幅10〜30mmの寸法であり、前記ポーラスセラミックチャックに保持された基板面より離れた前記カップホイ−ル型砥石の砥石刃の刃先に付着した液体、該液切り堰の断面凹状の溝内を前記カップホイ−ル型砥石の砥石刃が通過することにより除去されることを特徴とする、基板の研削装置を提供するものである。
【0023】
本発明研削装置を用い、研削された基板の厚みが50μm以上の基板を得るときは、研削液供給機構として外部研削液供給機構は用いずに内部研削液供給機構を用いてカップホイ−ル型砥石の砥石刃に向けて研削液を供給しつつ、ポ−ラスセラミックチャックに保持された基板を水平方向に回転させつつ、カップホイ−ル型砥石の砥石刃が前記基板の略中心点を通過するようにカップホイ−ル型砥石を基板面上で摺動させて基板表面を研削する
【0024】
本発明研削装置を用い、研削された基板の厚みが50μm未満の基板を得るときは、研削液供給機構として内部研削液供給機構は用いずに外部研削液供給機構を用いてカップホイ−ル型砥石の砥石刃に向けて研削液を供給しつつ、ポ−ラスセラミックチャックに保持された基板を水平方向に回転させつつ、カップホイ−ル型砥石の砥石刃が前記基板の略中心点を通過するようにカップホイ−ル型砥石を基板面上で摺動させて基板表面を研削する
【0025】
研削加工により求められる基板の最終厚みにより研削液供給機構を、内部研削液供給機構か外部研削液供給機構か、いずれかを選択して本発明の研削装置を使用するので1台の研削装置で種々の厚みの基板を研削できる。
【0026】
本発明研削装置ポ−ラスセラミックチャック外に砥石刃が通過できる断面凹状の溝を有する液切り堰を備えさせ、前記ポ−ラスセラミックチャックに保持された基板面より離れたカップホイ−ル型砥石の砥石刃の刃先に付着した液体を、該液切り堰の断面凹状の溝内を砥石刃が通過することにより除去する
【0027】
すなわち、液切り堰の断面凹状の溝内をカップホイ−ル型砥石の砥石刃が通過する際、高速で回転している砥石刃に付着している研削液等の液体は、液切り堰の溝と砥石刃の隙間が狭いので液切りされるとともに、研削液中に含有された研削屑は液切り堰に当接して飛ばされるので、再び砥石刃が研削系に戻る際には砥石刃には研削屑が付着していない。よって、保護フィルム80と半導体基板3のデバイスパタ−ン3aのストリ−ト3bに研削屑が浸透する機会が失れるので半導体基板3が割れることはない。
【0028】
【発明の実施の形態】
以下、図面を用いて本発明をさらに詳細に説明する。
図1は、研削装置の部分正面図、図2は、研削装置のカップホイ−ル型砥石の砥石刃回転方向と、基板の回転方向と研削液供給位置と、液切り堰の位置の相対関係を示す平面図、図3は、液切り堰の斜視図、図4は、チャック上に載置された半導体基板とカップホイ−ル型砥石と、液切り堰と、研削液供給機構の位置関係を示す本発明研削装置の別態様の部分正面図、図5は図4の研削装置に示す下ガイド部材を上から見た平面図、および、図6は図4に示す下ガイド部材を下から見た底面図である。
【0029】
カップホイ−ル型砥石:
カップホイ−ル型砥石は、砥石基体の周壁部端面に砥石刃の複数を環状に隣り合う砥石刃間に隙間を設けたカップホイ−ル型砥石であり、既述した実開昭61−144959号、同61−144961号、同61−144962号、特開昭62−181875号、特開平6−23674号、同9−38866号、同11−186645号、同11−254281号、特開2000−94342号公報に記載のカップホイ−ル型砥石を含め、種々のカップホイ−ル型砥石を用いることができる。
【0030】
カップホイ−ル型砥石の砥石刃55は、ダイヤモンド砥粒、CBN砥粒をフェノ−ル樹脂、エポキシ樹脂等の接着剤で環状扇体に成型したものである。
環状扇体(砥石刃)55の寸法は、高さが3〜7mm、幅が3〜10mm、スリットで区分けされた砥石刃の長さが10〜50mmであるのが一般である。スリット幅は1〜3mmである。
カップホイ−ル型砥石の砥石刃55群が形成する環の直径は、研削される基板の半径の4/3〜2.2倍であり、好ましくは2倍である。カップホイ−ル型砥石を該砥石の砥石刃が前記基板の略中心点を通過するようにスピンドルを回転させてカップホイ−ル型砥石を基板面上で摺動させて基板表面を研削するので、液切り堰90をポ−ラスセラミックチャック4外に設けることができる(図1、図2、図4を参照)。
【0031】
研削液供給機構:
本発明の研削装置は、砥石基体の周壁部内側からカップホイ−ル型砥石の砥石刃に向けて研削液を供給する内部研削液供給機構と、砥石基体の周壁部外側からカップホイ−ル型砥石の砥石刃に向けて研削液を供給する外部研削液供給機構93とを備える。
【0032】
内部研削液供給機構としては、既述した特開平11−254281号公報や図4に示すように、カップホイ−ル型砥石50の中心を軸承する中空スピンドル8内に前記カップホイ−ル型砥石の砥石刃55に向けて砥石基体の周壁部内側より研削液を供給するセンタ−研削液供給機構59であっても、特開平6−23674号、同11−186645号、特開2000−94342号公報もしくは図1に示す砥石基体の周壁部上面に設けた環状溝の上側より砥石刃55を備えた底壁端面に向けて研削液供給孔を穿った構造のものであってもよい。
【0033】
外部研削液供給機構としては、チャック機構の外のフレ−ム94にピンチ95等の固定具を用いて研削液供給ノズル93をノズル角度が変更できるように設け、このノズルに研削液をポンプにより供給してカップホイ−ル型砥石50の砥石刃55と基板の摺接面Oに向けて砥石基体の周壁部内側より研削液を供給する構造のものである。
【0034】
研削装置:
研削装置は、前述の図7に示した研削装置は勿論、市販の裏面研削装置、例えば株式会社 岡本工作機械製作所のGNX(商品名)シリ−ズ、GNX−P(商品名)シリ−ズ(特開平11−307489号、株式会社東京精密のPG(商品名)シリ−ズ等のように、インデックステ−ブルに3基乃至4基のチャックテ−ブルを備え、このチャックテ−ブル上に第1研削ヘッドと第二研削ヘッドを設け、インデックステ−ブルを基板ロ−ディングゾ−ン、第1研削ゾ−ン、第二研削ゾ−ンおよびアンロ−ディングゾ−ンに振り分けたインデックスタイプの研削装置も使用できる。
これら研削装置には、内部研削液供給機構と外部研削液供給機構が設けられる。インデックスタイプの研削装置においては、第1研削ゾ−ンと第二研削ゾ−ンの双方に内部研削液供給機構と外部研削液供給機構を設けてもよいし、第1研削ゾ−ンの研削ヘッドに内部研削液供給機構59を、第二研削ゾ−ンのフレ−ムに外部研削液供給機構93を設けてもよい。
【0035】
これら裏面研削装置の砥石カバ−28に、図1に示すように支持部材91を設け、この支持部材に液切り堰90をボルト92で固定する。砥石カバ−28は、その一部材をスライド可能に設け、カップホイ−ル型砥石50の刃先55の磨耗状態を観察できるようにするのが好ましい。
【0036】
液切り堰90は、図3で示すように断面凹状の溝90aを有し、この溝の寸法は、該溝の側壁がカップホイ−ル型砥石の刃先の側面より10〜1000μm、好ましくは30〜100μm、溝の底部が刃先の下面より10〜1000μm、好ましくは30〜600μm離れる寸法とする。液切り堰90の溝幅wは10〜30mmで充分である。
【0037】
液切り堰90の素材としては、セラミックの素焼き、ポリ(テトラフルオロエチレン)、ポリ(ジクロロジフロロエチレン)、ポリアセタ−ル等の樹脂成形品が挙げられる。
【0038】
液切り堰90の取り付け位置は、カップホイ−ル型砥石の刃先が基板を研削し、チャックから離れる位置に近いチャック外位置であり、研削液供給位置より遠い位置である。
【0039】
図4に示す研削装置は、中空スピンドル8に研削液を供給する内部研削液供給機構を備えた研削装置で、中空スピンドル8の下方は解放されており、その下方には略円錐台状で中央が円筒状に刳り貫かれた下ガイド部材96がボルト96bを介して上ガイド部材97に固定され、上ガイド部材97はボルト97aにより砥石フランジ98に固定され、砥石フランジ98は研削ヘッドHのベ−ス99にボルト98aで固定されている。前記砥石フランジ98はボルト101aによりカップホイ−ル型砥石50の砥石基体101を固定する。
55は砥石刃で、砥石基体の底壁に設けられている。また、研削ヘッドHの外筒28下部には液切り堰90が設けられている。
【0040】
前記上ガイド部材96の円錐台状上面には液通路96aが十文字状に設けられ(図6参照)、中空スピンドル8を経由してきた研削液はこの液通路96aを通過し、研削ヘッドの回転による遠心力により砥石基体101の内壁および砥石刃55に衝突せられ、砥石基体101の内壁に衝突した研削液はこの内壁を垂下し、砥石刃と基板との接触面に導かれる(図4参照)。
上ガイド部材97の刳り貫かれた円筒部にはセンタ−ガイド部材100が嵌合されボルト100aにより上ガイド部材97に固定される(図4および図5参照)。
【0041】
研削液の供給量は、基板の直径により異なるが0.5〜10リットル/分が好ましい。
【0042】
基板の裏面研削は、基板3の裏面を上向きとしてポ−ラスセラミックチャック4を軸承する中空スピンドル2を減圧して基板をチャック4に保持し、中空スピンドル2をモ−タ2aで水平方向に回転させることにより前記チャック2に保持された基板を水平方向に回転させつつ、研削液を研削液供給管59または供給ノズル93より基板表面に供給しつつカップホイ−ル型砥石50を該砥石の刃先55が前記基板の略中心点を通過するようにスピンドル8を回転させてカップホイ−ル型砥石50を基板面上で摺動させて基板表面を研削する。
【0043】
中空スピンドル2の回転数は、30〜300rpm、スピンドル8の回転数は1,000〜4,000rpmが好ましい。
【0044】
【実施例】
実施例1
半導体基板として、厚みが約220μm、直径が300mmのシリコンウエハ表面に、縦20mm、横20mm角のデバイスパタ−ン複数をダイサ−幅200μm、ダイサ−溝深さ10μmで格子状に仕切ったデバイスパタ−ンを有する半導体基板の前記デバイスパタ−ン面に保護フィルムを貼着したものを用いた。
【0045】
裏面研削装置として、図1に示す砥石ヘッド構造を持つ株式会社 岡本工作機械製作所の裏面研削盤GNX300(商品名)の砥石カバ−に取り付けた支持部材にアルミナ粒子素焼きのセラミック製液切り堰をボルトで固定した研削装置を用いた。液切り堰の弧状溝の寸法は、裏面研削当初、該溝の側壁がカップホイ−ル型砥石の刃先の側面より100μm、溝の底部が刃先の下面より200μm離れている寸法で、弧状溝幅は15mmである。
半導体基板の裏面シリコン層の取り代は、100μmと設定した。
【0046】
前記半導体基板を、該保護フィルムがポ−ラスセラミックチャック面に当接するように半導体基板をチャック上に載せ、中空スピンドル2を減圧して半導体基板をチャック4に固定した。
ついで、中空スピンドルを100rpmで回転させることにより半導体基板を水平方向に回転させ、直径300mm径のカップホイ−ル型砥石を軸承するスピンドル8を3000rpmで回転させつつ、下降させてカップホイ−ル型砥石の刃先が半導体基板の中心点を通過する位置で半導体基板のシリコン基板に当接させ、半導体基板表面に研削液を内部研削液供給機構59より4リットル/分の割合で供給しつつ、液切り堰で刃先に付着した液を切りながら基板の裏面研削を行なった。なお、ノズル93からの研削液供給は行なわなかった。
【0047】
約100μm厚のシリコン層剥離の裏面研削が終了したら、スピンドルを上昇させてカップホイ−ル砥石を半導体基板面より遠ざけ、ついで、中空スピンドルの回転ならびに減圧を止め、中空スピンドルに圧空を供給して半導体基板のチャック離れを容易とした。
【0048】
チャック上の半導体基板を搬送パッドに吸着し、洗浄機構に搬送し、洗浄機構でスピン洗浄、スピン乾燥し、ついで搬送ロボットで収納カセット内に裏面研削された半導体基板を搬送した。
【0049】
上記の半導体基板200枚の裏面研削を同様にして200枚連続して行なったが、半導体基板が破損したものは皆無であった。
【0050】
実施例2
半導体基板として、厚みが約150μm、直径が300mmのシリコンウエハ表面に、縦20mm、横20mm角のデバイスパタ−ン複数をダイサ−幅200μm、ダイサ−溝深さ10μmで格子状に仕切ったデバイスパタ−ンを有する半導体基板の前記デバイスパタ−ン面に保護フィルムを貼着したものを用いた。
【0051】
裏面研削装置として、図4に示す砥石ヘッド構造を持つ株式会社 岡本工作機械製作所の裏面研削盤の砥石カバ−に取り付けた支持部材にアルミナ粒子素焼きのセラミック製液切り堰をボルトで固定した研削装置を用いた。液切り堰の弧状溝の寸法は、裏面研削当初、該溝の側壁がカップホイ−ル型砥石の刃先の側面より100μm、溝の底部が刃先の下面より200μm離れている寸法で、弧状溝幅は15mmである。
半導体基板の裏面シリコン層の取り代は、120μmと設定した。
【0052】
前記半導体基板を、該保護フィルムがポ−ラスセラミックチャック面に当接するように半導体基板をチャック上に載せ、中空スピンドル2を減圧して半導体基板をチャック4に固定した。
ついで、中空スピンドルを100rpmで回転させることにより半導体基板を水平方向に回転させ、直径300mm径のカップホイ−ル型砥石を軸承するスピンドル8を2800rpmで回転させつつ、下降させてカップホイ−ル型砥石の刃先が半導体基板の中心点を通過する位置で半導体基板のシリコン基板に当接させ、半導体基板表面に研削液を外部研削液供給機構のノズル93より5リットル/分の割合で供給しつつ、液切り堰で刃先に付着した液を切りながら基板の裏面研削を行なった。なお、内部研削液供給機構59からの研削液供給は行なわなかった。
【0053】
約120μm厚のシリコン層剥離の裏面研削が終了したら、スピンドルを上昇させてカップホイ−ル砥石を半導体基板面より遠ざけ、ついで、中空スピンドルの回転ならびに減圧を止め、中空スピンドルに圧空を供給して半導体基板のチャック離れを容易とした。
【0054】
チャック上の半導体基板を搬送パッドに吸着し、洗浄機構に搬送し、洗浄機構でスピン洗浄、スピン乾燥し、ついで搬送ロボットで次工程のポリッシャ盤のチャック機構上へと裏面研削された半導体基板を搬送した。
【0055】
上記の半導体基板50枚の裏面研削を同様にして50枚連続して行なったが、半導体基板が破損したものは皆無であった。
【0056】
【発明の効果】
本発明の内部研削液供給機構と外部研削液供給機構の両者を備える研削装置は、目的とする所望の加工基板の厚みにより使用する研削液供給機構を選択することにより厚い厚みの基板から薄い厚みの基板まで研削加工することができる。
さらに、カップホイ−ル型砥石を備える研削装置に液切り堰を設けることにより、半導体基板を裏面研削する際、裏面研削により生じた研削屑を含有する研削液がカップホイ−ル型砥石の砥石刃に付着しても、再び砥石刃が研削系に戻る際に液切り堰により砥石刃に付着した研削屑が除去されるので、研削屑が保護フィルムと基板のデバイスパタ−ン面の間に浸透する機会が失われ、よって、研削時および基板搬送時に半導体基板が破損することがない。
【図面の簡単な説明】
【図1】本発明の研削装置の部分正面図である。
【図2】研削装置のカップホイ−ル型砥石の刃先回転方向と、基板の回転方向と研削液供給位置と、液切り堰の位置の相対関係を示す平面図である。
【図3】液切り堰の斜視図である。
【図4】別の態様を示す本発明の研削装置の部分正面図である。
【図5】研削装置の内部研削液供給機構に用いられる下ガイド部材の平面図である。
【図6】研削装置の内部研削液供給機構に用いられる下ガイド部材の底面図である。
【図7】裏面研削装置の正面図である。(公知)。
【図8】別態様の裏面研削装置の正面図である。(公知)
【図9】カップホイ−ル型砥石の斜視図である。(公知)
【符号の説明】
1 研削装置
2 中空スピンドル
3 基板
3a デバイスパタ−ン
3b ダイサ−溝
4 チャック
5,50 カップホイ−ル型砥石
55 砥石刃
8 スピンドル
14 ビルト・イン・モ−タ−
28 砥石カバ−
59 内部研削液供給ノズル
80 保護フィルム
90 液切り堰
91 取付部材
93 外部研削液供給ノズル
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a surface grinding apparatus suitable for grinding semiconductor substrates such as silicon wafers, germanium wafers, aluminum wafers, and glass substrates.InRelated.
[0002]
[Prior art]
For grinding a semiconductor substrate, a surface grinding apparatus including a substrate chuck mechanism, a cup wheel type grindstone supported by a spindle, and a grinding fluid supply mechanism is used (Japanese Patent Laid-Open Nos. 2-274462 and 3-154773). 11-254318, 11-307490, 11-309664, JP-A 2000-94342).
[0003]
An example of such a surface grinding apparatus is a surface grinding apparatus shown in FIG. 8 (Japanese Patent Laid-Open No. 11-254318).
In the figure, 1 is a surface grinding apparatus, A is a main body base, 2 is a rotary shaft, 3 is a wafer (substrate), 4 is a chuck, 5 is a cup wheel type grindstone, 6 is a main body casing, and 7 is a lifting device. , 8 is a spindle, 9 is a bearing, 10 is a spindle casing, 11 is a head for mounting a cup wheel type grindstone, 12 is a mounting member for mounting the spindle casing to an elevating mechanism, and 13 is a tilt adjusting bolt drive described later. Motors 14, 14 are build-in motors that rotate the spindle shaft, 15 is a tilt adjusting bolt in the X-axis direction, 15a is a disc spring, 15 'is a tilt adjusting bolt in the Y-axis direction, 16 is A rail having a concave groove for vertically moving the lifting device, 18 is a hemispherical convex portion provided on the spindle shaft casing, and 19 is a slight gap between the hemispherical convex portion on the front surface of the lifting device. You can fit with Hemispherical recess formed in, 21 rod, 22 is an air bearing.
[0004]
The spindle 8 is lowered by a lifting device on the surface of the wafer 3 placed on the grinding table 4 to press the cup wheel type grindstone against the wafer surface, and both spindle shafts 2 and 8 are rotated in the same direction or in the opposite direction. As a result, a grindstone is slid on the wafer surface to grind the wafer surface.
[0005]
As the cup wheel-type grindstone 5, a plurality of fan-shaped grindstone blades 5d are annularly attached to the end surface 5b of the annular peripheral wall portion 5a of the cup-shaped grindstone base shown in FIG. Cup wheel type grindstones fixed so as to form slits 5f that circulate (No. 61-144959, 61-144961, 61-144962, and JP-A 62-181875) are used. Has been. The grindstone blade is generally an annular fan having a height of 3 to 7 mm, a width of 3 to 10 mm, and a length of 3 to 7 mm.
These publications do not describe a method for supplying the grinding fluid.
[0006]
Japanese Patent Laid-Open No. 9-38866 discloses that a blade portion is provided on one surface of a main body portion of a grindstone head so as to go in a direction opposite to the rotation direction of the cup-shaped grindstone toward the outer peripheral side. A grinding wheel head having a structure in which a grinding fluid is pumped and supplied from a grinding fluid introduction hole provided on the upper side, the grinding fluid flows on the blade portion, and the grinding fluid is supplied to a sliding contact portion between the substrate and the grinding wheel blade. Has been.
[0007]
Japanese Patent Laid-Open No. 11-254281 discloses that a grinding wheel blade of a cup wheel type grinding wheel in which a plurality of grinding wheel blades are provided on the end face of the peripheral wall portion of the grinding wheel base with an annular space between adjacent grinding wheel blades and a substrate are in sliding contact with each other. As means for supplying the grinding liquid, an annular liquid branch chamber is provided in the grindstone base of the cup wheel type grindstone, and a grinding liquid supply hole is provided in an arc shape at regular intervals in the liquid branch chamber. A cup wheel type grindstone is used from a grinding liquid supply hole provided in a base of the cup wheel type grindstone, using a grindstone head having a center grinding fluid supply mechanism connected to a hollow spindle that supports the center of the cup wheel type grindstone. Grinding fluid is supplied from the inside of the peripheral wall of the grinding wheel base toward the grinding wheel blade, and the grinding wheel base is directed from the gas supply nozzle provided outside the chuck toward the slidable contact surface of the grinding wheel of the cup wheel type grinding wheel and the substrate. It discloses a grinding apparatus comprising an internal gas supply mechanism for blowing a gas flow from the peripheral wall portion inwardly.
[0008]
Further, a cup wheel type grindstone in which a plurality of grindstone blades are annularly fixed to the end of the annular peripheral wall portion of the cup-shaped grindstone base (base metal), the grindstone base being concentric with the peripheral wall portion on the outer surface of the bottom wall. An annular groove (a) provided and a grinding liquid supplied into the annular groove are provided through the bottom wall from the bottom surface of the annular groove so as to introduce the grinding liquid into the inside of the circumferential wall part. It is inclined to the outer peripheral side to the end side, and has a number of grinding fluid introduction holes (b) concentrically provided in the peripheral wall portion at equal intervals, and is fixed to the upper surface of the peripheral wall opposite to the bottom wall. The annular grindstone is 30 from the axial center side toward the outside of the grindstone with respect to the shaft center shared by the circumferential wall portion and the annular groove at the portion protruding from the top surface of the circumferential wall and the standing surface of the annular grindstone orthogonal to the axis. A cup wheel having a plurality of slits (c) for discharging a grinding liquid inclined at -60 degrees at equal intervals. Type grinding wheel is also used (JP 2000-94342).
[0009]
In this cup wheel type grindstone, the height of the slit is 3 to 10 mm, the width of the grindstone is 2 to 7 mm, and the length of the grindstone blade divided by the slit is 10 to 50 mm. The diameter of the grinding fluid introduction hole is 2 to 6 mm, and the peripheral wall height is 25 to 45 mm.
[0010]
The grinding apparatus shown in FIG. 7 shows the grindstone head structure of the grinding apparatus 1 provided with the latter cup wheel type grindstone.
[0011]
In the head structure of the surface grinding apparatus shown in FIG. 7, 6 is a main body casing, 8 is a spindle shaft, 9 is a bearing, 11 is a mounting plate for a cup wheel type grindstone, 12 is a spindle shaft casing mounting member, 13 Is a motor for driving an inclination adjusting bolt, 14 is a build-in motor for rotationally driving the spindle shaft, 22 is an air bearing, 23 is an air supply pipe, and 24 is a bearing for the mounting plate 11 and the spindle shaft. A connecting shaft to the fixed plate 25, 26 is a spindle shaft casing 10 coolant supply pipe, 27 is an inside of the head H comprising an air bearing 22 and a surrounding plate (grinding stone cover) 28 provided under the peripheral wall of the air bearing. , 50 is a cup wheel type grindstone, 51 is a peripheral wall, 52 is a bottom wall, 53 is a cup-shaped base (base metal), 55 is a grindstone, 56 is an annular groove, and 57 is a grinding fluid introduction hole. , 59 are grinding fluid supply nozzles, 60 A grinding fluid supply pipe 61 is a grinding fluid inlet. This grinding fluid supply pipe is not shown, but is fixed to a mounting member of an elevating mechanism and is connected to a grinding fluid tank by a flexible hose. ing.
[0012]
The cup wheel type grindstone 50 transmits the rotational drive of the build-in motor 14 through the spindle shaft 8, the fixed plate 25, the connecting shaft 24, and the mounting plate 11, and rotates.
Since the head is fixed to the mounting member 12, even if the grindstone 50 rotates, the head does not rotate. Therefore, the flexible hose connecting the grinding fluid supply nozzle 59 and the grinding fluid supply tank is not twisted and broken.
The grinding fluid supplied from the grinding fluid supply nozzle 59 to the annular groove 56 of the grindstone 50 is guided to the inner surface 56 of the grindstone through the introduction holes 57, 57..., And further discharged to the outside of the grindstone through the slit 50f. Is done.
[0013]
The diameter r of the grindstone blade 55 group of the cup wheel type grindstone 50 is as large as 4/3 to 2 times the radius of the substrate, and the spindle 8 so that the grindstone blade of the cup wheel type grindstone passes through the approximate center point of the substrate. Rotate.
The grinding of the substrate is performed by rotating the substrate held by the chuck 4 in the horizontal direction and supplying the grinding liquid to the surface of the substrate while the grinding wheel 55 of the grinding wheel is at the substantially center point o of the substrate. The spindle is rotated so as to pass through and the cup wheel type grindstone is slid on the substrate surface to grind the substrate surface.
[0014]
A slit between the grinding wheel blades is not a diagonal slit but a parallel slit, and an annular groove for supplying grinding liquid to the base metal and a cup wheel type grinding wheel having a diagonal hole from the upper part of the annular groove toward the grinding wheel blade are also known. (Japanese Patent Laid-Open No. 6-26734).
[0015]
As shown in FIG. 4, the back surface grinding of a semiconductor substrate having a diameter of 300 mm, 400 mm, a device pattern 3a provided on the surface, and a dicer cut groove (strip) 3b provided on the device pattern The surface of the device pattern is covered with a protective film (adhesive tape) 80 so that the protective film 80 is in contact with the chuck surface and the back surface 3c of the substrate faces the cup wheel type grindstone 55 (5). The semiconductor substrate 3 is placed on the porous ceramic chuck 4 and the back surface of the substrate is ground with a cup wheel type grindstone.
[0016]
Thus, in a conventional grinding apparatus using a cup wheel type grindstone, an internal grinding fluid supply mechanism is employed that feeds the grinding fluid from the inside of the peripheral wall portion of the grindstone base toward the grindstone blade of the cup wheel type grindstone. Yes.
[0017]
In recent years, thin smart cards have come to be used as financial settlement cards and amusement park entrance settlement cards, and substrates having a thickness of 120 to 220 μm are used as silicon substrates for semiconductor wafers.
Thinner substrates are required, and 40-80 μm silicon substrates will be exhibited at SEMICON Japan 2000 and 2001 exhibition halls, and silicon substrates with a thickness of 50-100 μm are economically ground. We have entered the stage where we can process with speed.
[0018]
[Problems to be solved by the invention]
In the market, the emergence of an ultra-thin substrate of 20 μm to less than 50 μm is desired as a next-generation smart card.
In order to process such an extremely thin substrate with an economical grinding speed, a grinding fluid supply means for supplying the grinding fluid from the inner side of the peripheral wall portion of the grinding wheel base toward the grinding wheel blade of the conventional cup wheel type grinding wheel is provided. In the grinding device provided, the grinding liquid is difficult to reach the sliding contact surface of the grinding wheel blade and the substrate, the sliding contact surface of the grinding wheel blade and the substrate is not sufficiently cooled, and the substrate is damaged by grinding the second and third substrates. As a result, the substrate cannot be ground continuously.
[0019]
Furthermore, since the required thickness of the substrate is as extremely small as 20 μm to less than 50 μm, in the semiconductor substrate whose substrate diameter is expanded to 300 mm or more, the dicer groove of the device pattern 3a of the protective film 80 and the semiconductor substrate 3 ( It has been found that the grinding liquid containing grinding waste enters the strip), and the semiconductor waste 3 tends to break when grinding the back surface or transporting the substrate after grinding. .
[0020]
The cause of this crack is that the edge (edge) 3d of the semiconductor substrate has a rounded sharp edge, and the edge of the protective film 80 is peeled off from the device pattern 3a surface of the substrate during grinding. Grinding fluid containing grinding waste enters between the film 80 and the device pattern 3a of the semiconductor substrate 3, and the grinding fluid penetrates through the dicer groove 3b. In particular, the grinding waste is a dicer having a device pattern. When it stays in the groove 3b, the pressure applied to the semiconductor substrate from the head H concentrates on the grinding scraps, and external stress acts on the dicer groove 3b portion where the strength of the substrate is weak, which may lead to cracking of the semiconductor substrate. It is.
[0021]
An object of the present invention is to provide a grinding apparatus capable of grinding a substrate regardless of the thickness of the substrate, whether the substrate is 50 μm or more or less than 50 μm.
[0022]
[Means for Solving the Problems]
  Claim 1 of the present invention is a cup wheel having a diameter larger than the radius of the substrate while rotating the substrate held in the porous ceramic chuck in the horizontal direction and supplying the grinding liquid to the substrate surface. In a grinding apparatus for grinding a substrate surface by sliding a cup wheel type grindstone on a substrate surface so that a grindstone blade of the mold grindstone passes through a substantially center point of the substrate, the cup wheel type grindstone is a grindstone base. Is a cup wheel type grindstone in which a plurality of grindstone blades are provided with a gap between adjacent annular grindstone blades on the end surface of the peripheral wall portion, and the grindstone base of the grindstone substrate is directed toward the grindstone blade of the cup wheel type grindstone as a grinding fluid supply mechanism. An internal grinding fluid supply mechanism for supplying a grinding fluid from the inside of the peripheral wall portion, and a peripheral wall portion of the grindstone substrate from the grinding fluid supply nozzle provided outside the porous ceramic chuck toward the grindstone blade of the cup wheel type grindstone And an external grinding fluid supply mechanism for supplying grinding fluid from the side, further, the port - Las ceramic chuckDiametricalOutsidePartInOf the cup wheel type grindstoneEquipped with a draining weir with a groove with a concave cross section through which the grinding wheel can passThe dimension of the groove is such that the side wall of the groove is 10 to 1000 μm from the side surface of the cutting edge of the cup wheel type grindstone, the bottom of the groove is 10 to 1000 μm away from the lower surface of the cutting edge, and the groove width is 10 to 30 mm. The porous ceramicAway from the substrate surface held by the chuckSaidLiquid adhering to the edge of the wheel of a cup wheel type grindstoneIs, Removed by passing the grindstone blade of the cup wheel type grindstone through the groove having a concave cross section of the liquid weirBe doneIt is an object of the present invention to provide a substrate grinding apparatus.
[0023]
  The present inventionofUsing a grinding device, a substrate having a ground substrate thickness of 50 μm or more is obtained.WhenAs the grinding fluid supply mechanism, the external grinding fluid supply mechanism is not used but the internal grinding fluid supply mechanism is used to supply the grinding fluid toward the grinding wheel of the cup wheel type grindstone while being held by the porous ceramic chuck. While rotating the substrate in the horizontal direction, the surface of the substrate is ground by sliding the cup wheel type grindstone on the substrate surface so that the grindstone blade of the cup wheel type grindstone passes through the approximate center point of the substrate..
[0024]
  The present inventionofUsing a grinding apparatus, a substrate having a ground substrate thickness of less than 50 μm is obtained.WhenAs a grinding fluid supply mechanism, the internal grinding fluid supply mechanism is not used but the external grinding fluid supply mechanism is used to supply the grinding fluid toward the grinding wheel of the cup wheel type grindstone while being held by the porous ceramic chuck. While rotating the substrate in the horizontal direction, the surface of the substrate is ground by sliding the cup wheel type grindstone on the substrate surface so that the grindstone blade of the cup wheel type grindstone passes through the approximate center point of the substrate..
[0025]
  Select either the internal grinding fluid supply mechanism or the external grinding fluid supply mechanism as the grinding fluid supply mechanism according to the final thickness of the substrate required by grinding.The grinding device of the present inventionSince it is used, substrates of various thicknesses can be ground with a single grinding machine.
[0026]
  The present inventionofGrinding equipmentIs,Porous ceramicA grindstone blade can pass outside the chuckConcave in cross sectionProvided with a draining weir having a groove,Porous ceramicThe liquid adhering to the edge of the wheel of the cup wheel type grindstone away from the substrate surface held by the chuckConcave in cross sectionRemoved by the grinding wheel passing through the groove.
[0027]
  That is,Of draining weirConcave in cross sectionWhen the grindstone blade of the cup wheel type grindstone passes through the groove, the liquid such as grinding liquid adhering to the grindstone blade rotating at a high speed is liquid because the gap between the grinder weir groove and the grindstone blade is narrow. At the same time, the grinding waste contained in the grinding fluid is blown in contact with the fluid drainage weir, so that when the grinding wheel blade returns to the grinding system again, the grinding waste does not adhere to the grinding stone blade. Therefore, the opportunity for the grinding dust to penetrate into the protective film 80 and the stream 3b of the device pattern 3a of the semiconductor substrate 3 is lost.WowTherefore, the semiconductor substrate 3 is not broken.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a partial front view of the grinding apparatus, and FIG. 2 shows the relative relationship among the grinding wheel cutting direction of the cup wheel type grinding wheel of the grinding machine, the rotation direction of the substrate, the grinding liquid supply position, and the position of the liquid cutting weir. FIG. 3 is a perspective view of the liquid cutting weir, and FIG. 4 shows the positional relationship between the semiconductor substrate placed on the chuck, the cup wheel type grindstone, the liquid cutting weir, and the grinding liquid supply mechanism. FIG. 5 is a plan view of the lower guide member shown in FIG. 4 as viewed from above, and FIG. 6 is a view of the lower guide member as shown in FIG. 4 from below. It is a bottom view.
[0029]
Cup wheel type whetstone:
The cup wheel type grindstone is a cup wheel type grindstone in which a plurality of grindstone blades are provided on the end face of the peripheral wall portion of the grindstone base body with a gap between the adjacent grindstone blades. JP-A-61-144961, JP-A-61-144962, JP-A-62-1181875, JP-A-6-23674, JP-A-9-38866, JP-A-11-186645, JP-A-11-254281, JP-A-2000-94342 Various cup wheel-type grindstones can be used including the cup wheel-type grindstone described in the publication.
[0030]
  The grindstone blade 55 of the cup wheel type grindstone is obtained by molding diamond abrasive grains and CBN abrasive grains into an annular fan with an adhesive such as phenol resin or epoxy resin.
  In general, the annular fan 55 has a height of 3 to 7 mm, a width of 3 to 10 mm, and a length of the grindstone blade divided by slits of 10 to 50 mm. The slit width is 1 to 3 mm.
  The diameter of the ring formed by the 55 grinding wheel blades of the cup wheel type grindstone is 4/3 to 2.2 times the radius of the substrate to be ground, preferably 2 times. Since the cup wheel type grindstone is slid on the substrate surface by rotating the spindle so that the grindstone blade passes through the approximate center point of the substrate, the surface of the substrate is ground by sliding the cup wheel type grindstone on the substrate surface. Chopping weir 90Porous ceramicIt can be provided outside the chuck 4 (see FIGS. 1, 2 and 4).
[0031]
Grinding fluid supply mechanism:
The grinding apparatus of the present invention includes an internal grinding fluid supply mechanism that supplies a grinding fluid from the inside of the peripheral wall portion of the grinding wheel base toward the grinding wheel blade of the cup wheel type grinding stone, and a cup wheel type grinding stone from the outside of the circumferential wall portion of the grinding wheel base. And an external grinding fluid supply mechanism 93 that supplies the grinding fluid toward the grindstone blade.
[0032]
As the internal grinding fluid supply mechanism, as shown in Japanese Patent Laid-Open No. 11-254281 described above and FIG. 4, the grindstone of the cup wheel type grindstone is placed in the hollow spindle 8 that supports the center of the cup wheel grindstone 50. Even in the center grinding fluid supply mechanism 59 that supplies the grinding fluid from the inside of the peripheral wall portion of the grindstone base toward the blade 55, Japanese Patent Laid-Open Nos. 6-23684, 11-186645, 2000-94342, or A structure in which a grinding fluid supply hole is formed from the upper side of the annular groove provided on the upper surface of the peripheral wall portion of the grindstone base shown in FIG. 1 toward the bottom wall end surface provided with the grindstone blade 55 may be used.
[0033]
As an external grinding fluid supply mechanism, a grinding fluid supply nozzle 93 is provided on a frame 94 outside the chuck mechanism by using a fixture such as a pinch 95 so that the nozzle angle can be changed. The grinding liquid is supplied from the inner side of the peripheral wall portion of the grindstone base toward the grindstone blade 55 of the cup wheel type grindstone 50 and the sliding surface O of the substrate.
[0034]
Grinding equipment:
As the grinding device, not only the grinding device shown in FIG. 7 but also a commercially available backside grinding device such as GNX (trade name) series, GNX-P (trade name) series of Okamoto Machine Tool Co., Ltd. ( As shown in Japanese Patent Application Laid-Open No. 11-307490, Tokyo Seimitsu's PG (trade name) series, etc., the index table is provided with three to four chuck tables, and the first on the chuck table. There is also an index type grinding machine that is equipped with a grinding head and a second grinding head and distributes the index table to the substrate loading zone, the first grinding zone, the second grinding zone, and the unloading zone. Can be used.
These grinding apparatuses are provided with an internal grinding fluid supply mechanism and an external grinding fluid supply mechanism. In the index type grinding apparatus, both the first grinding zone and the second grinding zone may be provided with an internal grinding fluid supply mechanism and an external grinding fluid supply mechanism, or the first grinding zone is ground. An internal grinding fluid supply mechanism 59 may be provided in the head, and an external grinding fluid supply mechanism 93 may be provided in the frame of the second grinding zone.
[0035]
As shown in FIG. 1, a support member 91 is provided on the grindstone cover 28 of these back grinding apparatuses, and a liquid draining weir 90 is fixed to the support member with a bolt 92. It is preferable that the grindstone cover 28 is slidably provided so that the wear state of the cutting edge 55 of the cup wheel grindstone 50 can be observed.
[0036]
As shown in FIG. 3, the draining weir 90 has a groove 90 a having a concave cross section, and the dimension of this groove is such that the side wall of the groove is 10 to 1000 μm from the side surface of the edge of the cup wheel type grindstone, preferably 30 to 30 μm. The dimension is 100 μm, and the bottom of the groove is 10 to 1000 μm, preferably 30 to 600 μm away from the lower surface of the blade edge. A groove width w of the draining weir 90 is sufficient from 10 to 30 mm.
[0037]
Examples of the material for the draining weir 90 include resin-molded products such as ceramic unglazed, poly (tetrafluoroethylene), poly (dichlorodifluoroethylene), and polyacetal.
[0038]
The mounting position of the liquid cutting weir 90 is a position outside the chuck close to a position where the cutting edge of the cup wheel type grindstone grinds the substrate and leaves the chuck, and is a position far from the grinding liquid supply position.
[0039]
The grinding device shown in FIG. 4 is a grinding device provided with an internal grinding fluid supply mechanism for supplying a grinding fluid to the hollow spindle 8. The lower portion of the hollow spindle 8 is released, and a substantially truncated cone shape is formed below the hollow spindle 8. Is fixed to the upper guide member 97 via bolts 96b. The upper guide member 97 is fixed to the grindstone flange 98 by the bolts 97a, and the grindstone flange 98 is fixed to the base of the grinding head H. -It is fixed to bolt 99 with bolts 98a. The grindstone flange 98 fixes the grindstone base 101 of the cup wheel grindstone 50 with bolts 101a.
A grindstone blade 55 is provided on the bottom wall of the grindstone base. Further, a liquid draining weir 90 is provided below the outer cylinder 28 of the grinding head H.
[0040]
A liquid passage 96a is formed in a cross shape on the upper surface of the truncated cone shape of the upper guide member 96 (see FIG. 6), and the grinding liquid that has passed through the hollow spindle 8 passes through the liquid passage 96a and is rotated by the rotation of the grinding head. The grinding fluid collides with the inner wall of the grindstone base 101 and the grindstone blade 55 by centrifugal force, and the grinding fluid collided with the inner wall of the grindstone base 101 hangs down the inner wall and is guided to the contact surface between the grindstone blade and the substrate (see FIG. 4). .
A center guide member 100 is fitted into a cylindrical portion of the upper guide member 97 that is penetrated, and is fixed to the upper guide member 97 by a bolt 100a (see FIGS. 4 and 5).
[0041]
The amount of grinding fluid supplied varies depending on the diameter of the substrate, but is preferably 0.5 to 10 liters / minute.
[0042]
In the backside grinding of the substrate, the hollow spindle 2 that supports the porous ceramic chuck 4 is depressurized with the back surface of the substrate 3 facing upward to hold the substrate on the chuck 4, and the hollow spindle 2 is rotated horizontally by the motor 2a. As a result, while rotating the substrate held by the chuck 2 in the horizontal direction, the grinding wheel is fed to the substrate surface from the grinding fluid supply pipe 59 or the supply nozzle 93, and the cup wheel type grindstone 50 is inserted into the cutting edge 55 of the grindstone. Then, the spindle 8 is rotated so as to pass through the substantially center point of the substrate, and the cup wheel type grindstone 50 is slid on the substrate surface to grind the substrate surface.
[0043]
The rotation speed of the hollow spindle 2 is preferably 30 to 300 rpm, and the rotation speed of the spindle 8 is preferably 1,000 to 4,000 rpm.
[0044]
【Example】
Example 1
As a semiconductor substrate, a device pattern in which a plurality of device patterns having a length of 20 mm and a width of 20 mm are partitioned in a grid pattern with a dicer width of 200 μm and a dicer groove depth of 10 μm on a silicon wafer surface having a thickness of about 220 μm and a diameter of 300 mm. A semiconductor substrate having a protective film attached to the device pattern surface of a semiconductor substrate having a negative mark was used.
[0045]
As a back grinding device, a ceramic drainage weir made of alumina particles is bolted to a support member attached to a grinding wheel cover of a back grinding machine GNX300 (trade name) of Okamoto Machine Tool Co., Ltd. having the grinding wheel head structure shown in FIG. The grinding machine fixed in step 1 was used. The dimension of the arc-shaped groove of the draining weir is such that, at the beginning of back grinding, the side wall of the groove is 100 μm away from the side of the blade edge of the cup wheel type grindstone and the bottom of the groove is 200 μm away from the lower surface of the blade edge. 15 mm.
The allowance for the backside silicon layer of the semiconductor substrate was set to 100 μm.
[0046]
The semiconductor substrate was placed on the chuck such that the protective film was in contact with the porous ceramic chuck surface, and the hollow spindle 2 was decompressed to fix the semiconductor substrate to the chuck 4.
Next, the semiconductor substrate is rotated in the horizontal direction by rotating the hollow spindle at 100 rpm, and the spindle 8 that supports the cup wheel type grindstone having a diameter of 300 mm is rotated at 3000 rpm while being lowered to lower the cup wheel type grindstone. While the cutting edge is brought into contact with the silicon substrate of the semiconductor substrate at a position passing through the center point of the semiconductor substrate, the grinding fluid is supplied to the surface of the semiconductor substrate from the internal grinding fluid supply mechanism 59 at a rate of 4 liters / min. The back surface of the substrate was ground while cutting off the liquid adhering to the blade tip. The grinding fluid was not supplied from the nozzle 93.
[0047]
When the backside grinding of the silicon layer peeling of about 100 μm is completed, the spindle is moved up to move the cup wheel grindstone away from the semiconductor substrate surface, and then the rotation and pressure reduction of the hollow spindle are stopped, and compressed air is supplied to the hollow spindle to supply the semiconductor. The chuck of the substrate can be easily separated.
[0048]
The semiconductor substrate on the chuck was adsorbed to the transport pad, transported to the cleaning mechanism, spin-cleaned and spin-dried by the cleaning mechanism, and then the back-ground semiconductor substrate was transported into the storage cassette by the transport robot.
[0049]
The above-mentioned 200 semiconductor substrates were subjected to back surface grinding in the same manner as described above. However, none of the semiconductor substrates were damaged.
[0050]
Example 2
As a semiconductor substrate, a device pattern in which a plurality of device patterns having a length of 20 mm and a width of 20 mm square are partitioned in a grid pattern with a dicer width of 200 μm and a dicer groove depth of 10 μm on a silicon wafer surface having a thickness of about 150 μm and a diameter of 300 mm. A semiconductor substrate having a protective film attached to the device pattern surface of a semiconductor substrate having a negative mark was used.
[0051]
As a back surface grinding device, a grinding device in which an alumina particle unglazed ceramic liquid weir is fixed with a bolt to a support member attached to a grindstone cover of a back surface grinding machine of Okamoto Machine Tool Co., Ltd. having the grindstone head structure shown in FIG. Was used. The dimension of the arc-shaped groove of the draining weir is such that, at the beginning of back grinding, the side wall of the groove is 100 μm away from the side of the blade edge of the cup wheel type grindstone and the bottom of the groove is 200 μm away from the lower surface of the blade edge. 15 mm.
The allowance for the backside silicon layer of the semiconductor substrate was set to 120 μm.
[0052]
The semiconductor substrate was placed on the chuck such that the protective film was in contact with the porous ceramic chuck surface, and the hollow spindle 2 was decompressed to fix the semiconductor substrate to the chuck 4.
Next, the semiconductor substrate is rotated in the horizontal direction by rotating the hollow spindle at 100 rpm, and the spindle 8 supporting the cup wheel type grindstone having a diameter of 300 mm is lowered at 2800 rpm while being lowered to rotate the cup wheel type grindstone. While the cutting edge is in contact with the silicon substrate of the semiconductor substrate at a position passing through the center point of the semiconductor substrate, the liquid is supplied to the surface of the semiconductor substrate at a rate of 5 liters / minute from the nozzle 93 of the external grinding liquid supply mechanism. The back surface of the substrate was ground while cutting the liquid adhering to the blade edge with a cutting weir. Note that the grinding fluid was not supplied from the internal grinding fluid supply mechanism 59.
[0053]
After the backside grinding of the silicon layer peeling of about 120μm is completed, the spindle is raised to move the cup wheel grindstone away from the semiconductor substrate surface, and then the rotation and depressurization of the hollow spindle are stopped, and compressed air is supplied to the hollow spindle. The chuck of the substrate can be easily separated.
[0054]
The semiconductor substrate on the chuck is attracted to the transport pad, transported to the cleaning mechanism, spin cleaned by the cleaning mechanism, spin-dried, and then the back grounded semiconductor substrate onto the chuck mechanism of the polisher board in the next process by the transport robot Conveyed.
[0055]
The back grinding of 50 semiconductor substrates described above was performed in a similar manner, but no semiconductor substrate was damaged.
[0056]
【The invention's effect】
The grinding apparatus provided with both the internal grinding fluid supply mechanism and the external grinding fluid supply mechanism according to the present invention selects a grinding fluid supply mechanism to be used depending on the desired thickness of the processed substrate, thereby reducing the thickness from a thick substrate. It is possible to grind up to the substrate.
Further, by providing a liquid draining weir in a grinding apparatus equipped with a cup wheel type grindstone, when grinding the back surface of the semiconductor substrate, the grinding liquid containing grinding waste generated by the back surface grinding is applied to the grindstone blade of the cup wheel type grindstone. Even if it adheres, when the grindstone blade returns to the grinding system again, the grinding waste adhering to the grindstone blade is removed by the liquid weir, so that the grinding waste penetrates between the protective film and the device pattern surface of the substrate. Opportunities are lost, so that the semiconductor substrate is not damaged during grinding and substrate transport.
[Brief description of the drawings]
FIG. 1 is a partial front view of a grinding apparatus of the present invention.
FIG. 2 is a plan view showing a relative relationship among a blade edge rotation direction of a cup wheel type grindstone of a grinding apparatus, a substrate rotation direction, a grinding liquid supply position, and a position of a liquid draining weir.
FIG. 3 is a perspective view of a draining weir.
FIG. 4 is a partial front view of the grinding apparatus of the present invention showing another embodiment.
FIG. 5 is a plan view of a lower guide member used in the internal grinding fluid supply mechanism of the grinding apparatus.
FIG. 6 is a bottom view of a lower guide member used in the internal grinding fluid supply mechanism of the grinding apparatus.
FIG. 7 is a front view of the back grinding apparatus. (Known).
FIG. 8 is a front view of a back grinding apparatus according to another embodiment. (Known)
FIG. 9 is a perspective view of a cup wheel type grindstone. (Known)
[Explanation of symbols]
1 Grinding equipment
2 Hollow spindle
3 Substrate
3a Device pattern
3b Dicer groove
4 Chuck
5,50 cup wheel type grinding wheel
55 Whetstone blade
8 Spindle
14 Built-in motor
28 Whetstone cover
59 Internal grinding fluid supply nozzle
80 protective film
90 Draining weir
91 Mounting member
93 External grinding fluid supply nozzle

Claims (1)

ポ−ラスセラミックチャックに保持された基板を水平方向に回転させつつ、かつ、研削液を基板表面に供給しつつ、基板の半径よりも大きい直径を有するカップホイ−ル型砥石の砥石刃が前記基板の略中心点を通過するようにカップホイ−ル型砥石を基板面上で摺動させて基板表面を研削する研削装置において、 前記カップホイ−ル型砥石は、砥石基体の周壁部端面に砥石刃の複数を環状に隣り合う砥石刃間に隙間を設けたカップホイ−ル型砥石であり、研削液の供給機構として前記カップホイ−ル型砥石の砥石刃に向けて砥石基体の周壁部内側より研削液を供給する内部研削液供給機構と、前記ポ−ラスセラミックチャック外に設けた研削液供給ノズルより前記カップホイ−ル型砥石の砥石刃に向けて砥石基体の周壁部外側より研削液を供給する外部研削液供給機構とを備え、更に、前記ポ−ラスセラミックチャックの直径方向のに前記カップホイ−ル型砥石の砥石刃が通過できる断面凹状の溝を有する液切り堰を備えており、この溝の寸法は、該溝の側壁が前記カップホイール型砥石の刃先の側面より10〜1000μm、溝の底部が刃先の下面より10〜1000μm離れ、溝幅10〜30mmの寸法であり、前記ポ−ラスセラミックチャックに保持された基板面より離れた前記カップホイ−ル型砥石の砥石刃の刃先に付着した液体は、該液切り堰の断面凹状の溝内を前記カップホイール型砥石の砥石刃が通過する際に除去されることを特徴とする、基板の研削装置。A grindstone blade of a cup wheel type grindstone having a diameter larger than the radius of the substrate while rotating the substrate held by the porous ceramic chuck in the horizontal direction and supplying the grinding liquid to the substrate surface is the substrate. In the grinding apparatus for grinding the substrate surface by sliding the cup wheel type grindstone on the substrate surface so as to pass through the approximate center point, the cup wheel type grindstone has a grindstone blade on the end surface of the peripheral wall portion of the grindstone base. A plurality of cup wheel type grindstones provided with a gap between adjacent grindstone blades, and grinding fluid is supplied from the inside of the peripheral wall portion of the grindstone base toward the grindstone blade of the cup wheel type grindstone as a grinding fluid supply mechanism. Grinding fluid is supplied from the outside of the peripheral wall of the grinding wheel base toward the grinding wheel of the cup wheel type grinding wheel from an internal grinding fluid feeding mechanism to be fed and a grinding fluid feeding nozzle provided outside the porous ceramic chuck. And an external grinding fluid supply mechanism for supplying further the port - provided with a draining dam having a groove of concave cross section in which the grinding wheel blade Le-shaped grindstone can pass - the outside of the diameter direction of the lath ceramic chuck Kappuhoi The dimension of the groove is such that the side wall of the groove is 10 to 1000 μm from the side surface of the blade edge of the cup wheel type grindstone, the bottom of the groove is 10 to 1000 μm away from the lower surface of the blade edge, and the groove width is 10 to 30 mm. The liquid adhering to the tip of the wheel wheel of the cup wheel type grindstone away from the substrate surface held by the porous ceramic chuck moves in the concave groove in the cross section of the liquid weir. A substrate grinding apparatus, wherein the blade is removed when the blade passes.
JP2002013136A 2002-01-22 2002-01-22 Substrate grinding equipment Expired - Lifetime JP4004292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013136A JP4004292B2 (en) 2002-01-22 2002-01-22 Substrate grinding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013136A JP4004292B2 (en) 2002-01-22 2002-01-22 Substrate grinding equipment

Publications (2)

Publication Number Publication Date
JP2003218079A JP2003218079A (en) 2003-07-31
JP4004292B2 true JP4004292B2 (en) 2007-11-07

Family

ID=27650164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013136A Expired - Lifetime JP4004292B2 (en) 2002-01-22 2002-01-22 Substrate grinding equipment

Country Status (1)

Country Link
JP (1) JP4004292B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005012446B4 (en) * 2005-03-17 2017-11-30 Siltronic Ag Method for material-removing machining of a semiconductor wafer
JP5276823B2 (en) * 2007-10-04 2013-08-28 株式会社ディスコ Wafer grinding equipment

Also Published As

Publication number Publication date
JP2003218079A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
WO2021065102A1 (en) Grinding device and grinding head
JP5221092B2 (en) Semiconductor substrate holder mechanism and method for grinding a substrate using the same
JP6791579B2 (en) Wafers and wafer processing methods
JP2013012654A (en) Method of grinding workpiece
JPS6312741B2 (en)
KR20190051815A (en) Grinding wheel
JP2006021291A (en) Grinding wheel, grinding device and grinding method
JP6822857B2 (en) Carry-out mechanism
JP4004292B2 (en) Substrate grinding equipment
JP2004167617A (en) Grinding head structure equipped with cup wheel type whetstone
JP2007221030A (en) Processing method for substrate
JP7049801B2 (en) Grinding method for workpieces
JP6120597B2 (en) Processing method
JP2005103696A (en) Polishing device
JP2003117818A (en) Method and device for grinding substrate
JP2003234317A (en) Wafer-mounting plate for universal chuck
JP2009061570A (en) Substrate holder mechanism with dresser, and method for grinding substrate using the mechanism
JP2003211353A (en) Machining device for wafer
JP3455907B2 (en) Semiconductor wafer spin cleaning equipment
JP2002009022A (en) Ground substrate, substrate grinding device and grinding method
TW202031423A (en) Chuck table enabling workpiece to be formed with uniform thickness by grinding or polishing process
JPH03294160A (en) Grinding stone and grinding device
JP2023114076A (en) Method for processing workpiece
US20230398654A1 (en) Workpiece grinding method
JPH05305560A (en) Precision grinding device and precision grinding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Ref document number: 4004292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term