JP4004012B2 - Sealed switchgear - Google Patents

Sealed switchgear Download PDF

Info

Publication number
JP4004012B2
JP4004012B2 JP2000347044A JP2000347044A JP4004012B2 JP 4004012 B2 JP4004012 B2 JP 4004012B2 JP 2000347044 A JP2000347044 A JP 2000347044A JP 2000347044 A JP2000347044 A JP 2000347044A JP 4004012 B2 JP4004012 B2 JP 4004012B2
Authority
JP
Japan
Prior art keywords
conductor
vacuum valve
vacuum
mold
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000347044A
Other languages
Japanese (ja)
Other versions
JP2002152930A (en
Inventor
勝 宮川
修 阪口
章 佐藤
信孝 久保田
哲雄 吉田
純一 佐藤
寛司 吉岡
哲 吹上
浩資 捧
晋 木下
哲 塩入
聡 槙島
敏久 齋藤
弘樹 加々良
和征 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000347044A priority Critical patent/JP4004012B2/en
Publication of JP2002152930A publication Critical patent/JP2002152930A/en
Application granted granted Critical
Publication of JP4004012B2 publication Critical patent/JP4004012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Patch Boards (AREA)
  • Gas-Insulated Switchgears (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉形スイッチギヤに関する。
【0002】
【従来の技術】
従来のスイッチギヤの一例について、図29と図30を用いて説明する。
【0003】
図29は、代表的な気中スイッチギヤの右側面図である。同図において、51はスイッチギヤ本体でこの内部には、閉鎖の形に応じて、仕切板により、機器収納室52、受電室53、母線室54を構成する。また、この機器収納室52の上部には制御室55を設け、更に機器収納室52及び制御室55の正面には、扉56,57を開閉自在に設ける。58は単位回路を接続する母線部である。59は分岐導体で、この分岐導体59の先端はケーブルヘッド60を介して電源ケーブル61に接続する。
【0004】
また、移動形遮断器62は機器収納室52に収納し、機器収納室52と受電室53,母線室54を仕切る仕切板の上下に取付けた主回路断路部63,64を介して母線部58および受電側分岐導体59に電気的に接続する。
【0005】
尚、上部の主回路断路部63は、母線部58と一体構成である。また、下側の主回路断路部64には、貫通形変流器65を設けている。
【0006】
ところが、このような構成のスイッチギヤにおいては、据付け環境(塵埃・湿潤など)により、特に主回路の絶縁が低下してしまい短絡・地絡などの事故に至るケースがあるため、十分な絶縁距離を確保するにはスイッチギヤ全体が大型になっていた。
【0007】
また、十数年前より主回路構成機器を密閉容器に一括収納し、その容器内に絶縁ガス(SF6ガス)を封入しスイッチギヤの小型化をしたC−GIS(キュービクル形ガス絶縁スイッチギヤ)が普及している。
【0008】
図30は、代表的なキュービクル形SF6ガス絶縁スイッチギヤの右側面図である。同図において、71はスイッチギヤ本体でこの内部は、受電室72,母線室73、制御室74を構成する。このうち受電室72、母線室73は密閉容器でその内部には、遮断器75、3位置断路器(入り−切り−接地)76の遮断部75A、断路部76Aを配置し低圧力の絶縁ガス(SF6ガス)を封入し機器のコンパクト化をしている。
【0009】
ここで、受電室72に収納した遮断器の遮断部75Aの一方の導体77はケーブルヘッド81を介して電源ケーブル82に接続する。
【0010】
尚、この電源ケーブル82には、貫通形変流器83を設けている。
【0011】
また、遮断器の遮断部75Aの他方の導体78は、受電室72と母線室73を貫通する絶縁スペーサ84を介して母線室73の3位置断路器の断路部76Aの一方の導体79に接続し、更に3位置断路器76Aの他方の導体80A〜80Cは単位回路を接続する母線85に接続し、他のユニットと電気的に接続している。また、遮断器75、3位置断路器76の操作機構75B,76Bは、制御室74に設けられている。
【0012】
ところが、このような構成のスイッチギヤにおいては、絶縁ガス自体が高価なことと、その絶縁ガスを封入する気密容器の製作に多大な時間を要すばかりでなく、熟練した技能が必要となり、結果的に高価な物となっている。また、絶縁ガスの使用により気密容器がコンパクトとなり各機器間を接続する導体などの組立に限界を生じている。
【0013】
また、種々の回路構成に対応するために都度設計を行なっており、製作に多大な時間を要するばかりでなく、設計図面の種類も多くなり、高価なものとなっている。
【0014】
【発明が解決しようとする課題】
上述のように図29に示す従来のスイッチギヤにおいては、据付環境(塵埃・湿潤など)による絶縁低下を防止し、十分な絶縁距離を確保するためにスイッチギヤ全体が大きくなっていた。また、塵埃などを除去するために主回路部の清掃を定期的に行なう必要があった。
【0015】
また、絶縁ガス(SF6ガス)を封入することにより小型化を図った図30に示すスイッチギヤにおいては、絶縁ガスが高価なことと、その絶縁ガスを封入する気密容器の製作が容易ではないという問題があった。
【0016】
また、種々の回路構成に対応できる反面、標準化が少ないという問題があった。
【0017】
更に、気中絶縁スイッチギヤやSF6ガス絶縁スイッチギヤの主回路部を構成する際には多くの部品とボルトナットを使用しているため、組立や検査に多くの時間を要していた。
【0018】
本発明は上記のような事情に鑑みてなされたもので、主回路構成機器およびその機器間を接続する導体などを据付け環境の影響を受けない構成とし電気的絶縁に必要な寸法まで縮小化し、標準化した上で種々の回路構成に対応し且つ部品点数を少なくし安全で信頼性の高い密閉形スイッチギヤを提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明は上記の目的を達成するため、次のような手段により密閉形スイッチギヤを構成する。
【0024】
本発明は、少なくとも2つの真空バルブをこれら各真空バルブの可動軸が平行で床面に対して垂直になるように配置すると共に、前記各真空バルブの可動部側を共通導体で接続し、且つ一方の前記真空バルブの固定側導体の上部に母線接続導体を配設し、他方の前記真空バルブの固定側導体の上部に少なくとも2つ以上の端部を有する主回路外部接続導体を突出させて配設する構成として、これらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、 このモールド部は前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い空胴を有し、この空胴内に前記真空バルブの可動導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブを直線駆動する操作機構を真空バルブの可動軸上に接続したことを特徴とする。
【0025】
この構成により気中絶縁のように絶縁距離を大きくする必要がなくなりスイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器を必要とせず、更にモールドすることで部品を固定できるため部品点数の大幅な削減が図れ、安全で信頼性の高いスイッチギヤを提供できる。また、開閉部を真空バルブとすることで、更なる縮小化が図れる。
【0026】
また、別の発明は、少なくとも2つの真空バルブをこれら各真空バルブの可動軸が平行で床面に対して垂直になるように配置すると共に、前記各真空バルブの可動部側を共通導体で接続してこれらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記真空バルブの固定側導体の軸上に接地層の無い嵌合部と前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い空胴とが形成された開閉器モールド部と、母線接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記母線接続導体の一方の端部に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状の嵌合部と他方の端部に接地層の無い母線接続部とが形成された母線接続モールド部と、少なくとも3つ以上の端部を有する主回路外部接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記主回路外部接続導体の少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングと他の端部に接地層の無い前記開閉器モールド部の嵌合部に嵌合する形状の嵌合部とが形成された主回路外部取合モールド部とを備え、これら3つのモールド部を、前記開閉器モールド部の嵌合部で接続すると共に、前記空胴内に前記真空バルブの可動導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブを直線駆動するための操作機構を真空バルブの可動軸上に接続したものである。
【0027】
この構成により気中絶縁のように絶縁距離を大きくする必要がなくなりスイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器を必要とせず、更にモールドすることで部品を固定できるため部品点数の大幅な削減が図れ、安全で信頼性の高いスイッチギヤを提供できる。また、開閉部を真空バルブとすることで、更なる縮小化が図れる。更に、モールド部を分割することにより、外部取合いが変更になった場合も当該部のみのモールド金型を変更すれば良いので、変更に対する自由度が向上する。
【0028】
また、別の発明は少なくとも2つの真空バルブをこれら各真空バルブの可動軸が平行で床面に平行になるように配置すると共に、前記各真空バルブの可動部側を共通導体で接続し、且つ一方の前記真空バルブの固定側導体の軸上に母線接続導体を配設し、他方の前記真空バルブの固定側導体の軸上に少なくとも2つ以上の端部を有する主回路外部接続導体を突出させて配設する構成として、これらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、このモールド部は前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い空胴を有し、この空胴内に前記真空バルブの可動導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブの軸上で床面に対して垂直な面に取付けられた直線駆動するための操作機構に接続したものである。
【0029】
また、別の発明は少なくとも2つの真空バルブをこれら各真空バルブの可動軸が平行で床面に平行になるように配置すると共に、前記各真空バルブの可動部側を共通導体で接続してこれらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記真空バルブの固定側導体の軸上に接地層の無い嵌合部と前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い空胴とが形成された開閉器モールド部と、母線接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記母線接続導体の一方の端部に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状の嵌合部と他方の端部に接地層の無い母線接続部とが形成された母線接続モールド部と、少なくとも3つ以上の端部を有する主回路外部接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記主回路外部接続導体の少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングと他の端部に接地層の無い前記開閉器モールド部の嵌合部に嵌合する形状の嵌合部とが形成された主回路外部取合モールド部とを備え、これら3つのモールド部を、前記開閉器モールド部の嵌合部で接続すると共に、前記空胴内に前記真空バルブの可動導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブの軸で床面に対して垂直な面に取付けられた直線駆動するための操作機構に接続したものである。
【0030】
この構成により操作機構をスイッチギヤの正面に取り付けることで、操作性を向上することができる。
【0031】
また、別の発明は、真空バルブの可動導体が前記共通導体より突出する側の前記共通導体に接触子を設け、前記空胴の前記共通導体と反対側から前記接触子に接続する大地より絶縁された可動導体を設け、この可動導体に接離可能な大地に接地された接地導体を接続し、前記可動導体を直線駆動する操作機構を前記可動導体と絶縁して接続したものである。
【0032】
この構成により真空バルブの可動側を接地することのできる接地装置を付加することで、単位回路の適用範囲を拡大できる。
【0033】
また、別の発明は、空胴に空気等の絶縁媒体を密閉したものである。
【0034】
この構成により真空バルブの可動側の絶縁部を密閉することで、可動部絶縁が外部環境に影響しないようにでき、縮小化と信頼性の向上が図れる。
【0035】
また、別の発明は、空胴を形成する絶縁物の前記共通導体の近傍周面に導電性シールドを設けたものである。
【0036】
この構成により真空バルブの可動側にシールドを埋め込むことで、電界強度を均一化し、縮小化と信頼性の向上が図れる。
【0037】
また、別の発明は、開閉器モールド部、母線接続モールド部及び主回路外部取合モールド部にそれぞれ形成された嵌合部に前記嵌合部を構成する絶縁物よりも柔らかい絶縁物を介在させたものである。
【0038】
この構成により分割したモールド部を嵌合し絶縁する場合、嵌合部に柔らかい絶縁物を介在させることで、嵌合部の界面の密着性を良なり絶縁性能が向上することで、縮小化が図れる。
【0039】
また、別の発明は、H字形の主回路外部接続導体を埋め込んだ主回路外部取合部の各嵌合部に、表面に接地層を有する避雷器又は表面に接地層を有する計器用変成器、表面に接地層を有する真空バルブによる接地装置、表面に接地層を有する試験端子または表面に接地層を有する絶縁栓のうち少なくとも2つ以上を接続したものである。
【0040】
この構成により避雷器や計器用変成器や真空接地装置や試験端子を付加することで、更に適用範囲の拡大と縮小化を図ることができる。
【0041】
また、別の発明は、主回路外部取合導体の近傍に円盤状電極を設け、この円盤状電極からモールドの外層に接地層から絶縁された導体を突出させたものである。
【0042】
この構成により接地から絶縁された埋め込み電極を設けることで、主回路との間に静電容量を有することができ、この静電容量を用いて主回路の充電・非充電を検出することができる。
【0043】
また、別の発明は、2つの真空バルブの軸間寸法の半分の寸法と、母線接続導体の母線接続側の母線の中心から母線接続導体を接続する真空バルブの軸までの寸法を等しくしたものである。
【0044】
この構成により母線の中心から母線接続導体を接続する真空バルブの軸までの寸法の2倍の長さと2つの真空バルブの軸間寸法を等しくすることで、真空バルブの固定導体の軸上に母線接続部を前後180度回転させて取り付けても母線の位置を同一にでき、スイッチギヤ構成上自由度を大幅に向上できる。
【0045】
また、別の発明は、真空バルブを直線駆動する操作機構を電磁操作機構としたものである。
【0046】
この構成により真空バルブを直線駆動する操作機構を電磁操作機構とすることで、リンクなどの部品が無くなり主回路同様に大幅な部品点数の削減を図ることができ且つ、完全な直線駆動ができるため、信頼性の高いスイッチギヤを提供できる。
【0047】
また、別の発明は、開閉器モールド部に形成された嵌合部の前記真空バルブの固定側導体に凹状部分を設け、この凹状部分に前記母線接続導体または主回路外部取合モールド部の嵌合部を挿入して電気的及び機械的に接続したものである。
【0048】
この構成により嵌合部の導体嵌合部を真空バルブの固定導体側に凹部を設けて真空バルブ側に突出させることで、スイッチギヤの真空バルブの軸方向の寸法を縮小化できる。
【0049】
また、別の発明は、2つの真空バルブ間の共通導体と絶縁操作ロッドを接続した真空バルブの可動導体との間の絶縁物に空胴を設けたものである。
【0050】
この構成により2つの真空バルブの間の共通導体と固定側導体の間の絶縁物に空胴を設けることで、使用する絶縁物の量を減らすことができ、経済的なスイッチギヤを提供できる。
【0051】
また、別の発明は、2つの真空バルブの軸を平行にし可動部側を共通の導体で接続してこれらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記真空バルブの固定側導体の軸上に接地層の無い嵌合部と前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い密閉された空胴とが形成された開閉器モールド部を少なくとも2つ以上真空バルブの軸が平行となるように配置すると共に、これら各開閉器モールド部内の前記空胴内に前記真空バルブの可動部導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブを直線駆動するための操作機構を接続する構成とし、隣合わせに配置された前記開閉器モールド部の嵌合部同志を、コの字形状もしくはU字形状をした導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、その両端に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状を有する接続モールドユニットにより連結し、残りの開閉器モールド部の嵌合部に、母線接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、一方の端部に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状を有し、他方の端部に母線を接続する接地層の無い母線接続部を有した母線接続モールド部と、少なくとも3つ以上の端部を有する導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングを有し、他の端部に接地層の無い前記開閉器部の嵌合部と嵌合する形状を有した主回路外部取合モールド部を接続したものである。
【0052】
この構成により単位回路毎の主回路構成機器のうち開閉部を真空バルブで構成し、導体などと共に絶縁物で分割モールドし、2つの真空バルブをモールドした開閉器モールド部を少なくとも2つ以上組合わせているので、気中絶縁のように絶縁距離を大きくする必要がなくなりスイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器を必要とせず、更にモールドすることで部品を固定できるため部品点数の大幅な削減が図れ、安全で信頼性の高いスイッチギヤを提供できる。また、開閉部を真空バルブとすることで、更なる縮小化が図れる。更に、モールド部を分割することにより、外部取合いが変更になった場合も当該部のみのモールド金型を変更すれば良いので、変更に対する自由度が向上する。また、開閉器モールド部を2つ以上組み合わせることで、適用できる回路構成を大幅に増やすことができる。
【0053】
また、別の発明は、母線接続モールド部を接続する開閉器モールド部の真空バルブを断路器とし、残りの開閉器モールド部の真空バルブを遮断部とし、前記断路部と遮断部を各々1つの操作機構で直線駆動するか、または前記断路部と遮断部を各々2つの操作機構で同時または別々に直線駆動するようにしたものである。
【0054】
この構成により母線側の開閉器部を2点切の断路器とし外部取合い側の開閉器部を2点切の遮断器とすることで、絶縁性能と遮断性能を向上することができる。
【0055】
また、別の発明は、1つの開閉器モールド部の真空バルブの軸間寸法と、コの字もしくはU字形状の接続モールドユニットで接続する2つの開閉器モールド部の当該真空バルブの軸間寸法を同一とし、且つ開閉器モールド部の2つの真空バルブの軸間寸法の半分の寸法と、母線接続導体の母線接続側の母線の中心から母線接続導体を接続する真空バルブの軸までの寸法を等しくしたものである。
【0056】
この構成により1つの開閉器モールド部の真空バルブの軸間寸法と、コの字もしくはU字形状の接続モールドユニットで接続する2つの開閉器モールド部の当該真空バルブの軸間寸法を同一とし、且つ開閉器モールド部の2つの真空バルブの軸間寸法の半分の寸法と、母線接続導体の母線接続側の母線の中心から母線接続導体を接続する真空バルブの軸までの寸法を等しくすることで、5つの母線を自由に構成でき、適用回路と配置の自由度を大幅に向上することができる。
【0057】
また、別の発明は、2つの真空バルブの軸を平行にし可動部側を共通の導体で接続してこれらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記真空バルブの固定側導体の軸上に接地層の無い嵌合部と前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い密閉された空胴とが形成された開閉器モールド部を少なくとも2つ以上真空バルブの軸が平行となるように配置すると共に、これら各開閉器モールド部内の前記空胴内に前記真空バルブの可動部導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブを直線駆動するための操作機構を接続する構成とし、隣合せの前記開閉器モールド部の共通導体側に形成された嵌合部同志を、直線状の導体を表面に接地層を有する絶縁物で単相または3相一体にモールドしてその両端に接地層の無い前記開閉器部の嵌合部と嵌合する形状を有する直線接続モールドユニットにより連結し、一方の開閉器モールド部の2つの真空バルブの固定導体側の嵌合部に、母線接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドして一方の端部に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状を有し、他方の端部に母線を接続する接地層の無い母線接続部を有した母線接続モールド部を接続し、他方の開閉器モールド部の2つの真空バルブの固定導体側の嵌合部のうち一方に少なくとも3つの端部を有する導体を表面に接地層を有する絶縁物で単相または3相一体にモールドして少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングを有し、他の端部に接地層の無い前記開閉器部の嵌合部と嵌合する形状を有した主回路外部取合モールド部を接続し、残りの真空バルブの固定導体側の嵌合部に表面に接地層を有する絶縁栓を接続したものである。
【0058】
この構成により気中絶縁のように絶縁距離を大きくする必要がなくなりスイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器を必要とせず、更にモールドすることで部品を固定できるため部品点数の大幅な削減が図れ、安全で信頼性の高いスイッチギヤを提供できる。また、開閉部を真空バルブとすることで、更なる縮小化が図れる。更に、モールド部を分割することにより、外部取合いが変更になった場合も当該部のみのモールド金型を変更すれば良いので、変更に対する自由度が向上する。また、モールド品同志の取り合い部を3つ以上有する開閉器モールド部を2つ以上組み合わせることで、2重母線構成に適用できる。
【0061】
また、別の発明は、両端にスライド可能で母線接続部の嵌合部と嵌合できる絶縁物を有する固体絶縁母線の両端を内側にスライドさせた時の全長が、列盤状態で隣接する母線接続部の先端同士の間隔より短くなる固体絶縁母線と、母線接続部の内周に固体絶縁母線と通電接触するためのスライド可能な接触子を有し、前記接触子をスライドさせることで前記母線接続部の先端より突出することが無い母線接続部を用いて構成するものである。
【0062】
この構成によりスライド構成の固体絶縁母線の長さを隣接する母線接続部の間隔よりも短くすることで、列盤した状態で母線の接続及び取外しができ、現地据付工期を短縮でき、経済的なスイッチギヤを提供できる。
【0065】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
【0066】
図1(a)は本発明の第1の実施の形態を示すスイッチギヤの電気回路図であり、(b)は同スイッチギヤの一部を断面して示す側面図である。
【0067】
第1の実施の形態を示すスイッチギヤは、図1(a)に示すように真空遮断部VCBの可動側を真空又は気体断路部DSを直列に介して母線Bに接続し、また真空遮断部VCBの固定側を真空又は気体の接地開閉部ESに接続すると共に、主回路外部取合部を介してケーブルヘッドに接続する主回路を対象としている。
【0068】
なお、CTはケーブルヘッドより外部の負荷に繋がる導体部に設けられた変流器である。
【0069】
図1(b)において、13は金属閉鎖箱で、この金属閉鎖箱13は主回路機器室13aとその下部に操作室13bが形成されている。主回路機器室13aには、真空遮断部1及び真空または気体の断路部2をその軸方向が床面に対して垂直になるように並設し、その上部に3相各相に対応する母線取合部4が配設され、さらにこれら真空遮断部1及び真空または気体の断路部2と母線取合部4の背面側に上部に真空又は気体接地開閉部3を設けた主回路外部取合部5が垂直に配置されている。真空または気体接地開閉部3には図示しない直線駆動するための操作機構も取付けられている。
【0070】
また、操作室13bには真空遮断部1と真空または気体の断路部2を各々に直線駆動するための操作機構7が設けられ、さらに操作室13bの背面部には主回路外部取合部5より導出された電源ケーブル11を貫通させて貫通型変流器12が設けられている。
【0071】
このような構成の主回路機器において、真空遮断部1、真空または気体の接地開閉部3と母線取合部4及び主回路外部取合部5の表面を接地層を有するエポキシ樹脂などの絶縁物6で単相または3相一体でモールドし、これら真空遮断部1、真空または気体の断路部2において、接地層の無い可動側絶縁物内部の空胴8内で真空遮断部1と真空または気体の断路部2の可動導体9に絶縁操作ロッド10を接続し、他端に真空遮断部1、真空または気体の断路部2に各々直線駆動可能に操作機構7を連結する。
【0072】
このような構成とすれば、気中絶縁のように絶縁距離を大きくする必要がなくなり、スイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器を必要とせず、更にモールドにより部品が固定されるため、部品点数と組立時間の大幅な削減が図れ、安全で信頼性の高いスイッチギヤを提供できる。
【0073】
図2は本発明の第2の実施の形態を一部を断面して示す側面図で、スイッチギヤの電気回路については図1(a)と同じなので省略してある。また、図1(b)と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0074】
第2の実施の形態では、図2に示すように母線取合部4を表面に接地層を有するエポキシ樹脂などの絶縁物6で単相または3相一体でモールドした母線接続ユニット14と、真空遮断部1、真空または気体の断路部2、真空または気体の接地開閉部3及び主回路外部取合部5を表面に接地層を有する絶縁物6で単相または3相一体でモールドした開閉器ユニット15とを各々別個に構成し、これら母線接続ユニット14と開閉器ユニット15とを嵌合部16にて電気的及び機械的に結合するようにしたものである。
【0075】
この場合、母線接続ユニット14側にテーパ面を有する凸部が形成され、開閉器ユニット15側にはこの凸部に合致する凹部が形成されている。
【0076】
このような構成とすれば、気中絶縁のように絶縁距離を大きくする必要がなくなり、スイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器を必要とせず、更にモールドにより部品が固定されるため、部品点数と組立時間の大幅な削減が図れ、安全で信頼性の高いスイッチギヤを提供できる。更に、モールド部を複数ユニットに分割することにより、外部取合いが変更になった場合でも当該部のみのモールド金型を変更すれば良いので、変更に対する自由度が向上する。
【0077】
図3(a)は本発明の第3の実施の形態を示すスイッチギヤの電気回路図であり、(b)は同スイッチギヤの一部を断面して示す側面図で、図1と同一部品には同一符合を付して説明する。
【0078】
第3の実施の形態を示すスイッチギヤは、図3(a)に示すように真空遮断部VCBの可動側を真空又は気体断路部DSを直列に介して母線Bに接続し、また真空遮断部VCBの固定側を主回路外部取合部を介してケーブルヘッドに接続する主回路を対象としている。
【0079】
なお、CTはケーブルヘッドより外部の負荷に繋がる導体部に設けられた変流器である。
【0080】
図3(b)において、13bは操作室、22は操作室13bの上部前方に設けられた制御箱である。この制御箱22の背面側の操作室13bの上部に、可動部側を共通導体18で接続した少なくとも2つの真空バルブ17をその軸が平行で床面に対して垂直になるように配置すると共に、その一方の真空バルブ17の固定側導体の軸上に配置される断面が略L字形の3相各相に対応する母線接続導体19を接続し、他方の前記真空バルブ17の固定側導体の軸上に突出させて設けられた断面が略H字形の主回路外部接続導体20を接続する構成とする。
【0081】
また、操作室13bの背面部には主回路外部取合部5より導出された電源ケーブル11を貫通させて貫通型変流器12が設けられている。
【0082】
このような構成の主回路機器において、少なくとも2つの真空バルブ17、母線接続導体19及び主回路外部接続導体20の表面を接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドし、これら真空バルブ17の可動導体が前記共通導体より突出する側の絶縁物内面に形成された接地層の無い略長円柱状の空胴21内で真空バルブ17の可動導体9に絶縁操作ロッド10を接続し、この絶縁操作ロッド10の他端に真空バルブ17を直線駆動可能に操作機構7を連結する。
【0083】
この場合、操作機構7は真空バルブ17の軸の延長線上で真空バルブの下方に接続される。
【0084】
なお、図中23は略H字形の主回路外部取合導体20の先端部に嵌込まれた絶縁栓である。
【0085】
このような構成とすれば、気中絶縁のように絶縁距離を大きくする必要がなくなり、スイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器を必要とせず、更にモールドすることで部品が固定されるため、部品点数の大幅な削減が図れ、安全で信頼性の高いスイッチギヤを提供できる。また、開閉部を真空バルブとすることで、更なる縮小化が図れる。
【0086】
図4は本発明の第4の実施の形態を一部を断面して示す側面図で、スイッチギヤの電気回路については図3(a)と同じなので省略してある。また、図3(b)と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0087】
第4の実施の形態では、図4に示すように少なくとも2つの真空バルブ17を表面に接地層を有し、且つ真空バルブ17の可動導体が共通導体18より突出する側の絶縁物内面に接地層の無い略長円柱状の空胴21を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドした開閉器モールド部24と、断面が略L字形の導体を表面に接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドした母線接続モールド部25と、断面が略H字形の導体を表面に接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドし、且つ少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングを有する主回路外部取合モールド部26とを各々別個に構成し、これら開閉器モールド部24、母線接続モールド部25及び主回路外部取合モールド部26とを嵌合部16aにて電気的及び機械的に結合するようにしたものである。
【0088】
この場合、開閉器モールド部24には、2つの真空バルブ17の各々の固定側導体の軸上に接地層の無いすり鉢形状の凹部が形成され、また母線接続モールド部25には開閉器モールド部24の一方の端部に形成された接地層の無いすり鉢形状の凹部と嵌合する母線を接続する接地層の無い円錐形状の凸部が形成され、さらに主回路外部取合モールド部26には、接地層の無い開閉器部のすり鉢形状と嵌合する円錐形状の凸部が形成されている。
【0089】
このような構成とすれば、単位回路毎の主回路構成機器のうち開閉部を真空バルブで構成し、導体などと共に絶縁物で分割モールドし、これらを組合わせるようにしたので、気中絶縁のように絶縁距離を大きくする必要がなくなり、スイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器を必要とせず、更にモールドすることで部品を固定できるため部品点数の大幅な削減が図れ、安全で信頼性の高いスイッチギヤを提供できる。また、開閉部を真空バルブとすることで、更なる縮小化が図れる。更に、モールド部を分割することにより、外部取合いが変更になった場合も当該部のみのモールド金型を変更すれば良いので、変更に対する自由度が向上する。また、主回路外部取合部を上下逆様に取付けることで、ケーブル上引込みにも対応できる。
【0090】
図5は本発明の第5の実施と第6の実施の形態を一部を断面して示す側面図で、スイッチギヤの電気回路については図3(a)と同じなので省略してある。また、図3(b)と同一構成部品には同一符合を付して説明する。
【0091】
図5において、27はベース上に高さ方向に長形な制御箱で、この制御箱27は上部に操作室27a、下部に制御室27bが形成されている。この制御箱27の背部の垂直取付面27cに対して2つの真空バルブ17をその各軸が直交し、且つベースに対して平行になるように高さ方向に適宜離間させて配置すると共に、その一方の真空バルブ17の固定側導体の軸上に配置される断面が略L字形の3相各相に対応する母線接続導体19を接続し、他方の真空バルブ17の固定側導体の軸上に突出させて設けられる断面が略H字形の主回路外部取合導体20を接続する構成とする。
【0092】
また、2つの真空バルブ17の可動導体9に絶縁操作ロッド10を接続し、他端を操作室27aに設けられた操作機構7に各々直線駆動可能に連結する。さらに、他方の真空バルブ17の固定側導体に接続される主回路外部取合導体20の他端部よりベースに対して垂直に設けられたケーブルヘッドを介して電源ケーブル11が導出され、この電源ケーブル11を貫通させて貫通型変流器12が設けられる。
【0093】
このような構成の主回路機器において、少なくとも2つの真空バルブ17を表面に接地層を有し、且つ真空バルブ17の可動導体が共通導体18より突出する側の絶縁物内面に接地層の無い略長円柱状の空胴21を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドした開閉器モールド部24と、断面が略L字形の導体を表面に接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドした母線接続モールド部25と、断面が略H字形の導体を表面に接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドし、且つ少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングを有する主回路外部取合モールド部26とを各々別個に構成し、これら開閉器モールド部24、母線接続モールド部25及び主回路外部取合モールド部26とを嵌合部16aにて電気的及び機械的に結合するようにしたものである。
【0094】
この場合、開閉器モールド部24には、2つの真空バルブ17の各々の固定側導体の軸上に接地層の無いすり鉢形状の凹部が形成され、また母線接続モールド部25には開閉器モールド部24の一方の端部に形成された接地層の無いすり鉢形状の凹部と嵌合する母線を接続する接地層の無い円錐形状の凸部が形成され、さらに主回路外部取合モールド部26には、接地層の無い前記開閉器部のすり鉢形状と嵌合する円錐形状の凸部が形成されている。
【0095】
なお、図中23は略H字形の主回路外部取合導体20の先端部に嵌込まれた絶縁栓である。
【0096】
このような構成とすれば、前述した第3及び第4の実施の形態と同様の効果が得られ、さらに操作機構7を制御箱27の上部のスイッチギヤの正面に取り付けることで、操作性を向上することができる。
【0097】
なお、上記実施の形態では、開閉器モールド部24、母線接続モールド部25及び主回路外部取合モールド部26に分割してこれらを嵌合部16aにて電気的及び機械的に結合するようにしたが、2つの真空バルブ17、略L字形の3相各相に対応する母線接続導体19及び略H字形の主回路外部取合導体20を一体的にモールドするようにしても良い。
【0098】
図6(a)は本発明の第7の実施の形態を示すスイッチギヤの電気回路図であり、(b)は同スイッチギヤの一部を断面して示す側面図で、図4と同一構成部品には同一符合を付してその説明を省略し、ここでは異なる点について述べる。
【0099】
第7の実施の形態を示すスイッチギヤは、図6(a)に示すように真空遮断部VCBの可動側を真空断路部DSを直列に介して母線Bに接続すると共に、接地開閉器ESに接続し、また真空遮断部VCBの固定側を主回路外部取合部を介してケーブルヘッドに接続する主回路を対象としている。
【0100】
なお、CTはケーブルヘッドより外部の負荷に繋がる導体部に設けられた変流器である。
【0101】
第7の実施の形態では、図6に示すように真空バルブ17の可動導体より下方の共通導体18の略中央に接触子28を設け、操作室13bに設けられた接地装置付操作機構30により直線駆動される可動導体29を開閉器モールド部24の下部に形成された略長円柱状の空胴21を通して接触子28に接触又は開離操作可能な構成とするものである。
【0102】
このような構成とすれば、真空バルブ17の可動側を接地装置により接地することができるので、単位回路の適用範囲を拡大することができる。
【0103】
図7は本発明の第8の実施の形態を一部を断面して示す側面図で、図4と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0104】
第8の実施の形態では、図7に示すように操作室13bの上面に取付けられる開閉器モールド部24の下部に形成された略長円柱状の空胴31を密閉するため、開閉器モールド部24が固定される操作室13bの上面との間にパッキン33を挿入すると共に、操作室13b側より空胴21内に挿入される操作ロッド10の貫通部にシール部32を設けて空胴21内に空気などの絶縁媒体を密閉するようにしたものである。
【0105】
このような構成とすれば、真空バルブの可動側の絶縁部が密閉されるので、可動部絶縁が外部環境に影響されることがなく、スイッチギヤの縮小化と信頼性の向上を図ることができる。
【0106】
図8は本発明の第9の実施の形態を一部を断面して示す側面図で、図4と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0107】
第9の実施の形態では、図8に示すように開閉器モールド部24の下部に形成された略長円柱状の空胴21の共通導体18近傍周面に金属や導電性プラスチックでできた導電性シールド34を埋設したものである。
【0108】
このような構成とすれば、真空バルブ17の可動側にシールド34を埋め込むことで電界強度を均一化し、縮小化と信頼性の向上が図れる。
【0109】
図9は本発明の第10の実施の形態を一部を断面して示す側面図で、図4と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0110】
第10の実施の形態では、図9に示すように開閉器モールド部24に形成された2つの真空バルブ17の各々の固定側導体の軸上に接地層の無いすり鉢形状の凹部と母線接続モールド部25及び主回路外部取合モールド部26にそれぞれ形成された接地層の無い円錐形状の凸部との嵌合部、並びにさら主回路外部取合モールド部26の上方両端部と絶縁栓23との嵌合部にすり鉢形状を構成するエポキシ樹脂などの絶縁物よりも柔らかいシリコンゴムや耐熱性EPゴムなどの絶縁物35を介在させるようにしたものである。
【0111】
このような構成とすれば、各モールド部を嵌合し絶縁する場合、嵌合部に柔らかい絶縁物を介在させることにより、嵌合部の界面の密着性が良くなり、絶縁性能が向上するので、スイッチギヤの縮小化を図ることができる。
【0112】
図10は本発明の第11の実施の形態を一部を断面して示す側面図で、図4と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0113】
第11の実施の形態では、図10に示すように主回路外部取合モールド部26の上方両端部に嵌合される絶縁栓23に代えて、その一方の端部に表面接地層を有する避雷器36、または表面接地層を有する計器用変成器37を嵌合し、また他方の端部に表面に接地層を有する絶縁物でモールドした真空バルブ38aを嵌合するようにしたものである。
【0114】
この真空バルブ38aは、その可動部側に接地層の無い略円柱状の空胴38bを有し、この空胴38b内に真空バルブの可動部導体に絶縁ロッド38cを接続し、この絶縁ロッド38cの他端に真空バルブ38aを直線駆動する操作機構38dを接続して真空バルブ38aの可動導体を表面接地層から絶縁し、この絶縁された可動導体に切離可能な接地された導体を接続した接地装置38が結合されている。
【0115】
このような構成とすれば、避雷器36や計器用変成器37、真空接地装置38や試験端子を付加することにより、更に適用範囲の拡大と縮小化を図ることができる。
【0116】
図11は本発明の第12の実施の形態を一部を断面して示す側面図で、図4と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0117】
第12の実施の形態では、図11に示すように主回路外部取合モールド部26内の略H字形導体20の近傍に円盤状電極39を埋設し、この円盤状電極39からモールドの外層に接地層から絶縁された導体を突出させるようにしたものである。
【0118】
このような構成とすれば、接地から絶縁された埋め込み電極39を設けることで、主回路との間に静電容量が形成されるので、この静電容量を用いて主回路の充電・非充電を検出することができる。
【0119】
図12は本発明の第13の実施の形態を一部を断面して示す側面図で、図4と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0120】
第13の実施の形態では、図12に示すように2つの真空バルブ17の軸間寸法の半分の寸法と、略L字形の母線接続導体19の母線接続側の母線の中心からL字に曲がる部分の中心までの寸法とが等しくなるようにしたものである。
【0121】
このような構成とすれば、L字に曲がった母線接続部の寸法の2倍の長さと2つの真空バルブ17の軸間寸法を等しくすることにより、真空バルブ17の固定導体の軸上に母線接続部を前後180度回転させて取り付けても母線の位置を同一にでき、スイッチギヤ構成上の自由度を大幅に向上できる。
【0122】
図13は本発明の第14の実施の形態を一部を断面して示す側面図で、図4と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0123】
第14の実施の形態では、図13に示すように真空バルブ17を直線駆動する操作機構を電磁操作機構40としたものである。この電磁操作機構40は永久磁石40a、コイル40b及び操作ロッド10に結合されたアーマチュア40cより構成されている。
【0124】
このような構成とすれば、真空バルブ17を直線駆動する操作機構を電磁操作機構40とすることで、リンクなどの部品が無くなり、主回路同様に大幅な部品点数の削減を図ることができ、且つ完全な直線駆動ができるため、信頼性の高いスイッチギヤを提供できる。
【0125】
図14は本発明の第15の実施の形態を一部を断面して示す側面図で、図4と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0126】
第15の実施の形態では、図14に示すように開閉器モールド部24の各真空バルブ17の固定側導体に対応させて形成されたすり鉢形状の導体嵌合部において、真空バルブ17の固定側導体に凹状部分17aを設け、この凹状部分17aにL字形母線接続導体19の嵌合部に設けられた接触子17bを挿入して電気的及び機械的に接続するようにしたものである。
【0127】
このような構成とすれば、すり鉢状の導体嵌合部を真空バルブの固定導体側に凹部を設けて真空バルブ側に突出させることで、スイッチギヤの真空バルブの軸方向の寸法を縮小化できる。
【0128】
図15は本発明の第16の実施の形態を一部を断面して示す側面図で、図4と同一構成部品には同一符合を付して示し、ここでは異なる部分について述べる。
【0129】
第16の実施の形態では、図15に示すように2つの真空バルブ17の間の共通導体18と固定側導体の間の絶縁物に空胴41を設けたものである。
【0130】
このような構成とすれば、2つの真空バルブ17の間の共通導体18と固定側導体の間の絶縁物に空胴41を設けることで、使用する絶縁物の量を減らすことができ、経済的なスイッチギヤを提供できる。
【0131】
前述した第4の実施の形態においては、少なくとも2つの真空バルブ17を表面に接地層を有する絶縁物で単相または3相一体にモールドした開閉器モールド部24、断面が略L字形の導体を表面に接地層を有する絶縁物で単相または3相一体にモールドした母線接続モールド部25及び断面が略H字形の導体を表面に接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドした主回路外部取合モールド部26を組合せ結合した構成の一例について説明したが、開閉器モールド部24を用途に応じて次のような構成として母線接続モールド部25及び主回路外部取合モールド部26と組合せ結合するようにしても良い。
【0132】
図16(a)は開閉器モールド部24の2つの真空バルブのうち一方を遮断器、他方を断路器とした場合の構成、(b)は両方を遮断器とした場合、(c)は両方を断路器とした場合の構成である。
【0133】
図17(a)は2つの真空バルブのうち一方を真空バルブに替わって導体、他方を遮断器とした場合、(b)は一方を真空バルブに替わって導体、他方を断路器とした場合、(c)は2つの真空バルブに替わって両方を導体とした場合の構成である。
【0134】
図18は、母線接続部を主回路外部取合い部としたもので、(a)は一方の真空バルブを断路器、他方を遮断器とした場合、(b)は両方の真空バルブを遮断器とした場合、(c)は両方の真空バルブを断路器とした場合の構成である。
【0135】
図19は、母線接続部を主回路外部取合い部としたもので、(a)は2つの真空バルブのうち一方を真空バルブに替わって導体、他方を遮断器とした場合、(b)は一方を真空バルブに替わって導体、他方を断路器とした場合、(c)は2つの真空バルブに替わって両方を導体とした場合の構成である。
【0136】
図20は主回路外部取合い部を母線接続部としたもので、(a)は一方の真空バルブを断路器、他方を遮断器とした場合、(b)は両方の真空バルブを遮断器とした場合、(c)は両方の真空バルブを断路器とした場合である。
【0137】
図21は主回路外部取合い部を母線接続部としたもので、(a)は2つの真空バルブのうち一方を真空バルブに替わって導体、他方を遮断器とした場合、(b)は一方を真空バルブに替わって導体、他方を断路器とした場合、(c)は2つの真空バルブに替わって両方を導体とした場合の構成である。
【0138】
このように真空バルブの用途を変えることにより、任意の回路を構成でき、種々の単位回路に適用することができる。
【0139】
図22(a)は本発明の第17の実施の形態を示すスイッチギヤの電気回路図であり、(b)は同スイッチギヤの一部を断面して示す側面図である。なお、図4と同一部品には同一符合を付して説明する。
【0140】
第17の実施の形態を示すスイッチギヤは、図22(a)に示すように真空遮断部VCBの可動側を真空又は気体断路部DSを直列に介して母線Bに接続し、また真空遮断部VCBの固定側を真空又は気体の接地開閉部ESに接続すると共に、真空又は気体断路部DSを直列に介して主回路外部取合部に繋がるケーブルヘッドと真空又は気体の接地開閉部ES及び計器用変圧器VTに接続する主回路を対象としている。この場合、計器用変圧器VTに代えて避雷器SARを接続しても良い。
【0141】
なお、CTはケーブルヘッドより外部の負荷に繋がる導体部に設けられた変流器である。
【0142】
図22(b)において、13bは操作室、22は操作室13bの上部前方に設けられた制御箱である。この制御箱22の背面側の操作室13b上に1つの真空バルブ17と1つの導体17aをその軸が平行に、且つ床面に対して垂直になるように配設し、これらを一体的に表面に接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドした開閉器モールド部24aを配置する。
【0143】
この開閉器モールド部24aには、1つの真空バルブ17の固定側導体の軸上と導体17aの軸上に接地層の無いすり鉢形状の凹部が形成され、また真空バルブ17の可動側導体と導体17aの下端が共通導体18により接続され、この共通導体18より下方に突出する側の絶縁物内面に接地層の無い密閉された略長円柱状の空胴31が形成されている。
【0144】
この空胴31内で真空バルブ17の可動導体9に絶縁操作ロッド10を接続し、この絶縁操作ロッド10の他端に操作室13bに設けられた操作機構7を接続して真空バルブ17の可動側を直線駆動可能になっている。
【0145】
また、回路構成上必要に応じて真空バルブ17の可動導体が突出する側の共通導体18に接触子28を設け、操作室13bに設けられた接地装置付操作機構30により直線駆動される可動導体29を開閉器モールド部24aの下部に形成された略長円柱状の空胴21を通して接触子28に接触又は開離操作可能な構成となっている。
【0146】
さらに、開閉器モールド部24aの1つの真空バルブ17の固定側導体の軸上に形成された接地層の無いすり鉢形状の凹部に、断面が略L字形の導体を表面に接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドした母線接続モールド部25に形成された接地層の無い凸部を嵌合して接続する。
【0147】
一方、制御箱22の背面後方側の操作室13b上に可動部側を共通の導体18で接続した2つの真空バルブ17をその各軸が平行に、且つ床面に対して垂直になるように配設し、これらを一体的に表面にエポキシ樹脂などの接地層を有する絶縁物で単相または3相一体にモールドした開閉器モールド部24bを配置する。
【0148】
この場合、開閉モールド部24bには、2つの真空バルブ17の各々の固定側導体の軸上に接地層の無いすり鉢形状の凹部が形成され、また真空バルブ17の可動側導体が共通導体18より突出する側の絶縁物内面に接地層の無い密閉された略長円柱状の空胴21が形成されている。
【0149】
この空胴21内で真空バルブ17の可動導体9に絶縁操作ロッド10を接続し、この絶縁操作ロッド10の他端に操作室13bに設けられた操作機構7を接続して真空バルブ17の可動側を直線駆動可能になっている。
【0150】
また、回路構成上必要に応じて真空バルブ17の可動導体が共通導体18より突出する側の共通導体部に接触子28を設け、操作室13bに設けられた接地装置付操作機構30により直線駆動される可動導体29を開閉器モールド部24の下部に形成された略長円柱状の空胴21を通して接触子28に接触又は開離操作可能な構成となっている。
【0151】
さらに、開閉器モールド部24bの他方の真空バルブ17の軸上に形成された鉢形状の凹部に、断面が略H字形の導体を表面に接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドし、且つ少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングと他の3つの端部に接地層の無い開閉器モールド部24bのすり鉢形状と嵌合する形状の凸部を有する主回路外部取合モールド部26の凸部を嵌合して接続する。また、主回路外部取合モールド部26よりブッシングを介して導出された電源ケーブル11を貫通させて貫通型変流器12が設けられている。
【0152】
主回路外部取合モールド部26の上方両端部の一方に表面接地層を有する避雷器36、または表面接地層を有する計器用変成器37を嵌合し、また他方の端部に表面に接地層を有するエポキシ樹脂などの絶縁物でモールドした真空バルブ38aを嵌合するようにしたものである。
【0153】
この真空バルブ38aは、その可動部側に接地層の無い略円柱状の空胴38bを有し、この空胴38b内に真空バルブの可動部導体に絶縁ロッド38cを接続し、この絶縁ロッド38cの他端に真空バルブ38aを直線駆動する操作機構38dを接続して真空バルブ38aの可動導体を表面接地層から絶縁し、この絶縁された可動導体に切離可能な接地された導体を接続した接地装置38が結合されている。
【0154】
これら開閉器モールド部24aの導体の軸上に形成された鉢形状の凹部と開閉器モールド部24bのとの間をコの字形状もしくはU字形状をした導体42を表面に接地層を有するエポキシ樹脂などの絶縁物で単相または3相一体にモールドし、その両端に接地層の無い前記開閉器部のすり鉢形状と嵌合する形状を有する接続モールドユニット43により連結する。
【0155】
このような構成のスイッチギヤとすれば、単位回路毎の主回路構成機器のうち開閉部を真空バルブで構成し、導体などと共に絶縁物で分割モールドし、2つの真空バルブをモールドした開閉器モールド部を少なくとも2つ以上組合せることにより、気中絶縁のように絶縁距離を大きくする必要がなくなり、スイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器が不要となる。
【0156】
更に、主回路構成機器をモールドすることで部品を固定できるため、部品点数の大幅な削減を図ることができ、安全で信頼性の高いものとなし得る。
【0157】
また、開閉部を真空バルブとすることで、更なる縮小化を図ることができ、更に、モールド部を分割することにより、外部取合いが変更になった場合でも当該部のみのモールド金型を変更すれば良いので、変更に対する自由度が向上する。
【0158】
さらに、開閉器モールド部を2つ以上組み合わせることで、適用できる回路構成を大幅に増やすことができる。
【0159】
図23(a)は本発明の第18の実施の形態を示すスイッチギヤの電気回路図であり、(b)は同スイッチギヤの一部を断面して示す側面図で、図22と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0160】
第18の実施の形態を示すスイッチギヤは、図23(a)に示すように2つの真空又は気体断路部DSと2つの真空遮断器VCBを直列に介して母線Bに接続し、また2つの真空又は気体断路部DSの直列接続間及び2つの真空遮断部VCBの直列接続間に真空又は気体の接地開閉部ESをそれぞれ接続する以外は図22(a)と同じである。
【0161】
第18の実施の形態では、図23に示すように母線接続モールド部25を接続する開閉器モールド部24aの真空バルブと導体をそれぞれ断路器44とし、他方の開閉器モールド部24bの真空バルブを遮断部45とし、断路部44と遮断部45を各々2つの操作機構44a,44b、45a,45bで直線駆動するようにしたものである。この場合、断路部44と遮断部45を各々1つの操作機構で同時または別々に駆動するようにしてもよい。
【0162】
このような構成のスイッチギヤとすれば、母線側の開閉器部を2点切の断路器とし外部取合い側の開閉器部を2点切の遮断器とすることで、絶縁性能と遮断性能を向上することができる。この時絶縁操作ロッドと略長円柱状内面の絶縁性能向上のため絶縁性能のより高い絶縁媒体を密閉する。
【0163】
図24は本発明の第19の実施の形態を一部を断面して示す側面図で、図22と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0164】
第19の実施の形態では。、図24に示すように1つの開閉器モールド部の真空バルブの軸間寸法と、コの字もしくはU字形状の接続モールドユニット43で接続する2つの開閉器モールド部24a,24bの当該真空バルブの軸間寸法を同一とし、且つ開閉器モールド部の2つの真空バルブの軸間寸法の半分の寸法と、略L字形の母線接続導体の母線接続側の母線の中心からL字に曲がる部分の中心までの寸法が等しくなるようにしたものである。
【0165】
このような構成とすれば、1つの開閉器モールド部の真空バルブの軸間寸法と、コの字もしくはU字形状の接続モールドユニット43で接続する2つの開閉器部の当該真空バルブの軸間寸法を同一とし、且つ開閉器モールド部の2つの真空バルブの軸間寸法の半分の寸法と、略L字形の母線接続導体の母線接続側の母線の中心からL字に曲がる部分の中心までの寸法を等しくすることで、4つの母線を自由に構成できる。
【0166】
図25(a)は本発明の第20の実施の形態を示すスイッチギヤの電気回路図であり、(b)は同スイッチギヤの一部を断面して示す側面図で、図23と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0167】
第20の実施の形態では、図25(a)に示すように二重母線B1,B2に断路器DS1,DS2の一端を接続し、この断路器DS1,DS2の他端を共通にして遮断器VCBの一端に接続すると共に、接地開閉器ESに接続し、また遮断器VCBの他端を主回路外部取合部に繋がるケーブルヘッドと真空又は気体の接地開閉部ES及び避雷器SARまたは計器用変圧器VTに接続する主回路を対象としている。
【0168】
第20の実施の形態では、図25(b)に示すように開閉器モールド部24aの断路器44の軸上に形成された鉢形状の凹部と開閉器モールド部24bの遮断器45の軸上に形成された鉢形状の凹部との間に嵌合された接続モールドユニット43を取外して、開閉器モールド部24aの断路器44の軸上に形成された鉢形状の凹部に断面が略L字形の導体を表面に接地層を有する絶縁物で単相または3相一体にモールドした母線接続モールド部25bに形成された接地層の無い凸部を嵌合して接続する。この場合、もう一方の断路器44側に嵌合させて接続された母線接続モールド部25aと対称的になるように配置される。
【0169】
また、開閉器モールド部24bにおいては、接続モールドユニット43が嵌合していた側を導体45aとするものである。
【0170】
このようなスイッチギヤとすれば、単位回路毎の主回路構成機器のうち開閉部を真空バルブで構成し、導体などと共に絶縁物で分割モールドし、2つの真空バルブをモールドし、且つモールド品同志の取り合い部を各々の真空バルブの固定導体側に1つずつと共通の可動導体側に1つ以上、計3つ以上有する開閉器モールド部を少なくとも2つ以上組み合わせて構成したものである。この構成により気中絶縁のように絶縁距離を大きくする必要がなくなりスイッチギヤ全体を縮小化できると共に、SF6ガス絶縁のように大掛かりな気密容器を必要とせず、更にモールドすることで部品を固定できるため部品点数の大幅な削減が図れ、安全で信頼性の高いものとなし得る。また、開閉部を真空バルブとすることで、更なる縮小化が図れる。更に、モールド部を分割することにより、外部取合いが変更になった場合も当該部のみのモールド金型を変更すれば良いので、変更に対する自由度が向上する。また、モールド品同志の取り合い部を3つ以上有する開閉器モールド部を2つ以上組み合わせることで、2重母線構成に適用できる。
【0171】
図26(a)は本発明の第21の実施の形態を示すスイッチギヤの電気回路図であり、(b)は同スイッチギヤの一部を断面して示す側面図で、図22と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0172】
第21の実施の形態では、図26(a)に示すように母線B2に断路器DS1の一端を接続し、この断路器DS1の他端を母線B1に接続すると共に接地開閉器ES及び断路器DS2の一端に接続し、この断路器DS2の他端を遮断器VCBの一端に接続する以外は図22(a)と同じである。
【0173】
第21の実施の形態では、図26(b)に示すようにコの字もしくはU字形状の接続モールドユニット43に代えて、コの字もしくはU字形状の導体の開閉器部49の導体17aの軸上にあたる部分から断面が略L字形の導体を突出させ、表面に接地層を有する絶縁物で単相または3相一体にモールドし、一方の端部に母線を接続する接地層の無い円錐形状を有した接続モールドユニット兼、母線接続モールド部50を嵌合して接続するようにしたものである。
【0174】
このような構成のスイッチギヤによれば、2つの開閉器モールド部24a,24bを接続するモールド部品に母線接続機能を付加することで、2つの開閉器モールド部24a,24bを有効に活用でき、スイッチギヤ列盤構成時の全幅寸法を縮小化できる。
【0175】
図27は本発明の第22の実施の形態を示すユニット母線の組立手順を説明するたるの図である。
【0176】
図27において、46は母線で、この母線46は適宜長さの母線導体46aの外周面をエポキシ樹脂または耐熱性架橋ポリエチレンでモールドして母線モールド部46bを形成し、このモールド部46bの外周に左右一対のシリコーンゴムまたは耐熱性EPゴムでできた絶縁ユニット46c,46dが軸方向にスライド移動可能に嵌込まれている。この絶縁ユニット46c,46dは、母線導体46aの両端部側に円錐形状の凹部が形成され、また絶縁ユニット46c,46dの外周には絶縁ユニット固定具46e,46fが備えられている。
【0177】
一方、25は適宜離間して配設され、母線46の両端に機械的及び電気的に接続される接続導体25aをモールドした一対の母線接続モールド部で、この母線接続モールド部25は母線46側の絶縁ユニット46c,46dの両端部側に形成された円錐形状の凹部に嵌合する円錐形状のテーパ部が形成され、また接続導体25a側にはスライド接触子25c,25dが嵌込まれている。
【0178】
このような構成のユニット母線において、まず手順1に示すように母線接続モールド部25間に母線46を母線導体46aと接続導体25aとが同一軸線上になるように挿入する。
【0179】
次いで、手順2に示すように母線接続モールド部25のスライド接触子25c,25dを母線導体46a側にスライドさせて接続導体25aと母線導体46aの突合部を電気的に接続する。
【0180】
そして、手順3に示すように母線46側の絶縁ユニット46c,46dを母線モールド部46bの外周面に沿って母線接続モールド部25側にスライド移動させ、母線接続モールド部25のテーパ部を絶縁ユニット46c,46dの凹部内に嵌込み、絶縁ユニット46c,46dの外周に有する絶縁ユニット固定具46e,46fにより固定する。
【0181】
このような構成のユニット母線とすれば、スライド構成の固体絶縁母線の長さを、隣接する母線接続部の間隔よりも短くすることで、列盤した状態で母線の接続及び取り外しができ、現地据付工期を短縮できる。
【0182】
図28は本発明の第23の実施の形態を示す絶縁物の絶縁グラフで、エポキシ樹脂の物性と温度の関係を示している。このグラフから分るようにエポキシ絶縁物では、ガラス転移温度(以下Tgと称す)を境に電気的・機械的物性が変化することが分る。このことから、Tgを基本に絶縁材料の許容温度を設定する必要がある。特に真空バルブを直接モールドすることで、温度の高い部分に直接絶縁物が接触することと、真空遮断器の衝撃力と静的圧接力も直接絶縁物に加わるため、従来のスイッチギヤに比べて絶縁物に対する要求は厳しいものとなっている。
【0183】
従来は、熱による物理的変形を評価する熱変形温度(以下HDTと称す)が用いられていたが、前述の如く電気特性も変化することからTgを用いる必要がある。TgとHDTの関係は、Tg≦HDTとなっており、許容温度をTgベースとした方が絶縁材料にとってより厳しい要求特性となっている。
【0184】
絶縁物の許容温度は、Tgより10℃〜30℃低い値に設定する。これはTgマイナス10℃〜30℃になると初期は勿論のこと長期的にも物性が安定した領域になるためである。具体的には許容温度(最高使用温度)を115℃とすれば、Tgは125℃〜145℃必要になってくる。
【0185】
そこで、本発明の第23の実施の形態では、前述した各実施における真空の遮断部と真空または気体の断路部と真空または気体の接地開閉部と母線と主回路外部取合部などのスイッチギヤ構成機器をモールドする絶縁物をエポキシなどの熱硬化性樹脂とし、この絶縁物のガラス転移温度を100℃以上145℃以下とするものである。何故なら、最高周囲温度40℃+裸銅の接続部最高許容温度50℃+Tgに対する絶縁物の許容温度10℃=100℃以上である。
【0186】
このようにすれば、スイッチギヤ構成機器、特に真空バルブを直接モールドする絶縁物として、絶縁構造材料に適した熱硬化性樹脂を用い、ガラス転移温度を100℃以上とすることで、最高使用温度においても絶縁構造材としての性能を十分に発揮することができ、信頼性の高いスイッチギヤを提供できる。
【0187】
【発明の効果】
以上述べたように本発明によれば、主回路構成機器および各機器間を接続する導体などを据付け環境の影響を受けない構成にでき、電気的絶縁に必要な寸法を縮小化でき、部品点数の削減と組み立て時間及び試験時間の大幅な削減ができ、標準化したシールドユニットを組合せることであらゆる回路構成に対応でき、絶縁性能と遮断性能を向上でき、現地据付工期を短縮でき、安全で信頼性の高い密閉形スイッチギヤを提供できる。
【図面の簡単な説明】
【図1】(a)は本発明の第1の実施の形態を示すスイッチギヤの電気回路図、(b)は同スイッチギヤの一部を断面して示す側面図。
【図2】本発明の第2の実施の形態を一部を断面して示す側面図
【図3】(a)は本発明の第3の実施の形態を示すスイッチギヤの電気回路図、(b)は同スイッチギヤの一部を断面して示す側面図。
【図4】本発明の第4の実施の形態を一部を断面して示す側面図。
【図5】本発明の第5及び第6の実施の形態を一部を断面して示す側面図。
【図6】(a)は本発明の第7の実施の形態を示すスイッチギヤの電気回路図、(b)は同スイッチギヤの一部を断面して示す側面図。
【図7】本発明の第8の実施の形態を一部を断面して示す側面図。
【図8】本発明の第9の実施の形態を一部を断面して示す側面図。
【図9】本発明の第10の実施の形態を一部を断面して示す側面図。
【図10】本発明の第11の実施の形態を一部を断面して示す側面図。
【図11】本発明の第12の実施の形態を一部を断面して示す側面図。
【図12】本発明の第13の実施の形態を一部を断面して示す側面図。
【図13】本発明の第14の実施の形態を一部を断面して示す側面図。
【図14】本発明の第15の実施の形態を一部を断面して示す側面図。
【図15】本発明の第16の実施の形態を一部を断面して示す側面図。
【図16】図3乃至図6に示す実施の形態において、(a)は開閉器モールド部の2つの真空バルブのうち一方を遮断器、他方を断路器とした場合、(b)は両方を遮断器とした場合、(c)は両方を断路器とした場合の構成図。
【図17】図3乃至図6に示す実施の形態において、(a)は2つの真空バルブのうち一方を真空バルブに替わって導体、他方を遮断器とした場合、(b)は一方を真空バルブに代えて導体、他方を断路器とした場合、(c)は2つの真空バルブに代わって両方を導体とした場合の構成図。
【図18】図3乃至図6に示す実施の形態において、母線接続部を主回路外部取合い部としたもので、(a)は一方の真空バルブを断路器、他方を遮断器とした場合、(b)は両方の真空バルブを遮断器とした場合、(c)は両方の真空バルブを断路器とした場合の構成図。
【図19】図3乃至図6に示す実施の形態において、同じく(a)は2つの真空バルブのうち一方を真空バルブに替わって導体、他方を遮断器とした場合、(b)は一方を真空バルブに代わって導体、他方を断路器とした場合、(c)は2つの真空バルブに代わって両方を導体とした場合の構成図。
【図20】図3乃至図6に示す実施の形態において、同じく(a)は一方の真空バルブを断路器、他方を遮断器とした場合、(b)は両方の真空バルブを遮断器とした場合、(c)は両方の真空バルブを断路器とした場合の構成図。
【図21】図3乃至図6に示す実施の形態において、同じく(a)は2つの真空バルブのうち一方を真空バルブに代わって導体、他方を遮断器とした場合、(b)は一方を真空バルブに代わって導体、他方を断路器とした場合、(c)は2つの真空バルブに代わって両方を導体とした場合の構成図。
【図22】(a)は本発明の第17の実施の形態を示すスイッチギヤの電気回路図、(b)は同スイッチギヤの一部を断面して示す側面図。
【図23】(a)は本発明の第18の実施の形態を示すスイッチギヤの電気回路図、(b)は同スイッチギヤの一部を断面して示す側面図。
【図24】本発明の第19の実施の形態を一部を断面して示す側面図。
【図25】(a)は本発明の第20の実施の形態を示すスイッチギヤの電気回路図、(b)は同スイッチギヤの一部を断面して示す側面図。
【図26】(a)は本発明の第21の実施の形態を示すスイッチギヤの電気回路図、(b)は同スイッチギヤの一部を断面して示す側面図。
【図27】本発明の第22の実施の形態を示すユニット母線の組立手順を説明するたるの図。
【図28】本発明の第23の実施の形態を示す絶縁物として用いられるエポキシ樹脂の物性と温度の関係を示す特性図。
【図29】従来の気中絶縁スイッチギヤの内部の構成例を示す側面図。
【図30】従来の密閉形スイッチギヤの内部の構成例を示す側面図。
【符号の説明】
1…真空遮断部
2…真空または気体断路部
3…真空または気体接地開閉部
4…母線取合部
5…主回路外部取合部
6…接地層を有する絶縁物
7…操作機構
8…空胴
9…可動導体
10…絶縁操作ロッド
11…ケーブル
12…変流器
13…金属閉鎖箱
17…真空バルブ
24…開閉器モールド部
25…母線接続モールド部
26…主回路外部取合モールド部
16a…すり鉢状嵌合部
35…柔軟絶縁物
44…断路器
45…遮断器
46…母線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed switchgear.
[0002]
[Prior art]
An example of a conventional switchgear will be described with reference to FIGS. 29 and 30. FIG.
[0003]
FIG. 29 is a right side view of a typical air switch gear. In the figure, 51 is a switchgear main body, in which an apparatus storage chamber 52, a power receiving chamber 53, and a busbar chamber 54 are constituted by partition plates according to the shape of closure. In addition, a control chamber 55 is provided in the upper part of the device storage chamber 52, and doors 56 and 57 are provided in front of the device storage chamber 52 and the control chamber 55 so as to be freely opened and closed. Reference numeral 58 denotes a bus bar portion for connecting the unit circuits. A branch conductor 59 is connected to the power cable 61 through the cable head 60 at the tip of the branch conductor 59.
[0004]
The mobile circuit breaker 62 is housed in the equipment storage chamber 52 and is connected to the busbar section 58 via main circuit disconnecting sections 63 and 64 attached to the upper and lower sides of a partition plate that partitions the equipment storage room 52, the power receiving chamber 53, and the busbar chamber 54. The power receiving side branch conductor 59 is electrically connected.
[0005]
The upper main circuit disconnecting portion 63 is integrated with the busbar portion 58. Further, a through-type current transformer 65 is provided in the lower main circuit disconnecting portion 64.
[0006]
However, the switchgear with such a configuration has a sufficient insulation distance because the insulation of the main circuit may decrease due to the installation environment (dust, moisture, etc.), resulting in an accident such as a short circuit or ground fault. The entire switchgear has become large in order to ensure this.
[0007]
In addition, since 10 years ago, main circuit components were collectively stored in a sealed container, and an insulating gas (SF) was placed in the container. 6 C-GIS (Cubicle Gas Insulated Switchgear) in which switch gas is miniaturized by enclosing gas) is widely used.
[0008]
FIG. 30 is a right side view of a typical cubicle type SF6 gas insulated switchgear. In the figure, reference numeral 71 denotes a switchgear main body, and this interior constitutes a power receiving chamber 72, a busbar chamber 73, and a control chamber 74. Among them, the power receiving chamber 72 and the busbar chamber 73 are hermetically sealed containers, in which a breaker 75A and a breaker portion 75A of a three-position disconnector (on / off / grounding) 76 are disposed, and a low pressure insulating gas is provided. (SF 6 Gas) is enclosed to make the equipment compact.
[0009]
Here, one conductor 77 of the circuit breaker breaker 75 </ b> A housed in the power receiving chamber 72 is connected to the power cable 82 via the cable head 81.
[0010]
The power cable 82 is provided with a through current transformer 83.
[0011]
The other conductor 78 of the circuit breaker breaker 75A is connected to one conductor 79 of the breaker part 76A of the three-position disconnector of the busbar chamber 73 via an insulating spacer 84 that penetrates the power receiving chamber 72 and the busbar chamber 73. Further, the other conductors 80A to 80C of the three-position disconnector 76A are connected to the bus 85 that connects the unit circuits, and are electrically connected to other units. Further, the operation mechanisms 75B and 76B of the circuit breaker 75 and the three-position disconnector 76 are provided in the control chamber 74.
[0012]
However, in such a switchgear, the insulating gas itself is expensive, and not only does it take a lot of time to produce an airtight container that encloses the insulating gas, but it also requires skilled skills. Expensive. In addition, the use of insulating gas makes the hermetic container compact and limits the assembly of conductors and the like that connect each device.
[0013]
In addition, the design is performed every time in order to cope with various circuit configurations. Not only does it take a lot of time to manufacture, but the number of types of design drawings increases and the design becomes expensive.
[0014]
[Problems to be solved by the invention]
As described above, in the conventional switchgear shown in FIG. 29, the entire switchgear is large in order to prevent a decrease in insulation due to the installation environment (dust, moisture, etc.) and to secure a sufficient insulation distance. In addition, it is necessary to periodically clean the main circuit portion in order to remove dust and the like.
[0015]
Insulating gas (SF 6 In the switchgear shown in FIG. 30 that is downsized by enclosing gas), there are problems that the insulating gas is expensive and that it is not easy to manufacture an airtight container that encloses the insulating gas.
[0016]
In addition, although it can cope with various circuit configurations, there is a problem that standardization is small.
[0017]
In addition, air insulation switchgear and SF 6 Since many parts and bolts and nuts are used when configuring the main circuit portion of the gas-insulated switchgear, much time is required for assembly and inspection.
[0018]
The present invention has been made in view of the circumstances as described above, and the main circuit components and conductors connecting the devices are configured to be unaffected by the installation environment and reduced to the dimensions required for electrical insulation, An object of the present invention is to provide a sealed switchgear that is compatible with various circuit configurations and has a reduced number of parts and is safe and highly reliable.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, the present invention constitutes a sealed switchgear by the following means.
[0024]
The present invention At least two vacuum valves The movable shaft of each vacuum valve Arrange them so that they are parallel and perpendicular to the floor, The movable part side of each vacuum valve is a common conductor And a bus connecting conductor is disposed above the fixed side conductor of one of the vacuum valves, and is disposed above the fixed side conductor of the other vacuum valve. Have at least two or more ends As a configuration in which the main circuit external connection conductors are arranged so as to protrude, they are integrally molded with an insulator having a ground layer on the surface in a single-phase or three-phase integral, and this mold part is formed by the movable conductor of the vacuum valve. A cavity without a ground layer is provided on the inner surface of the insulator on the side protruding from the common conductor, and the vacuum valve is disposed in the cavity. Movable conductor An insulating operating rod is connected to the other end of the insulating operating rod, and an operating mechanism for linearly driving the vacuum valve is connected to the other end of the insulating operating rod. On movable axis It is characterized by being connected to.
[0025]
With this configuration, it is not necessary to increase the insulation distance as in the air insulation, and the entire switch gear can be reduced. 6 A large airtight container like gas insulation is not required, and the parts can be fixed by further molding, so the number of parts can be greatly reduced and a safe and highly reliable switchgear can be provided. Further, by making the opening / closing part a vacuum valve, further reduction in size can be achieved.
[0026]
Another invention provides at least two vacuum valves. The movable shaft of each vacuum valve Arrange them so that they are parallel and perpendicular to the floor, The movable part side of each vacuum valve is a common conductor These are integrally molded with an insulator having a ground layer on the surface, and are integrally molded in a single phase or three phases, and the fitting portion having no ground layer on the axis of the fixed side conductor of the vacuum valve and the vacuum A switch mold part in which a cavity without a grounding layer is formed on the inner surface of the insulator on the side where the movable conductor of the bulb protrudes from the common conductor, and a single phase or an insulator having a grounding layer on the surface of the bus connecting conductor Molded in three phases, and Busbar connection conductor A bus bar connection mold part in which a fitting part shaped to fit with the fitting part of the switch mold part without a grounding layer at one end thereof and a bus bar connecting part without a grounding layer at the other end are formed And having at least three or more ends Main circuit external connection conductor Is molded in a single-phase or three-phase integrally with an insulator having a ground layer on the surface, and Main circuit external connection conductor A fitting part having a shape that fits the fitting part of the switch mold part without a grounding layer at the other end and a convex or concave bushing without a grounding layer connecting the cable to at least one end of the switch A main circuit external coupling mold part formed with the three, and these three mold parts are connected by a fitting part of the switch mold part, and the vacuum valve of the vacuum valve is placed in the cavity. Movable conductor An insulating operating rod is connected to the other end of the insulating operating rod, and an operating mechanism for linearly driving the vacuum valve is connected to the other end of the insulating operating rod. On movable axis Is connected to.
[0027]
With this configuration, it is not necessary to increase the insulation distance as in the air insulation, and the entire switch gear can be reduced. 6 A large airtight container like gas insulation is not required, and the parts can be fixed by further molding, so the number of parts can be greatly reduced and a safe and highly reliable switchgear can be provided. Further, by making the opening / closing part a vacuum valve, further reduction in size can be achieved. Furthermore, by dividing the mold part, even when the external connection is changed, only the mold die for the part needs to be changed, so the degree of freedom for the change is improved.
[0028]
Another invention provides at least two vacuum valves. The movable shaft of each vacuum valve Are arranged parallel to the floor surface, and The movable part side of each vacuum valve is a common conductor And a bus connection conductor is disposed on the axis of the fixed conductor of one of the vacuum valves, and at least two or more ends on the axis of the fixed conductor of the other vacuum valve As a configuration in which the external connection conductors are arranged so as to protrude, they are integrally molded with an insulator having a ground layer on the surface in a single-phase or three-phase integral, and this mold portion is shared by the movable conductor of the vacuum valve. A cavity without a grounding layer is provided on the inner surface of the insulator on the side protruding from the conductor, and the vacuum valve is placed in the cavity. Movable conductor An insulating operating rod is connected to the other end of the insulating operating rod, and the other end of the insulating operating rod is connected to an operating mechanism for linear drive attached to a surface perpendicular to the floor surface on the axis of the vacuum valve.
[0029]
Another invention provides at least two vacuum valves. The movable shaft of each vacuum valve Are arranged parallel to the floor surface, and The movable part side of each vacuum valve is a common conductor These are integrally molded with an insulator having a ground layer on the surface, and are integrally molded in a single phase or three phases, and the fitting portion having no ground layer on the axis of the fixed side conductor of the vacuum valve and the vacuum A switch mold part in which a cavity without a grounding layer is formed on the inner surface of the insulator on the side where the movable conductor of the bulb protrudes from the common conductor, and a single phase or an insulator having a grounding layer on the surface of the bus connecting conductor Molded in three phases, and Busbar connection conductor A bus bar connection mold part in which a fitting part shaped to fit with the fitting part of the switch mold part without a grounding layer at one end thereof and a bus bar connecting part without a grounding layer at the other end are formed And having at least three or more ends Main circuit external connection conductor Is molded in a single-phase or three-phase integrally with an insulator having a ground layer on the surface, and Main circuit external connection conductor A fitting part having a shape that fits the fitting part of the switch mold part without a grounding layer at the other end and a convex or concave bushing without a grounding layer connecting the cable to at least one end of the switch A main circuit external coupling mold part formed with the three, and these three mold parts are connected by a fitting part of the switch mold part, and the vacuum valve of the vacuum valve is placed in the cavity. Movable conductor An insulating operating rod is connected to the other end of the insulating operating rod, and the other end of the insulating operating rod is connected to an operating mechanism for linear drive attached to a surface perpendicular to the floor surface by the axis of the vacuum valve.
[0030]
With this configuration, the operability can be improved by attaching the operation mechanism to the front surface of the switch gear.
[0031]
In another aspect of the invention, a contact is provided on the common conductor on the side where the movable conductor of the vacuum valve protrudes from the common conductor, and is insulated from the ground connected to the contact from the side opposite to the common conductor of the cavity. The movable conductor is provided, a grounded conductor that is grounded is connected to the movable conductor, and an operating mechanism that linearly drives the movable conductor is insulated and connected to the movable conductor.
[0032]
By adding a grounding device that can ground the movable side of the vacuum valve with this configuration, the application range of the unit circuit can be expanded.
[0033]
Another invention is such that an insulating medium such as air is sealed in a cavity.
[0034]
With this configuration, the insulating part on the movable side of the vacuum valve is hermetically sealed, so that the insulating of the movable part can be prevented from affecting the external environment, and reduction in size and improvement in reliability can be achieved.
[0035]
According to another invention, a conductive shield is provided on the peripheral surface of the common conductor of the insulator forming the cavity.
[0036]
By embedding a shield on the movable side of the vacuum valve with this configuration, the electric field strength can be made uniform, and the size can be reduced and the reliability can be improved.
[0037]
In another invention, an insulating material softer than an insulating material constituting the fitting portion is interposed in fitting portions formed in the switch mold portion, the bus connection mold portion, and the main circuit external fitting mold portion, respectively. It is a thing.
[0038]
When the divided mold parts are fitted and insulated by this structure, a soft insulator is interposed in the fitting part, thereby improving the adhesion at the interface of the fitting part and improving the insulation performance, thereby reducing the size. I can plan.
[0039]
Another invention is: For each mating part of the main circuit external joint embedded with an H-shaped main circuit external connection conductor A lightning arrester having a ground layer on the surface or an instrument transformer having a ground layer on the surface, a grounding device using a vacuum valve having a ground layer on the surface, a test terminal having a ground layer on the surface, or an insulating plug having a ground layer on the surface At least two or more of them are connected.
[0040]
By adding a lightning arrester, an instrument transformer, a vacuum grounding device, and a test terminal with this configuration, the application range can be further expanded and reduced.
[0041]
In another invention, a disk-shaped electrode is provided in the vicinity of the main circuit external coupling conductor, and a conductor insulated from the ground layer is projected from the disk-shaped electrode to the outer layer of the mold.
[0042]
By providing the buried electrode insulated from the ground by this configuration, it is possible to have a capacitance between the main circuit and the charging / non-charging of the main circuit can be detected using this capacitance. .
[0043]
In another invention, half the dimension between the axes of the two vacuum valves is made equal to the dimension from the center of the bus bar on the bus bar connecting side of the bus bar connecting conductor to the axis of the vacuum valve connecting the bus bar connecting conductor. It is.
[0044]
With this configuration, the length between the center of the bus bar and the axis of the vacuum valve connecting the bus bar connecting conductor is twice the length of the axis of the vacuum valve and the bus bar is placed on the axis of the fixed conductor of the vacuum valve. The position of the busbar can be made the same even if the connecting portion is rotated by 180 degrees in the front-rear direction, and the degree of freedom in terms of the switchgear configuration can be greatly improved.
[0045]
In another invention, the operation mechanism for linearly driving the vacuum valve is an electromagnetic operation mechanism.
[0046]
With this configuration, the operation mechanism that linearly drives the vacuum valve is an electromagnetic operation mechanism, which eliminates the need for parts such as links, so that the number of parts can be greatly reduced as in the main circuit, and complete linear drive is possible. Can provide a highly reliable switchgear.
[0047]
Moreover, another invention provides a recessed part in the stationary side conductor of the said vacuum valve of the fitting part formed in the switch mold part, and the said bus-bar connection conductor or this Main circuit external mold part Are inserted and electrically and mechanically connected.
[0048]
With this configuration, the dimension of the switch gear in the axial direction of the vacuum valve can be reduced by providing a concave portion on the fixed conductor side of the vacuum valve and projecting the conductor fitting portion of the fitting portion toward the vacuum valve.
[0049]
Another invention provides a common conductor between two vacuum valves and With the movable conductor of the vacuum valve connected to the insulation operation rod A cavity is provided between the insulators.
[0050]
With this configuration, by providing a cavity in the insulator between the common conductor between the two vacuum valves and the fixed-side conductor, the amount of insulator to be used can be reduced, and an economical switchgear can be provided.
[0051]
In another invention, the axes of the two vacuum valves are parallel, the movable part side is connected by a common conductor, and these are integrally molded in a single phase or a three-phase with an insulator having a ground layer on the surface. And a fitting portion having no ground layer on the axis of the fixed-side conductor of the vacuum valve, and a sealed cavity having no ground layer on the insulator inner surface on the side where the movable conductor of the vacuum valve protrudes from the common conductor; At least two or more switch mold parts formed with a vacuum valve are arranged so that the axes of the vacuum valves are parallel to each other, and an insulating operation rod is insulated from the movable part conductor of the vacuum valve in the cavity in each of the switch mold parts. And an operation mechanism for linearly driving the vacuum valve is connected to the other end of the insulating operation rod, and the fitting parts of the switch mold part arranged next to each other are formed in a U shape. Or U-shape The conductor is molded in a single-phase or three-phase integrally with an insulator having a ground layer on the surface, and connected by a connection mold unit having a shape that fits with the fitting part of the switch mold part having no ground layer at both ends. Then, in the fitting part of the remaining switch mold part, the bus bar connection conductor is molded in a single-phase or three-phase integral with an insulator having a ground layer on the surface, and the switch mold without a ground layer at one end A bus bar connecting mold part having a bus bar connecting part without a grounding layer for connecting the bus bar to the other end part, and a conductor having at least three or more end parts. Molded as a single-phase or three-phase integral with an insulator having a ground layer on the surface, and has a convex or concave bushing without a ground layer that connects the cable to at least one end, and contacts the other end. A fitting part of the switch part without a formation and It is obtained by connecting the main circuit external Togo mold portion having a slip shape.
[0052]
With this configuration, the open / close part of the main circuit component device for each unit circuit is configured with a vacuum valve, divided and molded with an insulator together with a conductor, etc., and at least two switch mold parts molded with two vacuum valves are combined. Therefore, it is not necessary to increase the insulation distance as in the air insulation, and the entire switch gear can be reduced, and SF can be reduced. 6 A large airtight container like gas insulation is not required, and the parts can be fixed by further molding, so the number of parts can be greatly reduced and a safe and highly reliable switchgear can be provided. Further, by making the opening / closing part a vacuum valve, further reduction in size can be achieved. Furthermore, by dividing the mold part, even when the external connection is changed, only the mold die for the part needs to be changed, so the degree of freedom for the change is improved. Moreover, the circuit structure which can be applied can be increased greatly by combining two or more switch mold parts.
[0053]
In another invention, the vacuum valve of the switch mold part for connecting the busbar connection mold part is a disconnector, the vacuum valve of the remaining switch mold part is a shutoff part, and the disconnection part and the shutoff part are one each. Either the linear drive is performed by the operating mechanism, or the disconnecting section and the blocking section are respectively linearly driven by the two operating mechanisms simultaneously or separately.
[0054]
With this configuration, the insulation performance and the breaking performance can be improved by making the switch part on the busbar side a two-point disconnector and the external connection side switch part as a two-point breaker.
[0055]
Moreover, another invention is the dimension between the axis | shafts of the vacuum valve of one switch mold part, and the dimension between the axis | shafts of the said vacuum valve of the two switch mold parts connected with a U-shaped or U-shaped connection mold unit. And the dimension from the center of the busbar on the busbar connection side of the busbar connection conductor to the axis of the vacuum valve connecting the busbar connection conductor. It is equal.
[0056]
With this configuration, the dimension between the axes of the vacuum valve of one switch mold part is the same as the dimension between the axes of the vacuum valve of the two switch mold parts connected by the U-shaped or U-shaped connection mold unit, In addition, by making the half dimension between the axes of the two vacuum valves of the switch mold part equal to the dimension from the center of the bus bar on the bus bar connecting side of the bus bar connecting conductor to the axis of the vacuum valve connecting the bus bar connecting conductor. Five busbars can be freely configured, and the degree of freedom of application circuit and arrangement can be greatly improved.
[0057]
In another invention, the axes of the two vacuum valves are parallel, the movable part side is connected by a common conductor, and these are integrally molded in a single phase or a three-phase with an insulator having a ground layer on the surface. And a fitting portion having no ground layer on the axis of the fixed-side conductor of the vacuum valve, and a sealed cavity having no ground layer on the insulator inner surface on the side where the movable conductor of the vacuum valve protrudes from the common conductor; At least two or more switch mold parts formed with a vacuum valve are arranged so that the axes of the vacuum valves are parallel to each other, and an insulating operation rod is insulated from the movable part conductor of the vacuum valve in the cavity in each of the switch mold parts. And an operating mechanism for linearly driving the vacuum valve is connected to the other end of the insulating operating rod, and the fitting parts formed on the common conductor side of the switch mold part adjacent to each other are connected. Surface, linear conductor One-phase or three-phase molded with an insulator having a grounding layer, and connected by a linear connection mold unit having a shape that fits with the fitting part of the switch part having no grounding layer at both ends thereof, and opens and closes one side The fitting part on the fixed conductor side of the two vacuum valves of the container mold part is molded in a single-phase or three-phase integrally with an insulator having a grounding layer on the surface, and there is no grounding layer at one end. The other switch mold has a shape that fits with the fitting part of the switch mold part, and has a bus bar connection mold part that has a bus bar connection part without a grounding layer connecting the bus bar at the other end. At least one end is formed by molding a conductor having at least three ends on one of the fitting portions on the fixed conductor side of the two vacuum valves of the two parts with an insulator having a ground layer on the surface in a single phase or three phases integrally Ground layer to connect the cable to Connect the main circuit external fitting mold part with a shape that fits with the fitting part of the switch part with no convex or concave bushing and no grounding layer at the other end. An insulating plug having a ground layer on the surface is connected to the fitting portion on the fixed conductor side of the vacuum valve.
[0058]
With this configuration, it is not necessary to increase the insulation distance as in the air insulation, and the entire switch gear can be reduced. 6 A large airtight container like gas insulation is not required, and the parts can be fixed by further molding, so the number of parts can be greatly reduced and a safe and highly reliable switchgear can be provided. Further, by making the opening / closing part a vacuum valve, further reduction in size can be achieved. Furthermore, by dividing the mold part, even when the external connection is changed, only the mold die for the part needs to be changed, so the degree of freedom for the change is improved. Moreover, it can be applied to a double busbar configuration by combining two or more switch mold parts having three or more mating parts.
[0061]
Moreover, another invention is the bus | bath which the full length when sliding the both ends of the solid insulation bus | bath which has an insulator which can be slid to both ends and can be fitted with the fitting part of a bus | bath connection part to an inner side in a lined board state A solid insulating bus that is shorter than the distance between the tips of the connecting portion, and a slidable contact for energizing contact with the solid insulating bus on the inner periphery of the bus connecting portion, and the bus by sliding the contact The bus bar connecting portion does not protrude from the tip of the connecting portion.
[0062]
With this configuration, the length of the solid insulation bus in the slide configuration is made shorter than the interval between adjacent bus connection parts, so that the bus can be connected and disconnected in a lined state, the installation time for the field installation can be shortened, and economical. Can provide switchgear.
[0065]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0066]
FIG. 1A is an electric circuit diagram of a switchgear showing a first embodiment of the present invention, and FIG. 1B is a side view showing a part of the switchgear.
[0067]
As shown in FIG. 1 (a), the switchgear showing the first embodiment is configured such that the movable side of the vacuum interrupter VCB is connected to the bus B via a vacuum or gas disconnection part DS in series, and the vacuum interrupter The main circuit is connected to the cable head via the main circuit external coupling portion while the fixed side of the VCB is connected to the vacuum or gas ground opening / closing portion ES.
[0068]
In addition, CT is a current transformer provided in the conductor part connected to an external load from the cable head.
[0069]
In FIG.1 (b), 13 is a metal closed box, and this metal closed box 13 has the main circuit equipment room 13a and the operation room 13b in the lower part. In the main circuit equipment chamber 13a, a vacuum interrupting section 1 and a vacuum or gas disconnecting section 2 are juxtaposed so that the axial direction thereof is perpendicular to the floor surface, and the buses corresponding to the three phases of each phase are provided on the upper part thereof. A coupling portion 4 is disposed, and further, a vacuum or an upper portion is formed on the back side of the vacuum interrupting portion 1 and the vacuum or gas disconnecting portion 2 and the busbar coupling portion 4. Gas ground switch 3 The main circuit external coupling portion 5 provided with is arranged vertically. Vacuum or Gas ground switch 3 An operating mechanism for linear driving (not shown) is also attached.
[0070]
The operation chamber 13b is provided with an operation mechanism 7 for linearly driving the vacuum shut-off unit 1 and the vacuum or gas disconnection unit 2 to each other, and the main circuit external coupling unit 5 is provided on the back surface of the operation chamber 13b. A through-type current transformer 12 is provided by penetrating the power cable 11 derived therefrom.
[0071]
In the main circuit device having such a configuration, an insulating material such as an epoxy resin having a grounding layer on the surface of the vacuum interrupting unit 1, the vacuum or gas grounding switching unit 3, the busbar coupling unit 4 and the main circuit external coupling unit 5 6 in a single-phase or three-phase integral molding, and in the vacuum shutoff part 1 and the vacuum or gas disconnection part 2, the vacuum shutoff part 1 and the vacuum or gas in the cavity 8 inside the movable insulator without the ground layer. An insulating operating rod 10 is connected to the movable conductor 9 of the disconnecting portion 2, and the operating mechanism 7 is connected to the vacuum interrupting portion 1 and the vacuum or gas disconnecting portion 2 at the other end so as to be linearly driven.
[0072]
With such a configuration, there is no need to increase the insulation distance as in the air insulation, the entire switch gear can be reduced, and SF can be reduced. 6 Since a large airtight container like gas insulation is not required and the parts are fixed by molding, the number of parts and assembly time can be greatly reduced, and a safe and highly reliable switchgear can be provided.
[0073]
FIG. 2 is a side view showing a part of the second embodiment of the present invention in section, and the electric circuit of the switchgear is omitted because it is the same as FIG. 1 (a). The same components as those in FIG. 1B are denoted by the same reference numerals, and different parts will be described here.
[0074]
In the second embodiment, as shown in FIG. 2, a busbar connection unit 14 in which the busbar coupling portion 4 is molded in a single-phase or three-phase integrally with an insulator 6 such as an epoxy resin having a ground layer on the surface, and a vacuum A switch in which a blocking unit 1, a vacuum or gas disconnecting unit 2, a vacuum or gas grounding switching unit 3 and a main circuit external coupling unit 5 are molded in a single-phase or three-phase unit with an insulator 6 having a grounding layer on the surface. The unit 15 is configured separately, and the bus bar connecting unit 14 and the switch unit 15 are electrically and mechanically coupled to each other by the fitting portion 16.
[0075]
In this case, a convex portion having a tapered surface is formed on the bus bar connecting unit 14 side, and a concave portion matching the convex portion is formed on the switch unit 15 side.
[0076]
With such a configuration, there is no need to increase the insulation distance as in the air insulation, the entire switch gear can be reduced, and SF can be reduced. 6 Since a large airtight container like gas insulation is not required and the parts are fixed by molding, the number of parts and assembly time can be greatly reduced, and a safe and highly reliable switchgear can be provided. Furthermore, by dividing the mold part into a plurality of units, even if the external connection is changed, the mold die for only the part only needs to be changed, so the degree of freedom for the change is improved.
[0077]
FIG. 3A is an electric circuit diagram of a switchgear showing a third embodiment of the present invention, and FIG. 3B is a side view showing a part of the switchgear in cross section, and the same parts as FIG. Are described with the same reference numerals.
[0078]
As shown in FIG. 3 (a), the switchgear showing the third embodiment is such that the movable side of the vacuum interrupter VCB is connected to the bus B via a vacuum or gas disconnection part DS in series, and the vacuum interrupter It is intended for the main circuit that connects the fixed side of the VCB to the cable head via the main circuit external joint.
[0079]
In addition, CT is a current transformer provided in the conductor part connected to an external load from the cable head.
[0080]
In FIG. 3B, 13b is an operation room, and 22 is a control box provided in front of the upper part of the operation room 13b. At least two vacuum valves 17 whose movable parts are connected by a common conductor 18 are arranged in the upper part of the operation chamber 13b on the back side of the control box 22 so that their axes are parallel and perpendicular to the floor surface. The bus connection conductor 19 corresponding to each of the three phases each having a substantially L-shaped cross section is arranged on the axis of the fixed side conductor of the one vacuum valve 17, and the fixed side conductor of the other vacuum valve 17 is connected. The cross section provided on the shaft is substantially H-shaped. Main circuit external connection conductor 20 is connected.
[0081]
Further, a through-type current transformer 12 is provided on the back surface of the operation chamber 13b through the power cable 11 led out from the main circuit external coupling portion 5.
[0082]
In the main circuit device having such a configuration, the surfaces of at least two vacuum valves 17, bus connection conductors 19 and main circuit external connection conductors 20 are molded in a single phase or a three-phase unit with an insulator such as an epoxy resin having a ground layer. The movable conductors of these vacuum valves 17 are formed on the inner surface of the insulator on the side protruding from the common conductor, and the vacuum valve 17 is formed in a substantially long cylindrical cavity 21 without a ground layer. Movable conductor An insulating operating rod 10 is connected to 9 and the operating mechanism 7 is coupled to the other end of the insulating operating rod 10 so that the vacuum valve 17 can be linearly driven.
[0083]
In this case, the operating mechanism 7 is connected below the vacuum valve on the extension line of the shaft of the vacuum valve 17.
[0084]
In the figure, reference numeral 23 denotes an insulating plug fitted into the tip of the substantially H-shaped main circuit outer coupling conductor 20.
[0085]
With such a configuration, there is no need to increase the insulation distance as in the air insulation, the entire switch gear can be reduced, and SF can be reduced. 6 Since a large airtight container like gas insulation is not required and the parts are fixed by further molding, the number of parts can be greatly reduced, and a safe and highly reliable switchgear can be provided. Further, by making the opening / closing part a vacuum valve, further reduction in size can be achieved.
[0086]
FIG. 4 is a side view showing a part of the fourth embodiment of the present invention in section, and the electric circuit of the switchgear is omitted because it is the same as FIG. The same components as those in FIG. 3B are denoted by the same reference numerals, and different parts will be described here.
[0087]
In the fourth embodiment, as shown in FIG. 4, at least two vacuum valves 17 have a ground layer on the surface, and the movable conductor of the vacuum valve 17 is in contact with the insulator inner surface on the side protruding from the common conductor 18. A switch mold part 24 molded in a single-phase or three-phase integral with an insulator such as an epoxy resin having a substantially long cylindrical cavity 21 without a base layer, and a ground layer on the surface of a conductor having a substantially L-shaped cross section Single-phase or three-phase integral with busbar connection mold part 25 molded in single phase or three-phase integrally with an insulator such as epoxy resin, and an insulator such as epoxy resin having a substantially H-shaped cross section on the surface and a ground layer And a main circuit external coupling mold part 26 having a convex or concave bushing without a grounding layer for connecting the cable to at least one end, and each of these switch modes. De 24 is obtained by adapted to electrically and mechanically coupled with bus connecting mold section 25 and the main circuit external Togo mold portion 26 and the fitting portion 16a.
[0088]
In this case, the switch mold part 24 is formed with a mortar-shaped recess having no ground layer on the axis of the fixed conductor of each of the two vacuum valves 17, and the bus bar connection mold part 25 has a switch mold part A conical convex portion without a grounding layer for connecting a busbar to be fitted with a mortar-shaped concave portion without a grounding layer formed at one end portion of 24 is formed, and the main circuit external coupling mold portion 26 has A conical convex portion is formed to be fitted to the mortar shape of the switch part without the ground layer.
[0089]
With such a configuration, the open / close part of the main circuit component device for each unit circuit is configured by a vacuum valve, divided and molded with an insulator together with a conductor, etc., and these are combined. Thus, it is not necessary to increase the insulation distance, and the entire switch gear can be reduced, and SF can be reduced. 6 A large airtight container like gas insulation is not required, and the parts can be fixed by further molding, so the number of parts can be greatly reduced and a safe and highly reliable switchgear can be provided. Further, by making the opening / closing part a vacuum valve, further reduction in size can be achieved. Furthermore, by dividing the mold part, even when the external connection is changed, only the mold die for the part needs to be changed, so the degree of freedom for the change is improved. In addition, the main circuit external coupling part can be mounted upside down so that the cable can be pulled in.
[0090]
FIG. 5 is a side view partially showing a fifth embodiment and a sixth embodiment of the present invention, and the electric circuit of the switchgear is omitted because it is the same as FIG. Further, the same components as those in FIG. 3B will be described with the same reference numerals.
[0091]
In FIG. 5, reference numeral 27 denotes a control box which is elongated in the height direction on the base. The control box 27 has an operation chamber 27a formed at the top and a control chamber 27b formed at the bottom. The two vacuum valves 17 are arranged at an appropriate distance in the height direction so that the respective axes are orthogonal to the vertical mounting surface 27c on the back of the control box 27 and parallel to the base. A bus bar connecting conductor 19 corresponding to each of the three phases having a substantially L-shaped cross section is arranged on the axis of the fixed side conductor of one vacuum valve 17 and is connected to the axis of the fixed side conductor of the other vacuum valve 17. The main circuit external coupling conductor 20 having a substantially H-shaped cross section provided so as to protrude is connected.
[0092]
Further, the insulating operation rod 10 is connected to the movable conductors 9 of the two vacuum valves 17, and the other ends are connected to the operation mechanism 7 provided in the operation chamber 27a so as to be linearly driven. Further, the power cable 11 is led out from the other end of the main circuit external coupling conductor 20 connected to the fixed side conductor of the other vacuum valve 17 via a cable head provided perpendicular to the base. A through-type current transformer 12 is provided through the cable 11.
[0093]
In the main circuit device having such a configuration, at least two vacuum valves 17 have a ground layer on the surface, and there is no ground layer on the inner surface of the insulator on the side where the movable conductor of the vacuum valve 17 protrudes from the common conductor 18. A switch mold part 24 molded in a single-phase or three-phase integrally with an insulator such as an epoxy resin having a long cylindrical cavity 21, and an epoxy resin having a ground layer on the surface of a conductor having a substantially L-shaped cross section A busbar connection mold part 25 molded in a single-phase or three-phase integrally with an insulator, and a conductor having a substantially H-shaped cross section is molded in a single-phase or three-phase integrally with an insulator such as an epoxy resin having a ground layer on the surface, And a main circuit external coupling mold portion 26 having a convex or concave bushing without a grounding layer for connecting a cable to at least one end, and each of these switch moldings. Part 24 is obtained by adapted to electrically and mechanically coupled with bus connecting mold section 25 and the main circuit external Togo mold portion 26 and the fitting portion 16a.
[0094]
In this case, the switch mold part 24 is formed with a mortar-shaped recess having no ground layer on the axis of the fixed conductor of each of the two vacuum valves 17, and the bus bar connection mold part 25 has a switch mold part A conical convex portion without a grounding layer for connecting a busbar to be fitted with a mortar-shaped concave portion without a grounding layer formed at one end portion of 24 is formed, and the main circuit external coupling mold portion 26 has A cone-shaped convex portion that fits into the mortar shape of the switch part without a grounding layer is formed.
[0095]
In the figure, reference numeral 23 denotes an insulating plug fitted into the tip of the substantially H-shaped main circuit outer coupling conductor 20.
[0096]
With such a configuration, the same effects as those of the third and fourth embodiments described above can be obtained, and the operability can be improved by attaching the operation mechanism 7 to the front of the switch gear at the top of the control box 27. Can be improved.
[0097]
In the embodiment described above, the switch mold part 24, the busbar connection mold part 25, and the main circuit external connection mold part 26 are divided and electrically and mechanically coupled by the fitting part 16a. However, the two vacuum valves 17, the bus connection conductors 19 corresponding to the substantially L-shaped three-phase phases, and the substantially H-shaped main circuit external coupling conductor 20 may be integrally molded.
[0098]
FIG. 6A is an electric circuit diagram of a switchgear showing a seventh embodiment of the present invention, and FIG. 6B is a side view showing a part of the switchgear in section and the same configuration as FIG. Parts are given the same reference numerals and explanations thereof are omitted, and different points are described here.
[0099]
In the switchgear showing the seventh embodiment, the movable side of the vacuum interrupter VCB is connected to the bus B via the vacuum disconnector DS in series as shown in FIG. It is intended for a main circuit that connects and connects the fixed side of the vacuum breaker VCB to a cable head via a main circuit external coupling portion.
[0100]
In addition, CT is a current transformer provided in the conductor part connected to an external load from the cable head.
[0101]
In the seventh embodiment, as shown in FIG. 6, a contact 28 is provided in the approximate center of the common conductor 18 below the movable conductor of the vacuum valve 17, and an operation mechanism 30 with a grounding device is provided in the operation chamber 13b. The movable conductor 29 that is linearly driven can be brought into contact with or separated from the contact 28 through a substantially long cylindrical cavity 21 formed under the switch mold part 24.
[0102]
With such a configuration, the movable side of the vacuum valve 17 can be grounded by the grounding device, so that the application range of the unit circuit can be expanded.
[0103]
FIG. 7 is a side view showing a part of the eighth embodiment of the present invention in section. The same components as those in FIG. 4 are given the same reference numerals, and different parts will be described here.
[0104]
In the eighth embodiment, as shown in FIG. 7, in order to seal the substantially long cylindrical cavity 31 formed at the lower part of the switch mold part 24 attached to the upper surface of the operation chamber 13b, the switch mold part The packing 33 is inserted between the upper surface of the operation chamber 13b to which 24 is fixed, and the cavity 21 is provided by providing a seal portion 32 in the penetrating portion of the operation rod 10 inserted into the cavity 21 from the operation chamber 13b side. An insulating medium such as air is sealed inside.
[0105]
With such a configuration, since the insulating part on the movable side of the vacuum valve is sealed, the insulating of the movable part is not affected by the external environment, and the switch gear can be reduced and the reliability can be improved. it can.
[0106]
FIG. 8 is a side view showing a ninth embodiment of the present invention with a partial cross section. The same components as those in FIG. 4 are given the same reference numerals, and different parts will be described here.
[0107]
In the ninth embodiment, as shown in FIG. 8, a conductive material made of metal or conductive plastic is formed on the peripheral surface in the vicinity of the common conductor 18 of the substantially long cylindrical cavity 21 formed in the lower part of the switch mold part 24. The shield 34 is embedded.
[0108]
With such a configuration, the shield 34 is embedded on the movable side of the vacuum valve 17 to make the electric field strength uniform, thereby reducing the size and improving the reliability.
[0109]
FIG. 9 is a side view showing a part of the tenth embodiment of the present invention in section. The same components as in FIG. 4 are given the same reference numerals, and different parts will be described here.
[0110]
In the tenth embodiment, as shown in FIG. 9, a mortar-shaped recess having no ground layer and a busbar connection mold on the axis of the fixed side conductor of each of the two vacuum valves 17 formed in the switch mold part 24 A fitting portion with a conical convex portion without a grounding layer formed on each of the portion 25 and the main circuit external coupling mold portion 26; An insulating material 35 such as silicon rubber or heat-resistant EP rubber softer than an insulating material such as an epoxy resin constituting a mortar shape is interposed in the fitting portion.
[0111]
With such a configuration, when each mold part is fitted and insulated, by interposing a soft insulator in the fitting part, the adhesion at the interface of the fitting part is improved and the insulation performance is improved. The switch gear can be reduced.
[0112]
FIG. 10 is a side view showing a section of an eleventh embodiment of the present invention. The same components as in FIG. 4 are given the same reference numerals, and different parts will be described here.
[0113]
In the eleventh embodiment, as shown in FIG. 10, a lightning arrester having a surface ground layer at one end instead of the insulating plug 23 fitted to both upper ends of the main circuit external coupling mold portion 26. 36, or an instrument transformer 37 having a surface ground layer is fitted, and a vacuum valve 38a molded with an insulator having a ground layer on the surface is fitted to the other end.
[0114]
The vacuum valve 38a has a substantially cylindrical cavity 38b having no ground layer on the movable part side, and an insulating rod 38c is connected to the movable part conductor of the vacuum valve in the cavity 38b. An operating mechanism 38d for linearly driving the vacuum valve 38a is connected to the other end of the electrode to insulate the movable conductor of the vacuum valve 38a from the surface ground layer, and a separable grounded conductor is connected to the insulated movable conductor. A grounding device 38 is coupled.
[0115]
With such a configuration, the application range can be further expanded and reduced by adding the lightning arrester 36, the instrument transformer 37, the vacuum grounding device 38, and the test terminal.
[0116]
FIG. 11 is a side view showing a part of the twelfth embodiment of the present invention in section. The same components as in FIG. 4 are given the same reference numerals, and different parts will be described here.
[0117]
In the twelfth embodiment, as shown in FIG. 11, a disk-shaped electrode 39 is embedded in the vicinity of the substantially H-shaped conductor 20 in the main circuit external coupling mold portion 26, and the disk-shaped electrode 39 is placed on the outer layer of the mold. The insulated conductor protrudes from the ground layer.
[0118]
With such a configuration, by providing the embedded electrode 39 insulated from the ground, a capacitance is formed between the main circuit and the main circuit. Can be detected.
[0119]
FIG. 12 is a side view showing a thirteenth embodiment of the present invention in a partial cross section. The same components as those in FIG. 4 are given the same reference numerals, and different parts will be described here.
[0120]
In the thirteenth embodiment, as shown in FIG. 12, the half dimension between the axes of the two vacuum valves 17 and the center of the bus bar on the bus bar connecting side of the substantially L-shaped bus bar connecting conductor 19 are bent in an L shape. The dimension to the center of the part is made equal.
[0121]
With such a configuration, the length of the bus connecting portion bent in an L shape is twice the length of the axis of the vacuum valve 17 and the axis of the fixed conductor of the vacuum valve 17 is set on the axis of the bus bar. Even if the connecting portion is rotated 180 degrees forward and backward, the position of the busbar can be made the same, and the degree of freedom in configuration of the switch gear can be greatly improved.
[0122]
FIG. 13 is a side view showing a part of a fourteenth embodiment of the present invention in section. The same components as in FIG. 4 are given the same reference numerals, and different parts will be described here.
[0123]
In the fourteenth embodiment, an electromagnetic operation mechanism 40 is used as the operation mechanism for linearly driving the vacuum valve 17 as shown in FIG. The electromagnetic operating mechanism 40 is composed of a permanent magnet 40a, a coil 40b, and an armature 40c coupled to the operating rod 10.
[0124]
With such a configuration, the operation mechanism for linearly driving the vacuum valve 17 is the electromagnetic operation mechanism 40, so that parts such as a link are eliminated, and the number of parts can be greatly reduced as in the main circuit. In addition, since complete linear drive is possible, a highly reliable switchgear can be provided.
[0125]
FIG. 14 is a side view showing a fifteenth embodiment of the present invention in partial section. The same components as in FIG. 4 are given the same reference numerals, and different parts will be described here.
[0126]
In the fifteenth embodiment, in the mortar-shaped conductor fitting portion formed corresponding to the stationary conductor of each vacuum valve 17 of the switch mold part 24 as shown in FIG. A concave portion 17a is provided in the conductor, and a contact 17b provided in a fitting portion of the L-shaped busbar connection conductor 19 is inserted into the concave portion 17a to be electrically and mechanically connected.
[0127]
With such a configuration, the axial dimension of the vacuum valve of the switch gear can be reduced by providing a concave portion on the fixed conductor side of the vacuum valve and projecting it toward the vacuum valve side of the mortar-shaped conductor fitting portion. .
[0128]
FIG. 15 is a side view showing a part of a sixteenth embodiment of the present invention in section. The same components as in FIG. 4 are given the same reference numerals, and different parts will be described here.
[0129]
In the sixteenth embodiment, as shown in FIG. 15, a cavity 41 is provided in an insulator between the common conductor 18 between the two vacuum valves 17 and the fixed-side conductor.
[0130]
With this configuration, by providing the cavity 41 in the insulator between the common conductor 18 between the two vacuum valves 17 and the fixed-side conductor, the amount of insulator to be used can be reduced, and the economy can be reduced. Switch gear can be provided.
[0131]
In the above-described fourth embodiment, the switch mold part 24 in which at least two vacuum valves 17 are molded in a single phase or three phases integrally with an insulator having a ground layer on the surface, a conductor having a substantially L-shaped cross section is provided. Single-phase or three-phase with an insulator such as an epoxy resin having a ground plane on the surface and a busbar connection mold part 25 molded in a single-phase or three-phase integrally with an insulator having a ground layer on the surface and a conductor having a substantially H-shaped cross section Although an example of the configuration in which the main circuit external coupling mold portion 26 molded integrally is combined and described, the switch mold portion 24 is configured as follows depending on the application, and the bus connection mold portion 25 and the main circuit external coupling portion 25 are configured as follows. You may make it combine and combine with the compound mold part 26. FIG.
[0132]
FIG. 16A shows a configuration in which one of the two vacuum valves of the switch mold part 24 is a circuit breaker and the other is a disconnector. FIG. 16B shows a case where both are circuit breakers. FIG. It is the structure at the time of using as a disconnector.
[0133]
FIG. 17A shows a case where one of the two vacuum valves is a conductor instead of the vacuum valve, and the other is a circuit breaker. FIG. 17B shows a case where one of the two vacuum valves is a conductor and the other is a disconnector. (C) is a configuration in which both are used as conductors instead of two vacuum valves.
[0134]
FIG. 18 shows the main line connection part as the main circuit external connection part. When (a) uses one vacuum valve as a disconnector and the other as a circuit breaker, (b) shows both vacuum valves as circuit breakers. In such a case, (c) shows a configuration in which both vacuum valves are used as disconnectors.
[0135]
FIG. 19 shows the main circuit connection part as the bus connection part. FIG. 19A shows a case where one of the two vacuum valves is replaced with a conductor and the other is a circuit breaker, and FIG. Is a conductor instead of a vacuum valve, and the other is a disconnector, (c) is a configuration in which both are replaced by conductors instead of two vacuum valves.
[0136]
FIG. 20 shows the main circuit external connection part as a busbar connection part. When (a) uses one vacuum valve as a disconnector and the other as a circuit breaker, (b) uses both vacuum valves as a circuit breaker. In the case (c), both vacuum valves are used as disconnectors.
[0137]
FIG. 21 shows the main circuit external connection portion as a busbar connection portion. (A) shows a case where one of the two vacuum valves is replaced with a conductor, and the other is a circuit breaker. When a conductor is used instead of the vacuum valve and the other is a disconnector, (c) is a configuration when both are used as conductors instead of the two vacuum valves.
[0138]
By changing the use of the vacuum valve in this way, an arbitrary circuit can be configured and applied to various unit circuits.
[0139]
FIG. 22A is an electric circuit diagram of a switchgear showing the seventeenth embodiment of the present invention, and FIG. 22B is a side view showing a part of the switchgear. The same parts as those in FIG. 4 are described with the same reference numerals.
[0140]
In the switchgear showing the seventeenth embodiment, as shown in FIG. 22 (a), the movable side of the vacuum interrupter VCB is connected to the bus B via the vacuum or gas disconnection part DS in series, and the vacuum interrupter A cable head that connects the fixed side of the VCB to a vacuum or gas ground opening / closing part ES and connects the vacuum or gas disconnection part DS in series to the main circuit external coupling part, a vacuum or gas ground opening / closing part ES, and an instrument The main circuit connected to the transformer VT is intended. In this case, a lightning arrester SAR may be connected instead of the instrument transformer VT.
[0141]
In addition, CT is a current transformer provided in the conductor part connected to an external load from the cable head.
[0142]
In FIG. 22B, 13b is an operation room, and 22 is a control box provided in front of the upper part of the operation room 13b. One vacuum valve 17 and one conductor 17a are arranged on the operation chamber 13b on the back side of the control box 22 so that the axes thereof are parallel and perpendicular to the floor surface. A switch mold part 24a molded in a single-phase or three-phase integral with an insulator such as an epoxy resin having a ground layer on the surface is disposed.
[0143]
In this switch mold part 24a, a mortar-shaped recess having no grounding layer is formed on the axis of the fixed conductor of one vacuum valve 17 and the axis of the conductor 17a, and the movable conductor and conductor of the vacuum valve 17 are also formed. A lower end of 17 a is connected by a common conductor 18, and a sealed substantially long cylindrical cavity 31 without a grounding layer is formed on the inner surface of the insulator projecting downward from the common conductor 18.
[0144]
Within this cavity 31, the insulating operating rod 10 is connected to the movable conductor 9 of the vacuum valve 17, and the operating mechanism 7 provided in the operating chamber 13 b is connected to the other end of the insulating operating rod 10 to move the vacuum valve 17. The side can be driven linearly.
[0145]
Further, if necessary, a contact 28 is provided on the common conductor 18 on the side from which the movable conductor of the vacuum valve 17 protrudes, so that the movable conductor is linearly driven by the operating mechanism 30 with a grounding device provided in the operation chamber 13b. 29 can be brought into contact with or separated from the contact 28 through a substantially long cylindrical cavity 21 formed in the lower part of the switch mold part 24a.
[0146]
Furthermore, an epoxy resin having a ground layer on the surface with a substantially L-shaped conductor in a mortar-shaped recess without a ground layer formed on the axis of the stationary conductor of one vacuum valve 17 of the switch mold part 24a A convex part without a grounding layer formed on the busbar connection mold part 25 molded in a single-phase or three-phase integrally with an insulator such as is fitted and connected.
[0147]
On the other hand, two vacuum valves 17 in which the movable part side is connected to the operation chamber 13b on the rear rear side of the control box 22 by a common conductor 18 so that each axis thereof is parallel and perpendicular to the floor surface. A switch mold part 24b is formed in which these are integrally molded in a single-phase or three-phase integrally with an insulator having a ground layer such as an epoxy resin on the surface.
[0148]
In this case, the open / close mold part 24 b is formed with a mortar-shaped recess without a ground layer on the axis of the fixed side conductor of each of the two vacuum valves 17, and the movable side conductor of the vacuum valve 17 is connected to the common conductor 18. A sealed substantially long cylindrical cavity 21 without a grounding layer is formed on the inner surface of the protruding insulator.
[0149]
An insulating operating rod 10 is connected to the movable conductor 9 of the vacuum valve 17 in the cavity 21, and the operating mechanism 7 provided in the operating chamber 13 b is connected to the other end of the insulating operating rod 10 to move the vacuum valve 17. The side can be driven linearly.
[0150]
If necessary, a contact 28 is provided on the common conductor portion on the side where the movable conductor of the vacuum valve 17 protrudes from the common conductor 18 as required in the circuit configuration, and linear driving is performed by the operation mechanism 30 with a grounding device provided in the operation chamber 13b. The movable conductor 29 can be brought into contact with or separated from the contact 28 through a substantially long cylindrical cavity 21 formed under the switch mold part 24.
[0151]
Further, in a bowl-shaped recess formed on the axis of the other vacuum valve 17 of the switch mold part 24b, an insulator such as an epoxy resin having a substantially H-shaped conductor on the surface and a ground layer on the surface or A three-phase molded mold and a convex or concave bushing without a grounding layer connecting the cable to at least one end, and a mortar shape of a switch mold part 24b without a grounding layer at the other three ends The protrusions of the main circuit external coupling mold part 26 having the protrusions of the fitting shape are fitted and connected. Further, a through-type current transformer 12 is provided through the power supply cable 11 led out from the main circuit external coupling mold part 26 through a bushing.
[0152]
A lightning arrester 36 having a surface ground layer or an instrument transformer 37 having a surface ground layer is fitted to one of the upper ends of the main circuit external coupling mold part 26, and a ground layer is formed on the surface at the other end. A vacuum valve 38a molded with an insulating material such as an epoxy resin is fitted.
[0153]
The vacuum valve 38a has a substantially cylindrical cavity 38b having no ground layer on the movable part side, and an insulating rod 38c is connected to the movable part conductor of the vacuum valve in the cavity 38b. An operating mechanism 38d for linearly driving the vacuum valve 38a is connected to the other end of the electrode to insulate the movable conductor of the vacuum valve 38a from the surface ground layer, and a separable grounded conductor is connected to the insulated movable conductor. A grounding device 38 is coupled.
[0154]
An epoxy having a ground layer on the surface of a conductor 42 having a U-shape or U-shape between a bowl-shaped recess formed on the conductor axis of the switch mold part 24a and the switch mold part 24b. Molded in a single phase or three-phase integrally with an insulator such as resin, and connected by a connection mold unit 43 having a shape that fits into the mortar shape of the switch part without a ground layer at both ends.
[0155]
In the case of a switchgear having such a configuration, a switch mold in which the opening / closing part of the main circuit constituent device for each unit circuit is configured by a vacuum valve, divided by an insulator together with a conductor, etc., and two vacuum valves are molded. By combining at least two parts, there is no need to increase the insulation distance as in the air insulation, the entire switch gear can be reduced, and SF 6 A large airtight container such as gas insulation is not required.
[0156]
Furthermore, since the components can be fixed by molding the main circuit component device, the number of components can be greatly reduced, and the device can be made safe and reliable.
[0157]
In addition, by using a vacuum valve for the opening and closing part, it is possible to further reduce the size, and by dividing the mold part, even if the external connection is changed, the mold die for only that part is changed. This will increase the degree of freedom for change.
[0158]
Furthermore, applicable circuit configurations can be greatly increased by combining two or more switch mold parts.
[0159]
FIG. 23A is an electric circuit diagram of a switchgear showing an eighteenth embodiment of the present invention, and FIG. 23B is a side view showing a part of the switchgear in section, which is the same as FIG. The same reference numerals are given to the components, and the description thereof is omitted. Different parts will be described here.
[0160]
As shown in FIG. 23 (a), the switchgear showing the eighteenth embodiment has two vacuum or gas disconnection sections DS and two vacuum circuit breakers VCB connected in series to the bus B, and two 22A is the same as FIG. 22A except that a vacuum or gas ground switching part ES is connected between the series connection of the vacuum or gas disconnection part DS and between the series connection of the two vacuum cutoff parts VCB.
[0161]
In the eighteenth embodiment, as shown in FIG. 23, the vacuum valve and conductor of the switch mold part 24a for connecting the busbar connection mold part 25 are used as the disconnector 44, and the vacuum valve of the other switch mold part 24b is used. The blocking portion 45 is configured such that the disconnecting portion 44 and the blocking portion 45 are linearly driven by two operation mechanisms 44a, 44b, 45a, 45b, respectively. In this case, you may make it drive the disconnect part 44 and the interruption | blocking part 45 simultaneously or separately by one operation mechanism, respectively.
[0162]
With the switchgear having such a configuration, the insulation side and the breaking performance can be improved by making the switch part on the bus side a two-point disconnector and the switch part on the external engagement side a two-point breaker. Can be improved. At this time, in order to improve the insulating performance between the insulating operating rod and the substantially long cylindrical inner surface, an insulating medium having higher insulating performance is sealed.
[0163]
FIG. 24 is a side view showing a nineteenth embodiment of the present invention in partial cross section. The same parts as those in FIG. 22 are denoted by the same reference numerals, and the description thereof will be omitted. Different parts will be described here.
[0164]
In the nineteenth embodiment. 24, the dimension between the axes of the vacuum valve of one switch mold part and the vacuum valve of the two switch mold parts 24a and 24b connected by a U-shaped or U-shaped connection mold unit 43 as shown in FIG. Of the part that bends in an L shape from the center of the busbar on the busbar connection side of the substantially L-shaped busbar connection conductor. The dimensions to the center are made equal.
[0165]
With such a configuration, the dimension between the axes of the vacuum valve of one switch mold part and the axis of the vacuum valve of the two switch parts connected by the U-shaped or U-shaped connection mold unit 43 The dimension is the same and is half the dimension between the axes of the two vacuum valves of the switch mold part, and from the center of the busbar on the busbar connection side of the substantially L-shaped busbar connection conductor to the center of the portion bent to the L-shape. By making the dimensions equal, the four busbars can be freely configured.
[0166]
FIG. 25A is an electric circuit diagram of a switchgear showing a twentieth embodiment of the present invention, and FIG. 25B is a side view showing a part of the switchgear in section, which is the same as FIG. The same reference numerals are assigned to the components, and the description thereof is omitted. Different parts will be described here.
[0167]
In the twentieth embodiment, as shown in FIG. 25 (a), one end of disconnectors DS1 and DS2 is connected to double buses B1 and B2, and the other end of disconnectors DS1 and DS2 is shared. Connect to one end of VCB, connect to ground switch ES, and connect the other end of breaker VCB to main circuit external joint, vacuum or gas ground switch ES and lightning arrester SAR or instrument transformer The main circuit connected to the device VT is targeted.
[0168]
In the twentieth embodiment, as shown in FIG. 25 (b), the bowl-shaped recess formed on the axis of the disconnector 44 of the switch mold part 24a and the axis of the circuit breaker 45 of the switch mold part 24b. The connecting mold unit 43 fitted between the bowl-shaped recesses formed in the bowl is removed, and the bowl-shaped recess formed on the axis of the disconnector 44 of the switch mold part 24a has a substantially L-shaped cross section. The protrusions without the grounding layer formed on the busbar connection mold part 25b formed by molding a single-phase or three-phase integrally with an insulator having a grounding layer on the surface are connected and connected. In this case, it arrange | positions so that it may become symmetrical with the bus-bar connection mold part 25a fitted and connected by the other disconnector 44 side.
[0169]
Moreover, in the switch mold part 24b, the side in which the connection mold unit 43 is fitted is a conductor 45a.
[0170]
With such a switchgear, the open / close part of the main circuit component device for each unit circuit is configured with a vacuum valve, divided and molded with an insulator together with a conductor, etc., two vacuum valves are molded, Are formed by combining at least two switch mold parts having a total of three or more, one on the fixed conductor side of each vacuum valve and one or more on the common movable conductor side. With this configuration, it is not necessary to increase the insulation distance as in the air insulation, and the entire switch gear can be reduced, and SF can be reduced. 6 A large airtight container such as gas insulation is not required, and the parts can be fixed by further molding, so the number of parts can be greatly reduced, and it can be made safe and reliable. Further, by making the opening / closing part a vacuum valve, further reduction in size can be achieved. Furthermore, by dividing the mold part, even when the external connection is changed, only the mold die for the part needs to be changed, so the degree of freedom for the change is improved. Moreover, it can be applied to a double busbar configuration by combining two or more switch mold parts having three or more mating parts.
[0171]
FIG. 26A is an electric circuit diagram of a switchgear showing a twenty-first embodiment of the present invention, and FIG. 26B is a side view showing a part of the switchgear in section, which is the same as FIG. The same reference numerals are given to the components, and the description thereof is omitted. Different parts will be described here.
[0172]
In the twenty-first embodiment, as shown in FIG. 26A, one end of the disconnector DS1 is connected to the bus B2, and the other end of the disconnector DS1 is connected to the bus B1, and the ground switch ES and the disconnector are connected. It is the same as FIG. 22A except that it is connected to one end of DS2 and the other end of this disconnector DS2 is connected to one end of the circuit breaker VCB.
[0173]
In the twenty-first embodiment, instead of the U-shaped or U-shaped connection mold unit 43 as shown in FIG. 26B, the conductor 17a of the switch portion 49 of the U-shaped or U-shaped conductor. A cone without a grounding layer connecting a busbar at one end, with a conductor with a substantially L-shaped cross section projecting from the portion of the shaft, molded in one or three phases with an insulator having a grounding layer on the surface A connecting mold unit having a shape and a bus connecting mold part 50 are fitted and connected.
[0174]
According to the switchgear having such a configuration, the two switch mold parts 24a and 24b can be effectively used by adding a busbar connecting function to the mold part for connecting the two switch mold parts 24a and 24b. The overall width when the switchgear train is configured can be reduced.
[0175]
FIG. 27 is a view for explaining the assembly procedure of the unit bus bar according to the twenty-second embodiment of the present invention.
[0176]
In FIG. 27, reference numeral 46 denotes a bus bar. The bus bar 46 is formed by molding the outer peripheral surface of an appropriate length bus bar conductor 46a with an epoxy resin or heat-resistant crosslinked polyethylene to form a bus bar mold part 46b, and on the outer periphery of the mold part 46b. Insulating units 46c and 46d made of a pair of left and right silicone rubbers or heat-resistant EP rubber are fitted so as to be slidable in the axial direction. The insulating units 46c and 46d have conical recesses formed on both ends of the bus conductor 46a, and insulating unit fixtures 46e and 46f are provided on the outer periphery of the insulating units 46c and 46d.
[0177]
On the other hand, reference numeral 25 denotes a pair of busbar connection mold portions which are arranged at appropriate intervals and molded with connection conductors 25a mechanically and electrically connected to both ends of the busbar 46. The busbar connection mold portion 25 is on the busbar 46 side. A conical taper portion that fits into a conical recess formed on both end sides of the insulating units 46c and 46d is formed, and sliding contacts 25c and 25d are fitted on the connection conductor 25a side. .
[0178]
In the unit bus having such a configuration, first, as shown in the procedure 1, the bus 46 is inserted between the bus connecting mold portions 25 so that the bus conductor 46a and the connecting conductor 25a are on the same axis.
[0179]
Next, as shown in the procedure 2, the sliding contacts 25c and 25d of the bus bar connection mold portion 25 are slid toward the bus bar conductor 46a to electrically connect the abutting portions of the connection conductor 25a and the bus bar conductor 46a.
[0180]
Then, as shown in step 3, the insulating units 46c and 46d on the bus bar 46 side are slid along the outer peripheral surface of the bus bar mold part 46b to the bus bar connecting mold part 25 side, and the taper part of the bus bar connecting mold part 25 is moved to the insulating unit. It fits in the recessed part of 46c, 46d, and it fixes with the insulation unit fixing tools 46e and 46f which have on the outer periphery of the insulation units 46c and 46d.
[0181]
With the unit bus having such a configuration, the length of the solid insulated bus in the slide configuration is made shorter than the interval between adjacent bus connecting portions, so that the bus can be connected and removed in a lined state. Installation time can be shortened.
[0182]
FIG. 28 is an insulation graph of an insulator showing the twenty-third embodiment of the present invention, and shows the relationship between the physical properties of the epoxy resin and the temperature. As can be seen from this graph, in the epoxy insulator, the electrical and mechanical properties change at the boundary of the glass transition temperature (hereinafter referred to as Tg). Therefore, it is necessary to set the allowable temperature of the insulating material based on Tg. In particular, by directly molding the vacuum valve, the insulation is in direct contact with the hot part, and the impact force and static pressure of the vacuum circuit breaker are also directly applied to the insulation. The demand for things has become severe.
[0183]
Conventionally, a thermal deformation temperature (hereinafter referred to as HDT) for evaluating physical deformation due to heat has been used, but it is necessary to use Tg because electrical characteristics also change as described above. The relationship between Tg and HDT is Tg ≦ HDT, and the required characteristics for insulating materials are more severe when the allowable temperature is based on Tg.
[0184]
The allowable temperature of the insulator is set to a value 10 ° C. to 30 ° C. lower than Tg. This is because when Tg minus 10 ° C. to 30 ° C., the property becomes stable in the long term as well as in the initial period. Specifically, if the allowable temperature (maximum use temperature) is 115 ° C., Tg needs to be 125 ° C. to 145 ° C.
[0185]
Therefore, in the twenty-third embodiment of the present invention, the switchgear such as the vacuum interrupting part, the vacuum or gas disconnecting part, the vacuum or gas grounding opening / closing part, the bus bar, and the main circuit external coupling part in each of the above-described embodiments. The insulator for molding the component equipment is a thermosetting resin such as epoxy, and the glass transition temperature of this insulator is 100 ° C. or higher and 145 ° C. or lower. This is because the maximum ambient temperature is 40 ° C. + the bare copper connection maximum allowable temperature of 50 ° C. + the allowable temperature of the insulator to the Tg is 10 ° C. = 100 ° C. or more.
[0186]
In this way, as the insulator for directly molding the switchgear components, particularly the vacuum valve, the thermosetting resin suitable for the insulating structure material is used, and the glass transition temperature is set to 100 ° C. or higher, so that the maximum use temperature In this case, the performance as an insulating structure material can be sufficiently exhibited, and a highly reliable switch gear can be provided.
[0187]
【The invention's effect】
As described above, according to the present invention, the main circuit constituent devices and conductors connecting each device can be configured not to be affected by the installation environment, the dimensions necessary for electrical insulation can be reduced, and the number of parts can be reduced. And a significant reduction in assembly time and test time. By combining standardized shield units, it can be used for all circuit configurations, improve insulation performance and cut-off performance, shorten the time required for local installation, and be safe and reliable. It is possible to provide a highly enclosed switchgear.
[Brief description of the drawings]
FIG. 1A is an electric circuit diagram of a switchgear showing a first embodiment of the present invention, and FIG. 1B is a side view showing a section of the switchgear.
FIG. 2 is a side view showing a part of the second embodiment of the present invention.
FIG. 3A is an electric circuit diagram of a switchgear showing a third embodiment of the present invention, and FIG. 3B is a side view showing a part of the switchgear in section.
FIG. 4 is a side view showing a part of the fourth embodiment of the present invention in section.
FIG. 5 is a side view showing a part of the fifth and sixth embodiments of the present invention.
FIG. 6A is an electric circuit diagram of a switchgear showing a seventh embodiment of the present invention, and FIG. 6B is a side view showing a part of the switchgear in section.
FIG. 7 is a side view showing a part of the eighth embodiment of the present invention.
FIG. 8 is a side view showing a part of a ninth embodiment of the present invention.
FIG. 9 is a side view showing a section of a tenth embodiment of the present invention.
FIG. 10 is a side view showing a partial cross section of an eleventh embodiment of the present invention.
FIG. 11 is a side view showing a part of a twelfth embodiment of the present invention.
FIG. 12 is a side view showing a thirteenth embodiment of the present invention with a partial cross section.
FIG. 13 is a side view illustrating a fourteenth embodiment of the present invention with a partial cross section.
FIG. 14 is a side view showing a part of a fifteenth embodiment of the present invention in section.
FIG. 15 is a side view showing a part of a sixteenth embodiment of the present invention in section.
16A and 16B, in the embodiment shown in FIGS. 3 to 6, when (a) is one of the two vacuum valves of the switch mold part and the other is a disconnector, (b) is both. When it is set as a circuit breaker, (c) is a block diagram at the time of using both as a disconnecting switch.
17A to 17B, in the embodiment shown in FIG. 3 to FIG. 6, when one of the two vacuum valves is a conductor instead of the vacuum valve and the other is a circuit breaker, FIG. When it is replaced with a valve and a conductor and the other is a disconnector, (c) is a block diagram when both are replaced with a conductor instead of two vacuum valves.
FIG. 18 shows the embodiment shown in FIG. 3 to FIG. 6 in which the busbar connection portion is a main circuit external coupling portion, and (a) shows a case where one vacuum valve is a disconnector and the other is a breaker. (B) is a configuration diagram when both vacuum valves are circuit breakers, and (c) is a configuration diagram when both vacuum valves are disconnectors.
19A to 19B, in the embodiment shown in FIGS. 3 to 6, similarly, when (a) uses one of two vacuum valves as a conductor instead of the vacuum valve and the other as a circuit breaker, (b) shows one of them. When a conductor is used instead of the vacuum valve and the other is a disconnector, (c) is a configuration diagram when both are used as conductors instead of two vacuum valves.
20A and 20B, in the embodiment shown in FIGS. 3 to 6, when (a) uses one vacuum valve as a disconnector and the other as a circuit breaker, (b) uses both vacuum valves as a circuit breaker. (C) is a block diagram when both vacuum valves are disconnectors.
21. In the embodiment shown in FIG. 3 to FIG. 6, similarly, (a) is a case where one of two vacuum valves is a conductor instead of a vacuum valve, and the other is a circuit breaker. When a conductor is used instead of a vacuum valve and the other is a disconnector, (c) is a configuration diagram when both are used as conductors instead of two vacuum valves.
22A is an electric circuit diagram of a switchgear showing a seventeenth embodiment of the present invention, and FIG. 22B is a side view showing a part of the switchgear in section.
FIG. 23A is an electric circuit diagram of a switchgear showing an eighteenth embodiment of the present invention, and FIG. 23B is a side view showing a part of the switchgear in section.
FIG. 24 is a side view showing a nineteenth embodiment of the present invention in partial section.
FIG. 25A is an electric circuit diagram of a switchgear showing a twentieth embodiment of the present invention, and FIG. 25B is a side view showing a part of the switchgear in section.
FIG. 26A is an electric circuit diagram of a switchgear showing a twenty-first embodiment of the present invention, and FIG. 26B is a side view showing a section of the switchgear.
FIG. 27 is a view for explaining an assembly procedure of a unit bus bar according to a twenty-second embodiment of the present invention.
FIG. 28 is a characteristic diagram showing a relationship between physical properties and temperature of an epoxy resin used as an insulator according to a twenty-third embodiment of the present invention.
FIG. 29 is a side view showing an example of the internal configuration of a conventional air-insulated switchgear.
FIG. 30 is a side view showing an example of the internal configuration of a conventional sealed switchgear.
[Explanation of symbols]
1 ... Vacuum block
2 ... Vacuum or gas disconnection
3 ... Vacuum or gas ground switch
4 ... Busbar joint department
5 ... Main circuit external joint
6: Insulator having a grounding layer
7 ... Operating mechanism
8 ... Cavity
9 ... Moveable conductor
10 ... Insulating operation rod
11 ... Cable
12 ... Current transformer
13 ... Metal enclosure
17 ... Vacuum valve
24 ... Switch mold part
25 ... Bus connection mold part
26 ... Main circuit external mold part
16a ... Mortar-shaped fitting part
35. Flexible insulation
44 ... Disconnector
45 ... circuit breaker
46 ... Bus

Claims (19)

少なくとも2つの真空バルブをこれら各真空バルブの可動軸が平行で床面に対して垂直になるように配置すると共に、前記各真空バルブの可動部側を共通導体で接続し、且つ一方の前記真空バルブの固定側導体の上部に母線接続導体を配設し、他方の前記真空バルブの固定側導体の上部に少なくとも2つ以上の端部を有する主回路外部接続導体を突出させて配設する構成として、これらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、
このモールド部は前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い空胴を有し、この空胴内に前記真空バルブの可動導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブを直線駆動する操作機構を真空バルブの可動軸上に接続したことを特徴とする密閉形スイッチギヤ。
At least two vacuum valves are arranged so that the movable axes of these vacuum valves are parallel and perpendicular to the floor surface, the movable parts of the vacuum valves are connected by a common conductor, and one of the vacuum valves is connected. A structure in which a bus connecting conductor is disposed on the fixed side conductor of the bulb and a main circuit external connecting conductor having at least two or more end portions is projected on the other fixed side conductor of the vacuum valve. These are integrally molded in a single phase or three phases with an insulator having a ground layer on the surface,
The mold part has a cavity without a ground layer on the inner surface of the insulator on the side where the movable conductor of the vacuum valve protrudes from the common conductor, and an insulating operation rod is connected to the movable conductor of the vacuum valve in the cavity. A sealed switchgear characterized in that an operating mechanism for linearly driving the vacuum valve is connected to the other end of the insulating operating rod on the movable shaft of the vacuum valve .
少なくとも2つの真空バルブをこれら各真空バルブの可動軸が平行で床面に対して垂直になるように配置すると共に、前記各真空バルブの可動部側を共通導体で接続してこれらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記真空バルブの固定側導体の軸上に接地層の無い嵌合部と前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い空胴とが形成された開閉器モールド部と、母線接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記母線接続導体の一方の端部に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状の嵌合部と他方の端部に接地層の無い母線接続部とが形成された母線接続モールド部と、少なくとも3つ以上の端部を有する主回路外部接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記主回路外部接続導体の少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングと他の端部に接地層の無い前記開閉器モールド部の嵌合部に嵌合する形状の嵌合部とが形成された主回路外部取合モールド部とを備え、
これら3つのモールド部を、前記開閉器モールド部の嵌合部で接続すると共に、前記空胴内に前記真空バルブの可動導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブを直線駆動するための操作機構を真空バルブの可動軸上に接続したことを特徴とする密閉形スイッチギヤ。
At least two vacuum valves are arranged so that the movable axes of these vacuum valves are parallel and perpendicular to the floor surface, and the movable parts of the vacuum valves are connected by a common conductor so that they are integrated. A single-phase or three-phase molded with an insulator having a ground layer on the surface, and a fitting portion having no ground layer on the axis of the fixed-side conductor of the vacuum valve and the movable conductor of the vacuum valve are formed from the common conductor. A switch mold part in which a cavity without a grounding layer is formed on the inner surface of the insulating material on the protruding side, a busbar connecting conductor is molded in a single-phase or three-phase integrally with an insulator having a grounding layer on the surface, and A bus bar in which a fitting part shaped to fit with the fitting part of the switch mold part without a grounding layer at one end of the bus bar connecting conductor and a bus bar connecting part without a grounding layer at the other end are formed Connecting mold part and at least 3 or more ends A main circuit external connection conductor having a ground layer on the surface is molded in a single-phase or three-phase integral with an insulator having a ground layer, and at least one end of the main circuit external connection conductor is connected to a cable without a ground layer A main circuit external coupling mold part formed with a fitting part of a shape that fits the fitting part of the switch mold part without a grounding layer at the other end and a shaped or concave bushing,
These three mold parts are connected at the fitting part of the switch mold part, and an insulating operating rod is connected to the movable conductor of the vacuum valve in the cavity, and the vacuum is connected to the other end of the insulating operating rod. An airtight switchgear characterized in that an operating mechanism for linearly driving the valve is connected to the movable shaft of the vacuum valve .
少なくとも2つの真空バルブをこれら各真空バルブの可動軸が平行で床面に対して垂直になるように配置すると共に、前記各真空バルブの可動部側を共通導体で接続し、且つ一方の前記真空バルブの固定側導体の軸上に母線接続導体を配設し、他方の前記真空バルブの固定側導体の軸上に少なくとも2つ以上の端部を有する主回路外部接続導体を突出させて配設する構成として、これらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、
このモールド部は前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い空胴を有し、この空胴内に前記真空バルブの可動導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブの軸上で床面に対して垂直な面に取付けられた直線駆動するための操作機構に接続したことを特徴とする密閉形スイッチギヤ。
At least two vacuum valves are arranged so that the movable axes of these vacuum valves are parallel and perpendicular to the floor surface, the movable parts of the vacuum valves are connected by a common conductor, and one of the vacuum valves is connected. A bus connecting conductor is disposed on the fixed side conductor shaft of the valve, and a main circuit external connecting conductor having at least two ends is projected on the other fixed side conductor shaft of the vacuum valve. As a structure to be formed, these are integrally molded in a single phase or three phases with an insulator having a ground layer on the surface,
The mold part has a cavity without a ground layer on the inner surface of the insulator on the side where the movable conductor of the vacuum valve protrudes from the common conductor, and an insulating operation rod is connected to the movable conductor of the vacuum valve in the cavity. A closed type switchgear is connected to an operating mechanism for linear drive attached to the other end of the insulating operating rod on a surface perpendicular to the floor surface on the axis of the vacuum valve .
少なくとも2つの真空バルブをこれら各真空バルブの可動軸が平行で床面に対して垂直になるように配置すると共に、前記各真空バルブの可動部側を共通導体で接続してこれらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記真空バルブの固定側導体の軸上に接地層の嵌合部と前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い空胴とが形成された開閉器モールド部と、母線接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記母線接続導体の一方の端部に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状の嵌合部と他方の端部に接地層の無い母線接続部とが形成された母線接続モールド部と、少なくとも3つ以上の端部を有する主回路外部接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記主回路外部接続導体の少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングと他 の端部に接地層の無い前記開閉器モールド部の嵌合部に嵌合する形状の嵌合部とが形成された主回路外部取合モールド部とを備え、
これら3つのモールド部を、前記開閉器モールド部の嵌合部で接続すると共に、前記空胴内に前記真空バルブの可動導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブの軸上で床面に対して垂直な面に取付けられた直線駆動するための操作機構に接続したことを特徴とする密閉形スイッチギヤ。
At least two vacuum valves are arranged so that the movable axes of these vacuum valves are parallel and perpendicular to the floor surface, and the movable parts of the vacuum valves are connected by a common conductor so that they are integrated. Molded as a single-phase or three-phase integral with an insulator having a ground layer on the surface, and the fitting portion of the ground layer and the movable conductor of the vacuum valve protrude from the common conductor on the axis of the stationary conductor of the vacuum valve A switch mold part in which a cavity without a grounding layer is formed on the inner surface of the insulating material, and a busbar connecting conductor is molded in a single-phase or three-phase integrally with an insulator having a grounding layer on the surface; A busbar connection in which a fitting portion shaped to fit with the fitting portion of the switch mold portion without a grounding layer at one end of the connecting conductor and a busbar connecting portion without a grounding layer at the other end The mold part and at least three or more ends. The main circuit external connection conductor is molded in a single-phase or three-phase integral with an insulator having a ground layer on the surface, and a convex shape without a ground layer connecting the cable to at least one end of the main circuit external connection conductor Alternatively, the main circuit external coupling mold part formed with a concave bushing and a fitting part shaped to fit into the fitting part of the switch mold part having no ground layer at the other end,
These three mold parts are connected at the fitting part of the switch mold part, and an insulating operating rod is connected to the movable conductor of the vacuum valve in the cavity, and the vacuum is connected to the other end of the insulating operating rod. A sealed switchgear connected to an operating mechanism for linear drive mounted on a surface perpendicular to the floor surface on the valve shaft .
請求項1乃至請求項4のいずれかに記載の密閉形スイッチギヤにおいて、前記真空バルブの可動導体が前記共通導体より突出する側の前記共通導体に接触子を設け、前記空胴の前記共通導体と反対側から前記接触子に接続する大地より絶縁された可動導体を設け、この可動導体に大地に切離し可能な接地された接地導体を接続し、前記可動導体を直線駆動する操作機構を前記可動導体と絶縁して接続したことを特徴とする密閉形スイッチギヤ。5. The sealed switchgear according to claim 1, wherein a contact is provided on the common conductor on a side where a movable conductor of the vacuum valve protrudes from the common conductor, and the common conductor of the cavity is provided. A movable conductor that is insulated from the ground connected to the contact from the opposite side is provided, and a grounded ground conductor that can be separated from the ground is connected to the movable conductor, and an operation mechanism that linearly drives the movable conductor is movable. Sealed switchgear characterized by being insulated and connected to a conductor. 請求項1乃至請求項4のいずれかに記載の密閉形スイッチギヤにおいて、前記空胴に空気等の絶縁媒体を密閉したことを特徴とする密閉形スイッチギヤ。 5. The sealed switchgear according to claim 1, wherein an insulating medium such as air is sealed in the cavity . 請求項1乃至請求項4のいずれかに記載の密閉形スイッチギヤにおいて、前記空胴を形成する絶縁物の前記共通導体の近傍周面に導電性シールドを設けたことを特徴とする密閉形スイッチギヤ。 5. The sealed switch gear according to claim 1, wherein a conductive shield is provided in the vicinity of the common conductor of the insulator forming the cavity. 6. gear. 請求項1乃至請求項4のいずれかに記載の密閉形スイッチギヤにおいて、前記開閉器モールド部、母線接続モールド部及び主回路外部取合モールド部にそれぞれ形成された嵌合部に前記嵌合部を構成する絶縁物よりも柔らかい絶縁物を介在させたことを特徴とする密閉形スイッチギヤ。 5. The hermetic switchgear according to claim 1, wherein the fitting portion is formed in a fitting portion formed in each of the switch mold portion, the busbar connection mold portion, and the main circuit external fitting mold portion. A sealed switchgear characterized by interposing an insulating material softer than the insulating material constituting the . 請求項1記載の密閉形スイッチギヤにおいて、H字形の主回路外部接続導体を埋め込んだ主回路外部取合部の各嵌合部に、表面に接地層を有する避雷器又は表面に接地層を有する計器用変成器、表面に接地層を有する真空バルブによる接地装置、表面に接地層を有する試験端子または表面に接地層を有する絶縁栓のうち少なくとも2つ以上を接続したことを特徴とする密閉形スイッチギヤ。 2. The sealed switchgear according to claim 1, wherein a lightning arrester having a grounding layer on the surface or a measuring instrument having a grounding layer on the surface at each fitting portion of the main circuit external coupling portion in which an H-shaped main circuit external connection conductor is embedded. Transformer, characterized in that at least two of a grounding device by a vacuum valve having a grounding layer on the surface, a test terminal having a grounding layer on the surface or an insulating plug having a grounding layer on the surface are connected gear. 請求項1乃至請求項4のいずれかに記載の密閉形スイッチギヤにおいて、主回路外部取合導体の近傍に円盤状電極を設け、この円盤状電極からモールドの外層に接地層から絶縁された導体を突出させたことを特徴とする密閉形スイッチギヤ。 5. The sealed switchgear according to claim 1, wherein a disk-shaped electrode is provided in the vicinity of the main circuit external coupling conductor, and the conductor is insulated from the ground layer from the disk-shaped electrode to the outer layer of the mold. Sealed switchgear characterized by protruding . 請求項1乃至請求項4のいずれかに記載の密閉形スイッチギヤにおいて、2つの真空バルブの軸間寸法の半分の寸法と、母線接続導体の母線接続側の母線の中心から母線接続導体を接地する真空バルブの軸までの寸法を等しくしたことを特徴とする密閉形スイッチギヤ。 5. The hermetic switchgear according to claim 1, wherein the bus connection conductor is grounded from a half of the inter-axis dimension of the two vacuum valves and the center of the bus on the bus connection side of the bus connection conductor. A sealed switchgear characterized by having the same dimension to the shaft of the vacuum valve . 請求項1乃至請求項4のいずれかに記載の密閉形スイッチギヤにおいて、真空バルブを直線駆動する操作機構を電磁操作機構としたことを特徴とする密閉形スイッチギヤ。 5. The sealed switchgear according to claim 1, wherein the operation mechanism for linearly driving the vacuum valve is an electromagnetic operation mechanism . 請求項2又は請求項4のいずれかに記載の密閉形スイッチギヤにおいて、前記開閉器モールド部に形成された嵌合部の前記真空バルブの固定側導体に凹状部分を設け、この凹状部分に前記母線接続導体又は主回路外部取合モールド部の嵌合部を挿入して電気的及び機械的に接続したことを特徴とする密閉形スイッチギヤ。 5. The hermetic switchgear according to claim 2, wherein a concave portion is provided in a fixed side conductor of the vacuum valve of the fitting portion formed in the switch mold portion, and the concave portion is provided with the concave portion. A hermetic switchgear characterized by inserting a busbar connection conductor or a fitting portion of a main circuit external fitting mold portion and electrically and mechanically connecting them . 請求項1乃至請求項4のいずれかに記載の密閉形スイッチギヤにおいて、前記2つの真空バルブ間の共通導体と絶縁操作ロッドを接続した真空バルブの可動導体との間の絶縁物に空胴を設けたことを特徴とする密閉形スイッチギヤ。 5. The hermetic switchgear according to claim 1, wherein a cavity is provided in an insulator between the common conductor between the two vacuum valves and the movable conductor of the vacuum valve connected to the insulating operation rod. A sealed switchgear characterized by being provided . 2つの真空バルブの軸を平行にし可動部側を共通の導体で接続してこれらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記真空バルブの固定側導体の軸上に接地層の無い嵌合部と前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い密閉された空胴とが形成された開閉器モールド部を少なくとも2つ以上真空バルブの軸が平行となるように配置すると共に、これら各開閉器モールド部内の前記空胴内に前記真空バルブの可動部導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブを直線駆動するための操作機 構を接続する構成とし、
隣合せに配置された前記開閉器モールド部の嵌合部同志を、コの字形状もしくはU字形状をした導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、その両端に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状を有する接続モールドユニットにより連結し、残りの開閉器モールド部の嵌合部に、母線接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、一方の端部に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状を有し、他方の端部に母線を接続する接地層の無い母線接続部を有した母線接続モールド部と、少なくとも3つ以上の端部を有する導体を表面に接地層を有する絶縁物で単相または3相一体にモールドし、少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングを有し、他の端部に接地層の無い前記開閉器部の嵌合部と嵌合する形状を有した主回路外部取合モールド部を接続したことを特徴とする密閉形スイッチギヤ。
The axes of the two vacuum valves are parallel, the movable part side is connected with a common conductor, and these are integrally molded with an insulator having a ground layer on the surface in a single phase or three phases, and the vacuum valve is fixed. A switch mold in which a fitting portion having no ground layer is formed on the axis of the side conductor and a sealed cavity having no ground layer is formed on the inner surface of the insulator on the side where the movable conductor of the vacuum valve protrudes from the common conductor At least two parts are arranged so that the axes of the vacuum valves are parallel to each other, and an insulating operation rod is connected to the movable part conductor of the vacuum valve in the cavity in each of these switch mold parts. a configuration for connecting the operation Organization for linearly driving the vacuum valve to the other end of the rod,
The fitting parts of the switch mold parts arranged next to each other are molded in a single-phase or three-phase integrally with an insulator having a ground layer on the surface of a U-shaped or U-shaped conductor, It is connected by a connection mold unit having a shape that fits with the fitting part of the switch mold part that does not have a ground layer at both ends, and the grounding layer is connected to the fitting part of the remaining switch mold part with the busbar connection conductor on the surface. Molded as a single-phase or three-phase integral with an insulator having a shape that fits with the fitting part of the switch mold part without a grounding layer at one end, and connects the busbar to the other end A bus bar connection mold part having a bus bar connection part without a ground layer, and a conductor having at least three or more end parts are molded in a single phase or three phases integrally with an insulator having a ground layer on the surface, and at least one end No grounding layer to connect the cable to Has a convex or concave bushing, and characterized in that to connect the main circuit external Togo mold portion having a shape that mates with the fitting portion of the switch unit with no ground layer on the other end Sealed switchgear.
請求項15記載の密閉形スイッチギヤにおいて、母線接続モールド部を接続する開閉器モールド部の真空バルブを断路部とし、残りの開閉器モールド部の真空バルブを遮断部とし、前記断路部と遮断部を各々1つの操作機構で直線駆動するか、または前記断路部と遮断部を各々2つの操作機構で同時または別々に直線駆動することを特徴とする密閉形スイッチギヤ。 The hermetic switchgear according to claim 15, wherein a vacuum valve of a switch mold part that connects a busbar connection mold part is a disconnection part, and a vacuum valve of the remaining switch mold part is a cutoff part, and the disconnection part and the cutoff part A closed type switchgear characterized in that each is driven linearly by one operating mechanism, or the disconnecting part and the blocking part are each linearly driven by two operating mechanisms simultaneously or separately . 請求項15記載の密閉形スイッチギヤにおいて、1つの開閉器モールド部の真空バルブの軸間寸法と、コの字もしくはU字形状の接続モールドユニットで接続する2つの開閉器モールド部の当該真空バルブの軸間寸法を同一とし、且つ開閉器モールド部の2つの真空バルブの軸間寸法の半分の寸法と、母線接続導体の母線接続側の母線の中心から母線接続導体を接続する真空バルブの軸までの寸法を等しくしたことを特徴とする密閉形スイッチギヤ。 16. The hermetic switchgear according to claim 15, wherein the dimension between the axes of the vacuum valve of one switch mold part and the vacuum valve of the two switch mold parts connected by a U-shaped or U-shaped connection mold unit. The axis of the vacuum valve connecting the busbar connection conductor from the center of the busbar on the busbar connection side of the busbar connection conductor Sealed switchgear characterized by having the same dimensions . 2つの真空バルブの軸を平行にし可動部側を共通の導体で接続してこれらを一体的に表面に接地層を有する絶縁物で単相または3相一体にモールドし、且つ前記真空バルブの固定側導体の軸上に接地層の無い嵌合部と前記真空バルブの可動導体が前記共通導体より突出する側の絶縁物内面に接地層の無い密閉された空胴とが形成された開閉器モールド部を少なくとも2つ以上真空バルブの軸が平行となるように配置すると共に、これら各開閉器モールド部内の前記空胴内に前記真空バルブの可動部導体に絶縁操作ロッドを接続し、この絶縁操作ロッドの他端に前記真空バルブを直線駆動するための操作機構を接続する構成とし、
隣合せの前記開閉器モールド部の共通導体側に形成された嵌合部同志を、直線状の導体を表面に接地層を有する絶縁物で単相または3相一体にモールドしてその両端に接地層の無い前記開閉器部の嵌合部と嵌合する形状を有する直線接続モールドユニットにより連結し、一方の開閉器モールド部の2つの真空バルブの固定導体側の嵌合部に、母線接続導体を表面に接地層を有する絶縁物で単相または3相一体にモールドして一方の端部に接地層の無い前記開閉器モールド部の嵌合部と嵌合する形状を有し、他方の端部に母線を接続する接地層の無い母線接続部を有した母線接続モールド部を接続し、他方の開閉器モールド部の2つの真空バルブの固定導体側嵌合部のうち一方に少なくとも3つ以上の端部を有する導体を表面に接地層を有する絶縁物で単相または3相一体にモールドして少なくとも1つの端部にケーブルを接続する接地層の無い凸形もしくは凹形のブッシングを有し、他の端部に接地層の無い前記開閉器部の嵌合部と嵌合する形状を有した主回路外部取合モールド部を接続し残りの真空バルブの固定導体側の嵌合部に表面に接地層を有する絶縁栓を接続したことを特徴とする密閉形スイッチギヤ。
The axes of the two vacuum valves are parallel, the movable part side is connected with a common conductor, and these are integrally molded with an insulator having a ground layer on the surface in a single phase or three phases, and the vacuum valve is fixed. A switch mold in which a fitting portion having no ground layer is formed on the axis of the side conductor and a sealed cavity having no ground layer is formed on the inner surface of the insulator on the side where the movable conductor of the vacuum valve protrudes from the common conductor At least two parts are arranged so that the axes of the vacuum valves are parallel to each other, and an insulating operation rod is connected to the movable part conductor of the vacuum valve in the cavity in each of these switch mold parts. An operation mechanism for linearly driving the vacuum valve is connected to the other end of the rod,
The fitting parts formed on the common conductor side of the adjacent switch mold part are molded in a single-phase or three-phase integrally with a linear conductor with an insulator having a ground layer on the surface, and are connected to both ends thereof. It is connected by a straight connection mold unit having a shape that fits with the fitting part of the switch part without a formation, and the fitting part on the fixed conductor side of the two vacuum valves of one switch mold part is connected to the bus bar connecting conductor Is molded in a single-phase or three-phase integrally with an insulator having a ground layer on the surface, and is fitted to the fitting portion of the switch mold portion having no ground layer at one end, and the other end A busbar connection mold part having a busbar connection part without a grounding layer for connecting the busbar to the part is connected, and at least three or more in one of the fixed conductor side fitting parts of the two vacuum valves of the other switch mold part Have a ground layer on the surface of the conductor having the end of The switch having a convex or concave bushing without a grounding layer that is molded in a single phase or three-phase integrally with an edge and connects a cable to at least one end, and has no grounding layer at the other end The main circuit external fitting mold part having a shape that fits with the fitting part of the part is connected, and an insulating plug having a ground layer on the surface is connected to the fitting part on the fixed conductor side of the remaining vacuum valve. Sealed switchgear.
請求項1乃至請求項18のいずれかに記載の密閉形スイッチギヤが複数列盤される場合の盤間母線において、両端にスライド可能で母線接続部の嵌合部と嵌合できる絶縁物を有する固体絶縁母線の両端を内側にスライドさせた時の全長が、列盤状態で隣接する母線接続部の先端同士の間隔より短くなる固体絶縁母線と、母線接続部の内周に固体絶縁母線と通電接触するためのスライド可能な接触子を有し、前記接触子をスライドさせることで前記母線接続部の先端より突出することが無い母線接続部を用いて構成す ことを特徴とする密閉形スイッチギヤ。 19. An inter-board bus when the sealed switchgear according to any one of claims 1 to 18 is arranged in a plurality of rows, and has an insulator that can be slid at both ends and can be fitted with a fitting portion of the bus-bar connecting portion. Solid insulation bus with the total length when both ends of the solid insulation bus are slid inward is shorter than the distance between the ends of adjacent bus connection parts in the lined state, and the solid insulation bus is energized to the inner periphery of the bus connection part a slidable contact for contacting, enclosed switches, characterized in that that make up using busbar connection portion is not protrude from the tip of the bus bar connecting portion by sliding the contact gear.
JP2000347044A 2000-11-14 2000-11-14 Sealed switchgear Expired - Fee Related JP4004012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347044A JP4004012B2 (en) 2000-11-14 2000-11-14 Sealed switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347044A JP4004012B2 (en) 2000-11-14 2000-11-14 Sealed switchgear

Publications (2)

Publication Number Publication Date
JP2002152930A JP2002152930A (en) 2002-05-24
JP4004012B2 true JP4004012B2 (en) 2007-11-07

Family

ID=18820832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347044A Expired - Fee Related JP4004012B2 (en) 2000-11-14 2000-11-14 Sealed switchgear

Country Status (1)

Country Link
JP (1) JP4004012B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448125C (en) * 2002-11-22 2008-12-31 三菱电机株式会社 Switchgear connector
JP4550629B2 (en) * 2005-03-08 2010-09-22 株式会社東芝 Busbar connection device
JP4625721B2 (en) * 2005-06-23 2011-02-02 株式会社東芝 Switchgear
JP4841875B2 (en) * 2005-06-29 2011-12-21 株式会社日立製作所 Vacuum insulated switchgear
TW200841371A (en) 2007-02-14 2008-10-16 Hitachi Ltd Switchgear
JP5017015B2 (en) * 2007-08-10 2012-09-05 株式会社東芝 Metal closed switchgear
JP4701273B2 (en) * 2008-07-30 2011-06-15 株式会社日立製作所 Vacuum switchgear and height adjustment method thereof
JP4764906B2 (en) 2008-08-12 2011-09-07 株式会社日立製作所 Vacuum switch and vacuum switch gear
CN102782971B (en) * 2010-03-25 2015-02-11 三菱电机株式会社 Vacuum-circuit breaker
JP5565236B2 (en) * 2010-09-22 2014-08-06 日新電機株式会社 Vacuum circuit breaker and switchgear
SG192031A1 (en) * 2011-01-26 2013-08-30 Hitachi Ltd Vacuum insulation switchgear and method for replacing mold switch
JP5815449B2 (en) * 2012-03-28 2015-11-17 株式会社日立製作所 Vacuum circuit breaker
CN102664121B (en) * 2012-05-29 2015-06-17 北京华东森源电气有限责任公司 Insulation cylinder and main loop structure utilizing same
JP6615585B2 (en) * 2015-11-10 2019-12-04 株式会社日立産機システム Switchgear and power distribution system
EP3740961B1 (en) * 2018-01-15 2022-12-21 Sécheron SA Electrical switching device
JP7143195B2 (en) * 2018-11-28 2022-09-28 株式会社東芝 vacuum valve

Also Published As

Publication number Publication date
JP2002152930A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
JP4004012B2 (en) Sealed switchgear
TWI390813B (en) Vacuum insulated switchgear
US8710388B2 (en) Switchgear and method for operating switchgear
CN1319232C (en) Switch device
KR20060117242A (en) A solid insulated disconnector switch and a solid insulated switchgear using the disconnector switch
KR100846223B1 (en) Medium Voltage Switch-gear
JP2003047113A (en) Switching device
KR100860528B1 (en) Load break switch and manufacturing method thereof
RU2344506C1 (en) Vacuum circuit breaker
EP1496585B1 (en) Metal closed type distributor
KR20200029047A (en) Circuit breaker for gas insulated switchgear
US7378759B2 (en) Disconnecting switch assembly
KR100888541B1 (en) Epoxy mold insulated multi switch and switchgear for underground power line
JP3623333B2 (en) Substation equipment
US7485807B2 (en) Gas-insulated bus bar component comprising outdoor bushings
US7692113B2 (en) Switch assembly
KR101157188B1 (en) Solid insulated switchgear
JP2000197221A (en) Closed type gas insulated three-phase switchgear
KR101247538B1 (en) Solid insulated switchgear
KR101690131B1 (en) Method for manufacturing insulated housing for solid insulated switchgear
KR200496464Y1 (en) Connection part between gas insulated switchgear and solid insulated switchgear
JPH02260345A (en) Disconnector of switch device
JP3781944B2 (en) Multifunctional vacuum valve
JPH09191512A (en) Gas insulated switchgear
JP2002313198A (en) Switching device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

R151 Written notification of patent or utility model registration

Ref document number: 4004012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees