JP4004155B2 - Gas supply device for rotary furnace - Google Patents

Gas supply device for rotary furnace Download PDF

Info

Publication number
JP4004155B2
JP4004155B2 JP30023998A JP30023998A JP4004155B2 JP 4004155 B2 JP4004155 B2 JP 4004155B2 JP 30023998 A JP30023998 A JP 30023998A JP 30023998 A JP30023998 A JP 30023998A JP 4004155 B2 JP4004155 B2 JP 4004155B2
Authority
JP
Japan
Prior art keywords
gas
furnace body
tip
furnace
gas blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30023998A
Other languages
Japanese (ja)
Other versions
JP2000130744A (en
Inventor
明 井上
修 向井
昌道 高橋
勝祐 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP30023998A priority Critical patent/JP4004155B2/en
Publication of JP2000130744A publication Critical patent/JP2000130744A/en
Application granted granted Critical
Publication of JP4004155B2 publication Critical patent/JP4004155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Supply (AREA)
  • Incineration Of Waste (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炉体内の被処理物を燃焼処理するために燃焼空気等のガスを供給するようにした回転炉のガス供給装置に関する。
【0002】
【従来の技術】
従来、回転炉のガス供給装置の一例として実公昭57−15496号公報に記載のものがある。これは、図7〜図9に示すように、回転可能な円筒状炉体1に複数のガス供給口2が周方向所定間隔をおいて形成され、炉体1に外嵌する風箱3が、炉体1の外周面に所定間隔をおいて平行に固着した左右一対のリング状隔壁3a,3bと、該両隔壁3a,3bに遊嵌させたドラム3cとを有し、該ドラム3cが支柱4を介して地盤に固定され、前記一方の隔壁3aに複数のガス流入口5が形成され、該各ガス流入口5とそれに対向する各ガス供給口2とが複数の連通管6を介して互いに連通されると共に、該各連通管6の先端に接続したガス吹込ノズル6aが各ガス供給口2から炉体1内に突出され、前記各隔壁3a,3bの外周縁に固着されてドラム3cと平行する環状周壁7の外周面に環状シール材8が外嵌されると共に、ドラム3cのねじ孔にねじ込まれて環状シール材8の外周面に当接する多数のボルト9が設けられ、環状周壁7の外周面とドラム3cの内周面とに突設した複数の邪魔板10が互いに入れ違い状に重なりあって、ドラム3cにガス送込口11が形成されている。なお、図9中、12は各連通管6内に設けた流量調整弁である。
【0003】
上記構成において、炉体1を一方向aに回転させ、ガス送り込み口11から風箱3内に燃焼空気等のガスを送り込み、そのガスを連通管6を介してガス吹込ノズル6aの先端に形成したガス吹込口13から炉体1内に吹き込むことにより、炉体1内の被処理物bを予熱、乾燥、ガス化及び燃焼する。
【0004】
【発明が解決しようとする課題】
上記従来の構成では、ガス吹込ノズル6aが直線状管体からなり、その先端にガス吹込口13を形成しただけの簡単な構造であって、そのガス吹込口13に被処理物bが入りやすい。
【0005】
そこで、ガス吹込ノズル6aの先端開口部を塞ぎ、該ガス吹込ノズル6aの側面にガス吹込口13を形成することが考えられるが、これでは、連通管6からガス吹込ノズル6a内に供給した燃焼空気等のガスがガス吹込口13に近回りして該ガス吹込ノズル6aの先端まで行き難いので、そのガス吹込ノズル6aの先端が炉体1内の高温雰囲気により焼損されやすい。
【0006】
また、炉体1内に占める被処理物bの体積が小さいのに対して、各ガス吹込ノズル6aから炉体1内に燃焼空気等のガスをほぼ均等に供給しているため、そのガスと被処理物bとの接触面積が小さくて、ガスが有効に利用されていない。
【0007】
本発明は、上記問題点に鑑み、ガス吹込ノズルが焼損されないようにすると共に、簡単な構造で炉床面上の被処理物に対して燃焼空気等のガスを集中的に供給することができる回転炉のガス供給装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、回転可能な円筒状炉体に複数のガス供給口が周方向所定間隔をおいて形成されると共に、前記炉体に外嵌する風箱に複数のガス流入口が周方向所定間隔をおいて形成され、該各ガス流入口とそれに対向する前記各ガス供給口とが複数の連通管を介して互いに連通され、前記各ガス供給口から炉体内に突出する複数のガス吹込ノズルが設けられており、前記炉体を一方向に回転させ、前記風箱内に送り込んだ燃焼空気等のガスを前記各連通管を介して各ガス吹込ノズルから炉体内に吹き込むようにした回転炉において、前記各ガス吹込ノズルは先端部が塞がれると共に先端部側面の回転方向後側にガス吹込口が形成され、さらに先端部内に邪魔板部材が設けられ、前記邪魔板部材は、ガス吹込ノズルと同一軸心状に配置されてガス吹込ノズルの先端側が開口される縦管部と、該縦管部に流入したガスを前記ガス吹込口に送る横管部とを具備して、ガス吹込ノズルの先端部に達して迂回されたガスを縦管部の開口から流入させる迂回状ガス流路を形成するように構成されたことを特徴とする。
【0009】
上記構成によれば、連通管からガス吹込ノズルに供給した燃焼空気等のガスがその先端部に達し、さらにこの先端部で迂回されたガスが、邪魔板部材の縦管部から横管部を介してガス吹込口に送られるようになっており、この迂回状ガス流路を流れるガスにより、ガス吹込ノズルの先端が充分に冷却されるため、そのガス吹込ノズルの先端が炉体内の高温雰囲気により焼損されないようにして、その寿命を長く保持することができる。
【0010】
請求項2記載の発明は、請求項1記載の発明において、前記ガス吹込口が、炉体の軸心に対して直交する基準線から下流方向に20°乃至45°の範囲で傾斜されていることを特徴としている。
【0011】
上記構成によれば、ガス吹込口から下流に向けて燃焼空気等のガスが吹き込まれるようになっており、そのガスが炉体の入口側に過供給されないため、炉体内の入口側が乾燥ガス化域になると共に、該炉体内の中央部が主燃焼部となって緩慢燃焼となり、クリンカーの成長が出口側でわずかに発生する程度でほとんど発生せず、クリンカートラブルによる運転停止の事態を防止することができる。
【0012】
請求項3記載の発明は、請求項1または2記載の発明において、前記各ガス流入口に支持ピンを介して開閉蓋が回動可能に吊り下げられており、前記炉体の回転に伴って、前記開閉蓋により、該炉体の頂部から底部に移動される各ガス流入口の開度を徐々に広げると共に、その炉体の底部から頂部に移動される各ガス流入口の開度を徐々に狭めるようにしたことを特徴とする。
【0013】
上記構成によれば、各ガス流入口の開度を開閉蓋で調整することにより、風箱内に送り込んだ燃焼空気等のガスを炉体の底部に対して集中的に供給するようになっているから、その集中的に供給したガスと炉床面上を流れる被処理物との接触を促進して、その被処理物の燃焼処理を効率良く行うことができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1〜図4は本発明の実施の一形態である回転炉のガス供給装置を示すものであって、風箱3の隔壁3aに突設されて各連通管6に連通する筒状突起14のフランジ部14aに支持ピン15を介して円形開閉蓋16が回動可能に吊り下げられ、各連通管6の先端に接続したガス吹込ノズル6aが各ガス供給口2内を通って炉体1内に突出され、該ガス吹込ノズル6a内の先端にT字管(邪魔板部材)17が設けられると共に、該ノズル6a内の後端に多孔板18が着脱可能に装着され、風箱3の隔壁3a,3bとドラム3cとの間にガスシール装置19が設けられている。上記以外の構成で図7〜図9に示す従来例と同一部分に同一符号を付してその説明を省略する。
【0015】
前記各連通管6は、図4に示すように、流量調整弁12を設けた管本体20と、該管本体20の一端部に連結したエクスパンション管21と、管本体20の他端部に連結したエルボー管22とを有し、前記エクスパンション管21が風箱3の隔壁3aに固着され、前記エルボー管22がガス供給口2に嵌着した接続管23にボルト・ナットなどの止着具24により止着されている。
【0016】
前記各ガス吹込ノズル6aは、図4に示すように、先端が塞がれた筒体からなり、前記接続管23内に挿抜可能に挿入されると共に、その後端に突設したフランジ部25がエルボー管22のフランジ部22aと接続管23のフランジ部23aとにより挟持されている。また、各ガス吹込ノズル6aの先端部側面の回転方向a後側にガス吹込口26が形成されている。
【0017】
前記T字管17は、図2及び図4に示すように、互いに一体形成された縦管部17aと横管部17bとからなり、その縦管部17aがガス吹込ノズル6aと同一軸心状に配置されると共に、横管部17bがガス吹込口26に嵌着され、縦管部17aは先端が開口され、基端が端板部28により塞がれている。
【0018】
上記構成において、連通管6からガス吹込ノズル6a内に供給した燃焼空気等のガスが該ガス吹込ノズル6aの先端でUターンしてT字管17内に流入された後、直角に折れ曲がってガス吹込口26から炉体1内に吹き込まれるようになっており、ガス吹込ノズル6a内の迂回状ガス流路を流通するガスによりガス吹込ノズル6aの先端が充分に冷却されるため、そのガス吹込ノズル6aの先端が炉体1内の高温雰囲気により焼損されないようにして、その寿命を長く保持することができる。
【0019】
前記多孔板18は、図4に示すように、ガス吹込ノズル6a内の後端部に挿入されて該ガス吹込ノズル6aの内周面に突設した突起部30に着脱可能にボルト止めされている。
【0020】
前記ガスシール装置19は、図4に示すように、各隔壁3a,3bに固着した環状周壁7とドラム3cとの間に形成した左右一対のガスシール室32を有し、該各ガスシール室32は、調整ボルト33により環状周壁7に押し付けられた左右一対の環状シール材34と、ドラム3cの内周面に突設されて前記各環状シール材34を両側から挟む各一対の環状仕切壁35とにより仕切られており、注入ノズル36から各ガスシール室32内に不活性ガスを供給することにより、ガス送込口11から風箱3内に送り込まれた燃焼空気等のガスの漏れを防止するものである。なお、前記環状シール材34は、図5に示すように、周方向に沿って所定間隔αをおいて分割されており、組み立てが容易である。
【0021】
上記構成において、炉体1を一方向aに回転させると、図3に示すように、その回転に伴って、支持ピン15の位置がガス流入口5の周縁に沿って変更されるため、各開閉蓋16の位置もその自重によりガス流入口5の周縁に沿って変更され、これよって、炉体1の頂部から底部に移動される各ガス流入口5の開度が開閉蓋16により徐々に広げられると共に、その炉体1の底部から頂部に移動される各ガス流入口5の開度が開閉蓋16により徐々に狭められる。
【0022】
これによって、ガス送り込み口11から風箱3内に送り込まれた燃焼空気等のガスが各連通管6を通って各ガス供給口2から炉体1の底部に向けて集中的に供給され、その集中的に供給したガスと炉床面1a上を流れる被処理物bとの接触を促進して、その被処理物bの燃焼処理を効率良く行うことができる。
【0023】
この場合、各ガス流入口5の開度を調整する開度調整手段が、各ガス流入口5に支持ピン15を介して回動可能に吊り下げられた開閉蓋16からなり、その構成が極めて簡単で故障し難く、製作費を安くすることができる。
【0024】
また、図2に示すように、炉体1内に突出する各ガス吹込ノズル6aにより被処理物bが攪拌混合されるから、従来用いられていたリフターが不要となり、その不要となった分だけ構造が簡単になり、製作費を安くすることができる。
【0025】
この場合、各ガス吹込ノズル6aのガス吹込口26が回転方向a後側に設けられているので、そのガス吹込口26から各ガス吹込ノズル6a内に被処理物bが入り込み難く、しかも、各ガス吹込ノズル6a内に多孔板18が装着されているので、連通管6内に被処理物bが詰まることがない。
【0026】
ガス吹込ノズル6aを交換する場合には、図4に仮想線で示すように、エルボー管22を管本体20及び接続管23から取り外し、該接続管23からガス吹込ノズル6aを引き抜き、上記と逆の手順で、新品のガス吹込ノズル6aを接続管23内に挿入し、エルボー管22を管本体20及び接続管23に接続すればよく、交換作業を迅速容易に行うことができる。
【0027】
図6に示すように、ガス吹込口26が、炉体1の軸心に対して直交する基準線Oから下流方向cに20°乃至45°の範囲、好ましくは30°で所定角度β傾斜されている。
【0028】
上記構成において、ガス吹込口26の傾斜角度βが20°未満の場合、ガス吹込口26から吹き込んだ燃焼空気等のガスが炉壁で反転して入口側に過供給され、これによって、炉体1の入口側で激しく燃焼して高温状態となり、クリンカーの付着が大量に発生し、クリンカートラブルによる運転停止の事態を生じさせる。また、ガス吹込口26の傾斜角度βが45°を超える場合、被処理物bに燃焼空気等のガスを効率良く吹き込むことができなくなる。
【0029】
傾斜角度βを20°乃至45°にすることにより、炉体1内の入口側が乾燥ガス化域になると共に、該炉体1内の中央部が主燃焼部となって緩慢燃焼となり、クリンカーの成長が出口側でわずかに発生する程度でほとんど発生せず、クリンカートラブルによる運転停止の事態を防止することができる。
【0030】
【発明の効果】
請求項1記載の発明によれば、連通管からガス吹込ノズルに供給した燃焼空気等のガスがその先端部に達し、さらにこの先端部で迂回されたガスが、邪魔板部材の縦管部から横管部を介してガス吹込口に送られるようになっており、この迂回状ガス流路を流れるガスにより、ガス吹込ノズルの先端が充分に冷却されるため、そのガス吹込ノズルの先端が炉体内の高温雰囲気により焼損されないようにして、その寿命を長く保持することができる。
【0031】
請求項2記載の発明によれば、ガス吹込口から下流に向けて燃焼空気等のガスが吹き込まれるようになっており、そのガスが炉体の入口側に過供給されないため、炉体内の入口側が乾燥ガス化域になると共に、該炉体内の中央部が主燃焼部となって緩慢燃焼となり、クリンカーの成長が出口側でわずかに発生する程度でほとんど発生せず、クリンカートラブルによる運転停止の事態を防止することができる。
【0032】
請求項3記載の発明によれば、各ガス流入口の開度を開閉蓋で調整することにより、風箱内に送り込んだ燃焼空気等のガスを炉体の底部に対して集中的に供給するようになっているから、その集中的に供給したガスと炉床面上を流れる被処理物との接触を促進して、その被処理物の燃焼処理を効率良く行うことができる。
【図面の簡単な説明】
【図1】 本発明の実施の一形態である回転炉のガス供給装置を示す側面図である。
【図2】 図1のA−A矢視図である。
【図3】 図1のB−B矢視図である。
【図4】 同要部の拡大断面図である。
【図5】 図4のC−C矢視図である。
【図6】 図4のD−D矢視図である。
【図7】 従来例を示す側面図である。
【図8】 図7のE−E矢視図である。
【図9】 同要部の拡大断面図である。
【符号の説明】
1 炉体
2 ガス供給口
3 風箱
5 ガス流入口
6 連通管
6a ガス吹込ノズル
15 支持ピン
16 開閉蓋
17 T字管(邪魔板部材)
26 ガス吹込口
a 炉体の回転方向
b 被処理物
c 下流方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas supply device for a rotary furnace in which a gas such as combustion air is supplied in order to subject a workpiece in the furnace to combustion.
[0002]
[Prior art]
Conventionally, an example of a gas supply device for a rotary furnace is described in Japanese Utility Model Publication No. 57-15596. As shown in FIG. 7 to FIG. 9, a plurality of gas supply ports 2 are formed in a rotatable cylindrical furnace body 1 at predetermined intervals in the circumferential direction, and an air box 3 that fits outside the furnace body 1 is provided. And a pair of left and right ring-shaped partition walls 3a and 3b fixed in parallel to the outer peripheral surface of the furnace body 1 at a predetermined interval, and a drum 3c loosely fitted to the both partition walls 3a and 3b. A plurality of gas inlets 5 are formed in the one partition wall 3 a through a support column 4, and each of the gas inlets 5 and each of the gas supply ports 2 facing the gas inlets 5 are connected via a plurality of communication pipes 6. And a gas blowing nozzle 6a connected to the tip of each communication pipe 6 protrudes into the furnace body 1 from each gas supply port 2 and is fixed to the outer peripheral edge of each partition wall 3a, 3b. An annular sealing material 8 is fitted on the outer peripheral surface of the annular peripheral wall 7 parallel to 3c, and the drum 3c A number of bolts 9 that are screwed into the screw holes and come into contact with the outer peripheral surface of the annular sealing material 8 are provided, and a plurality of baffle plates 10 that protrude from the outer peripheral surface of the annular peripheral wall 7 and the inner peripheral surface of the drum 3c are mutually offset. A gas inlet 11 is formed in the drum 3c. In FIG. 9, reference numeral 12 denotes a flow rate adjusting valve provided in each communication pipe 6.
[0003]
In the above configuration, the furnace body 1 is rotated in one direction a, gas such as combustion air is sent from the gas inlet 11 into the wind box 3, and the gas is formed at the tip of the gas blowing nozzle 6 a through the communication pipe 6. The workpiece b in the furnace body 1 is preheated, dried, gasified, and burned by blowing it into the furnace body 1 from the gas inlet 13.
[0004]
[Problems to be solved by the invention]
In the above conventional configuration, the gas blowing nozzle 6a is a straight tube body and has a simple structure in which the gas blowing port 13 is formed at the tip thereof, and the object to be processed b easily enters the gas blowing port 13. .
[0005]
Therefore, it is conceivable to close the tip opening of the gas blowing nozzle 6a and form the gas blowing port 13 on the side surface of the gas blowing nozzle 6a. However, in this case, the combustion supplied from the communication pipe 6 into the gas blowing nozzle 6a. Since a gas such as air hardly reaches the tip of the gas blowing nozzle 6a by approaching the gas blowing port 13, the tip of the gas blowing nozzle 6a is easily burned by the high temperature atmosphere in the furnace body 1.
[0006]
In addition, since the volume of the object to be processed b in the furnace body 1 is small, gas such as combustion air is supplied almost uniformly into the furnace body 1 from each gas blowing nozzle 6a. The contact area with the object to be processed b is small, and gas is not effectively used.
[0007]
In view of the above problems, the present invention can prevent gas blowing nozzles from being burned out and can intensively supply a gas such as combustion air to an object to be processed on the hearth surface with a simple structure. It aims at providing the gas supply apparatus of a rotary furnace.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is an air box in which a plurality of gas supply ports are formed in a rotatable cylindrical furnace body at predetermined intervals in the circumferential direction, and are externally fitted to the furnace body. A plurality of gas inlets are formed at predetermined intervals in the circumferential direction, and the gas inlets and the gas supply ports facing the gas inlets are communicated with each other via a plurality of communication pipes. A plurality of gas injection nozzles projecting into the furnace body are provided, and each gas injection nozzle is configured to rotate the furnace body in one direction and supply gas such as combustion air sent into the wind box through the communication pipes. In the rotary furnace in which the gas blowing nozzle is blown into the furnace body, the tip of each gas blowing nozzle is closed, a gas blowing port is formed on the rear side in the rotation direction of the tip, and a baffle plate member is provided in the tip. The baffle plate member is a gas blower A gas blower comprising a vertical pipe part that is arranged in the same axial center as the squeeze and has an opening at the front end side of the gas blow nozzle, and a horizontal pipe part that sends the gas flowing into the vertical pipe part to the gas blower port. The present invention is characterized in that a bypass gas flow path is formed in which the gas that has reached the tip of the nozzle and has been bypassed flows from the opening of the vertical pipe portion .
[0009]
According to the above configuration, the gas such as combustion air supplied from the communication pipe to the gas blowing nozzle reaches the tip, and further the gas detoured at the tip is moved from the vertical pipe of the baffle plate member to the horizontal pipe. Since the tip of the gas blowing nozzle is sufficiently cooled by the gas flowing through the detour gas flow path, the tip of the gas blowing nozzle is in a high temperature atmosphere in the furnace body. Therefore, it is possible to keep the lifetime long.
[0010]
According to a second aspect of the present invention, in the first aspect of the invention, the gas inlet is inclined in a range of 20 ° to 45 ° downstream from a reference line orthogonal to the axis of the furnace body. It is characterized by that.
[0011]
According to the above configuration, gas such as combustion air is blown downstream from the gas blow-in port, and the gas is not excessively supplied to the inlet side of the furnace body. In addition, the central part of the furnace body becomes the main combustion part and becomes slow combustion, so that the clinker grows slightly on the exit side and hardly occurs, preventing the outage due to clinker trouble be able to.
[0012]
According to a third aspect of the present invention, in the first or second aspect of the present invention, an opening / closing lid is suspended from each gas inlet through a support pin so as to be rotatable. The opening / closing lid gradually widens the opening of each gas inlet moved from the top to the bottom of the furnace body and gradually increases the opening of each gas inlet moved from the bottom to the top of the furnace body. It is characterized by being narrowed to.
[0013]
According to the above configuration, by adjusting the opening of each gas inlet with the opening / closing lid, the gas such as combustion air sent into the wind box is intensively supplied to the bottom of the furnace body. Therefore, the contact between the concentrated gas and the object to be processed flowing on the hearth surface is promoted, and the combustion process of the object to be processed can be performed efficiently.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 show a gas supply device for a rotary furnace according to an embodiment of the present invention, and a cylindrical projection 14 that protrudes from a partition wall 3a of a wind box 3 and communicates with each communication pipe 6. FIG. A circular opening / closing lid 16 is pivotably suspended from the flange portion 14a via a support pin 15 and a gas blowing nozzle 6a connected to the tip of each communication pipe 6 passes through each gas supply port 2 to form the furnace body 1. A T-shaped tube (baffle plate member) 17 is provided at the tip of the gas blowing nozzle 6a, and a porous plate 18 is detachably attached to the rear end of the nozzle 6a. A gas seal device 19 is provided between the partition walls 3a and 3b and the drum 3c. In the configuration other than the above, the same reference numerals are given to the same parts as those in the conventional example shown in FIGS.
[0015]
As shown in FIG. 4, each communication pipe 6 is connected to a pipe main body 20 provided with a flow rate adjusting valve 12, an expansion pipe 21 connected to one end of the pipe main body 20, and the other end of the pipe main body 20. The expansion tube 21 is fixed to the partition wall 3a of the air box 3, and the elbow tube 22 is fitted to the gas supply port 2 to the connecting tube 23, such as a bolt and nut. It is fixed by.
[0016]
As shown in FIG. 4, each of the gas blowing nozzles 6a is formed of a cylindrical body whose tip is closed, and is inserted into the connection tube 23 so as to be insertable / removable, and a flange portion 25 protruding from the rear end thereof. It is sandwiched between the flange portion 22 a of the elbow tube 22 and the flange portion 23 a of the connection tube 23. Moreover, the gas blowing inlet 26 is formed in the rotation direction a rear side of the front end side surface of each gas blowing nozzle 6a.
[0017]
The T-tube 17, as shown in FIGS. 2 and 4 consists of a vertical pipe portion 17a and the Yokokan portion 17b which are integrally formed with each other, the vertical pipe portion 17a is gas injection nozzle 6a and coaxially shaped The horizontal tube portion 17 b is fitted into the gas blowing port 26, the distal end of the vertical tube portion 17 a is opened, and the proximal end is closed by the end plate portion 28.
[0018]
In the above configuration, after a gas such as combustion air supplied from the communication pipe 6 into the gas blowing nozzle 6a makes a U-turn at the tip of the gas blowing nozzle 6a and flows into the T-shaped pipe 17, the gas is bent at a right angle and gas Since the tip of the gas blowing nozzle 6a is sufficiently cooled by the gas flowing through the detour gas flow path in the gas blowing nozzle 6a, the gas blowing is performed. The life of the nozzle 6a can be kept long by preventing the tip of the nozzle 6a from being burned out by the high temperature atmosphere in the furnace body 1.
[0019]
As shown in FIG. 4, the perforated plate 18 is detachably bolted to a protrusion 30 that is inserted into the rear end of the gas blowing nozzle 6a and projects from the inner peripheral surface of the gas blowing nozzle 6a. Yes.
[0020]
As shown in FIG. 4, the gas seal device 19 has a pair of left and right gas seal chambers 32 formed between the annular peripheral wall 7 fixed to the partition walls 3a and 3b and the drum 3c. 32 is a pair of left and right annular seal members 34 pressed against the annular peripheral wall 7 by the adjusting bolt 33, and each pair of annular partition walls projecting from the inner peripheral surface of the drum 3c and sandwiching each annular seal member 34 from both sides. 35, and by supplying an inert gas from the injection nozzle 36 into each gas seal chamber 32, leakage of gas such as combustion air sent from the gas inlet 11 into the wind box 3 is prevented. It is to prevent. As shown in FIG. 5, the annular sealing material 34 is divided along the circumferential direction at a predetermined interval α, and is easy to assemble.
[0021]
In the above configuration, when the furnace body 1 is rotated in one direction a, the position of the support pin 15 is changed along the peripheral edge of the gas inlet 5 as shown in FIG. The position of the opening / closing lid 16 is also changed along the peripheral edge of the gas inlet 5 due to its own weight, whereby the opening degree of each gas inlet 5 moved from the top to the bottom of the furnace body 1 is gradually increased by the opening / closing lid 16. The opening degree of each gas inlet 5 that is moved from the bottom to the top of the furnace body 1 is gradually narrowed by the opening / closing lid 16 while being expanded.
[0022]
As a result, gas such as combustion air fed into the wind box 3 from the gas inlet 11 is intensively supplied from the gas supply ports 2 toward the bottom of the furnace body 1 through the communication pipes 6. The contact between the intensively supplied gas and the workpiece b flowing on the hearth surface 1a can be promoted, and the burning treatment of the workpiece b can be performed efficiently.
[0023]
In this case, the opening degree adjusting means for adjusting the opening degree of each gas inlet 5 includes an opening / closing lid 16 that is pivotably suspended from each gas inlet 5 via a support pin 15. It is simple and difficult to break down, and production costs can be reduced.
[0024]
In addition, as shown in FIG. 2, the object to be processed b is stirred and mixed by the gas blowing nozzles 6a protruding into the furnace body 1, so that a conventionally used lifter is unnecessary, and only the amount that is unnecessary is required. The structure becomes simple and the production cost can be reduced.
[0025]
In this case, since the gas blowing ports 26 of the respective gas blowing nozzles 6a are provided on the rear side in the rotation direction a, it is difficult for the workpiece b to enter the gas blowing nozzles 6a from the gas blowing ports 26, and Since the porous plate 18 is mounted in the gas blowing nozzle 6a, the workpiece b is not clogged in the communication pipe 6.
[0026]
When replacing the gas blowing nozzle 6a, as shown by the phantom line in FIG. 4, the elbow pipe 22 is detached from the pipe body 20 and the connecting pipe 23, the gas blowing nozzle 6a is pulled out from the connecting pipe 23, and the reverse of the above. The new gas blowing nozzle 6a is inserted into the connecting pipe 23 and the elbow pipe 22 is connected to the pipe main body 20 and the connecting pipe 23 by the above procedure, and the replacement work can be performed quickly and easily.
[0027]
As shown in FIG. 6, the gas inlet 26 is inclined by a predetermined angle β in the range of 20 ° to 45 °, preferably 30 °, in the downstream direction c from the reference line O orthogonal to the axis of the furnace body 1. ing.
[0028]
In the above configuration, when the inclination angle β of the gas blowing port 26 is less than 20 °, the gas such as combustion air blown from the gas blowing port 26 is reversed at the furnace wall and is oversupplied to the inlet side. It burns violently on the inlet side of 1 and becomes a high temperature state, and a large amount of clinker adheres, causing an operation stoppage due to a clinker trouble. Moreover, when the inclination angle β of the gas blowing port 26 exceeds 45 °, it becomes impossible to efficiently blow gas such as combustion air into the workpiece b.
[0029]
By setting the inclination angle β to 20 ° to 45 °, the inlet side in the furnace body 1 becomes a dry gasification region, and the central part in the furnace body 1 becomes the main combustion part and the slow combustion occurs. Little growth occurs to the extent that the growth occurs slightly on the exit side, and it is possible to prevent an outage due to clinker trouble.
[0030]
【The invention's effect】
According to the first aspect of the present invention, the gas such as combustion air supplied from the communication pipe to the gas blowing nozzle reaches the tip, and further the gas detoured at the tip is fed from the vertical pipe of the baffle plate member. via the lateral pipe portions are adapted to be sent to the gas injection port, the gas flowing through the bypass-shaped gas passage, the tip of the gas injection nozzle is cooled sufficiently, the tip of the gas injection nozzle furnace It is possible to maintain a long life without being burned out by the high temperature atmosphere in the body.
[0031]
According to the second aspect of the present invention, gas such as combustion air is blown downstream from the gas blow-in port, and the gas is not excessively supplied to the inlet side of the furnace body. As the side becomes a dry gasification zone, the central part of the furnace body becomes the main combustion part and slow combustion occurs, so that the clinker grows slightly on the outlet side and hardly occurs. The situation can be prevented.
[0032]
According to the invention described in claim 3, by adjusting the opening degree of each gas inlet with the opening / closing lid, the gas such as the combustion air sent into the wind box is intensively supplied to the bottom of the furnace body. Therefore, the contact between the concentrated gas and the object to be processed flowing on the hearth surface is promoted, and the object can be efficiently burned.
[Brief description of the drawings]
FIG. 1 is a side view showing a gas supply device for a rotary furnace according to an embodiment of the present invention.
FIG. 2 is an AA arrow view of FIG.
FIG. 3 is a view taken along arrow BB in FIG. 1;
FIG. 4 is an enlarged cross-sectional view of the main part.
FIG. 5 is a view taken along the line CC in FIG. 4;
6 is a view taken along the line DD in FIG. 4;
FIG. 7 is a side view showing a conventional example.
FIG. 8 is a view taken in the direction of arrows EE in FIG. 7;
FIG. 9 is an enlarged cross-sectional view of the main part.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace 2 Gas supply port 3 Wind box 5 Gas inflow port 6 Communication pipe 6a Gas injection nozzle 15 Support pin 16 Opening and closing lid 17 T-shaped pipe (baffle plate member)
26 Gas inlet a Rotating direction of furnace body b Processed object c Downstream direction

Claims (3)

回転可能な円筒状炉体に複数のガス供給口が周方向所定間隔をおいて形成されると共に、前記炉体に外嵌する風箱に複数のガス流入口が周方向所定間隔をおいて形成され、該各ガス流入口とそれに対向する前記各ガス供給口とが複数の連通管を介して互いに連通され、前記各ガス供給口から炉体内に突出する複数のガス吹込ノズルが設けられており、前記炉体を一方向に回転させ、前記風箱内に送り込んだ燃焼空気等のガスを前記各連通管を介して各ガス吹込ノズルから炉体内に吹き込むようにした回転炉において、
前記各ガス吹込ノズルは先端部が塞がれると共に先端部側面の回転方向後側にガス吹込口が形成され、さらに先端部内に邪魔板部材が設けられ、
前記邪魔板部材は、ガス吹込ノズルと同一軸心状に配置されてガス吹込ノズルの先端側が開口される縦管部と、該縦管部に流入したガスを前記ガス吹込口に送る横管部とを具備して、ガス吹込ノズルの先端部に達して迂回されたガスを縦管部の開口から流入させる迂回状ガス流路を形成するように構成された
ことを特徴とする回転炉のガス供給装置。
A plurality of gas supply ports are formed in the rotatable cylindrical furnace body at a predetermined interval in the circumferential direction, and a plurality of gas inlets are formed at a predetermined interval in the circumferential direction in the wind box fitted on the furnace body. The gas inlets and the gas supply ports opposed to the gas inlets communicate with each other through a plurality of communication pipes, and a plurality of gas injection nozzles that protrude from the gas supply ports into the furnace body are provided. In the rotary furnace in which the furnace body is rotated in one direction, and gas such as combustion air sent into the wind box is blown into the furnace body from each gas blowing nozzle through the communication pipes.
Each of the gas blowing nozzles is closed at the tip, and a gas blowing port is formed on the rear side of the tip side in the rotational direction , and a baffle plate member is provided in the tip.
The baffle plate member is arranged in the same axial center as the gas blowing nozzle, and a vertical pipe part in which a front end side of the gas blowing nozzle is opened, and a horizontal pipe part that sends the gas flowing into the vertical pipe part to the gas blowing port A gas for a rotary furnace characterized in that it forms a detour gas flow path for allowing the detoured gas that has reached the tip of the gas blowing nozzle to flow in from the opening of the vertical pipe section. Feeding device.
前記ガス吹込口が、炉体の軸心に対して直交する基準線から下流方向に20°乃至45°の範囲で傾斜されていることを特徴とする請求項1記載の回転炉のガス供給装置。2. The gas supply device for a rotary furnace according to claim 1, wherein the gas inlet is inclined in a range of 20 ° to 45 ° downstream from a reference line orthogonal to the axis of the furnace body. . 前記各ガス流入口に支持ピンを介して開閉蓋が回動可能に吊り下げられており、前記炉体の回転に伴って、前記開閉蓋により、該炉体の頂部から底部に移動される各ガス流入口の開度を徐々に広げると共に、その炉体の底部から頂部に移動される各ガス流入口の開度を徐々に狭めるようにしたことを特徴とする請求項1または2記載の回転炉のガス供給装置。An opening / closing lid is pivotably suspended from the gas inlets via a support pin, and each of the gas bodies is moved from the top to the bottom of the furnace body by the opening / closing lid as the furnace body rotates. 3. The rotation according to claim 1, wherein the opening degree of the gas inlet is gradually increased and the opening degree of each gas inlet moved from the bottom to the top of the furnace body is gradually reduced. Furnace gas supply device.
JP30023998A 1998-10-22 1998-10-22 Gas supply device for rotary furnace Expired - Fee Related JP4004155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30023998A JP4004155B2 (en) 1998-10-22 1998-10-22 Gas supply device for rotary furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30023998A JP4004155B2 (en) 1998-10-22 1998-10-22 Gas supply device for rotary furnace

Publications (2)

Publication Number Publication Date
JP2000130744A JP2000130744A (en) 2000-05-12
JP4004155B2 true JP4004155B2 (en) 2007-11-07

Family

ID=17882396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30023998A Expired - Fee Related JP4004155B2 (en) 1998-10-22 1998-10-22 Gas supply device for rotary furnace

Country Status (1)

Country Link
JP (1) JP4004155B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229281B2 (en) 2000-09-11 2007-06-12 Cadence Environmental Energy, Inc. Method of mixing high temperature gases in mineral processing kilns
US6672865B2 (en) * 2000-09-11 2004-01-06 Cadence Enviromental Energy, Inc. Method of mixing high temperature gases in mineral processing kilns
BRPI0706435A2 (en) 2006-01-09 2011-03-29 Cadence Environmental Energy method and apparatus for reducing nox emissions in sncr rotary kilns
CN100529536C (en) * 2007-02-07 2009-08-19 史金麟 Honeycomb grate cremation furnace
KR101110699B1 (en) * 2009-03-12 2012-03-16 박영선 Rotary kiln

Also Published As

Publication number Publication date
JP2000130744A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
CA1231039A (en) Atomiser
US5937538A (en) Through air dryer apparatus for drying webs
US5399085A (en) High output tube burner
JP4004155B2 (en) Gas supply device for rotary furnace
WO2011120597A1 (en) Burner with high flame stability, particularly for the thermal treatment of ceramic articles
US5692892A (en) Continuous flow rotary valve for regenerative fume incinerators
CA1216139A (en) Liquid spraying
CN113375173B (en) Flue gas secondary combustion device
JP4419313B2 (en) Air volume control device for external heat kiln
JP3592090B2 (en) Rotary furnace gas supply device
JP2979471B2 (en) Gas reactant supply device
JP3548613B2 (en) Gas flow shut-off device in retort of externally heated rotary kiln
JPS6021609Y2 (en) Burner for fluidized bed furnace
CN217403113U (en) Cement kiln steady wind steady burning device based on nanometer microcrystalline material
JP3668989B2 (en) Burner throat
JP2001020212A (en) Dryer for asphalt plant
JP3338982B2 (en) Turbo type high temperature and high heat burner
JP4554782B2 (en) Two-fluid nozzle
JPH04129639U (en) Incinerator secondary air supply device
JPH06190266A (en) Air nozzle for inflow bottom of fluid bed reactor
RU2223907C2 (en) Device for incineration of hydrogenous fuel in a mixture of chlorine-containing gas and air
JPS60221612A (en) Incinerator of rotary drum type
JP2001090919A (en) Combustion temperature maintaining apparatus of incinerator
CN112032715A (en) Sulfur recovery burner
JPH1163449A (en) Method and device for supplying combustion air in incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees