JP4001051B2 - Eddy current reduction device and magnet guide case used therefor - Google Patents

Eddy current reduction device and magnet guide case used therefor Download PDF

Info

Publication number
JP4001051B2
JP4001051B2 JP2003126614A JP2003126614A JP4001051B2 JP 4001051 B2 JP4001051 B2 JP 4001051B2 JP 2003126614 A JP2003126614 A JP 2003126614A JP 2003126614 A JP2003126614 A JP 2003126614A JP 4001051 B2 JP4001051 B2 JP 4001051B2
Authority
JP
Japan
Prior art keywords
braking
eddy current
stainless steel
permanent magnet
reduction device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003126614A
Other languages
Japanese (ja)
Other versions
JP2004336850A (en
Inventor
博行 山口
憲治 今西
誠均 田坂
泰隆 野口
光雄 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003126614A priority Critical patent/JP4001051B2/en
Publication of JP2004336850A publication Critical patent/JP2004336850A/en
Application granted granted Critical
Publication of JP4001051B2 publication Critical patent/JP4001051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、渦電流式減速装置に関し、特に、機関の回転軸に連結した制動ディスクに対して永久磁石を近接、離間させるタイプの渦電流式減速装置の改良に関する。
【0002】
【従来の技術】
トラック等の大型車両の補助ブレーキ等に使用される渦電流式減速装置には、いくつかのタイプがある。機関の回転軸に連結した制動部材の形状に着目すると、ディスク状の制動部材を採用するタイプ(ディスクタイプ)と、ドラム状の制動部材を採用するタイプに大別される。また、磁気を発生する構成に着目すると、永久磁石を用いたもの、電磁石を用いたもの、更には永久磁石と電磁石の両方を用いた所謂ハイブリッドタイプに大別される。
【0003】
【発明が解決しようとする課題】
何れのタイプの渦電流式減速装置においても、制動効率の向上及び装置の小型が常に重要な課題となる。例えば、永久磁石を用いたディスクタイプの渦電流式減速装置においては、制動時に制動ディスクに接近する永久磁石の温度が上昇する。永久磁石の温度が上昇すると、磁石の磁力が低下し、制動効率が低下してしまう。逆に、磁石の温度上昇を抑制するために制動時の永久磁石と制動ディスクとの間隔を大きめにすると、磁力線の磁路長がながくなり、制動効率が低下してしまう。
【0004】
また、非制動時に永久磁石を制動ディスクから待避されている状態で磁気漏れが発生し、制動ディスクに磁界が作用する場合がある。こうなると、非制動状態でありながら回転軸に微小な制動力が作用してしまう。これを回避するために、非制動時に永久磁石を制動ディスクから大きく引き離す構造を採ることが考えられる。しかし、この場合には、制動時・非制動時における永久磁石の移動ストロークが大きくなり、装置全体が大型化してしまう。
【0005】
本発明は、上記のような状況に鑑みて成されたものであり、制動効率の向上及び装置の小型化に寄与する渦電流式減速装置を提供することを第1の目的とする。
【0006】
また、制動効率の向上及び装置の小型化に寄与する渦電流式減速装置用の磁石ケースを提供することを第2の目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の第1の態様に係る渦電流式減速装置は、機関の回転軸に連結された制動部材と;制動時に前記制動部材の制動面に対して磁界を作用させる磁界発生部と;前記磁界発生部を前記制動部材の制動面に対して制動と非制動とをスイッチさせる機構と;前記磁界発生部材と前記制動面との間に配置され、前記制動面全面に対向する中間薄板部材とを備える。そして、前記中間薄板部材が、高熱伝導率を有する第1の部材と軟磁性の第2の部材とを、各部材が磁極面と平行になるように貼り合わせた構造とする。
【0008】
ここで、高熱伝導率とは、一般的な軟磁性材料が持つ熱伝導率よりも高い熱伝導率をいう。また、軟磁性とは、高い透磁率を持ちながら保持力が小さい磁性材料の性質をいい、一般的な非磁性材と永久磁石を除く殆どの磁性材料の性質でもある。また、中間薄板部材とは、制動時に磁界発生部材から出る磁束により当該薄板の軟磁性材内部に生じる磁気短絡回路の磁束が飽和する最大の厚さよりも薄い板厚を有する軟磁性材に、高熱伝導率材が少なくとも必要な熱伝導率を確保できるだけの厚さを有するものを積層したものをいう。
【0009】
また、本発明の第2の態様に係る磁石ケースは、強磁性体からなり、機関の回転軸に連結された制動ディスクと;制動時に前記制動部材の制動面に対して磁界を作用させる複数の永久磁石と;前記永久磁石を前記制動部材の制動面に対して接近、離間させる駆動機構とを備えた渦電流式減速装置に使用され、前記永久磁石を移動可能な状態で収容するケースに適用される。そして、少なくとも前記制動ディスクの制動面に対向する端部全面が、高熱伝導率を有する第1の部材と軟磁性の第2の部材とを貼り合わせた構造の部材で構成される。
【0010】
上述したように、本発明によれば、永久磁石等の磁界発生部材と制動部材との間に配置される中間薄板部材に熱伝導率の高い材料を用いているため、制動部材から発生する熱が中間薄板部材を介して外部に放熱され易くなる。その結果、磁石と制動部材との距離を短くすることができ、制動効率の向上に寄与することになる。
【0011】
また、中間薄板部材の材質を軟磁性体としているため、非制動時に磁石から中間薄板部材を通して制動部材に到達する磁束量を低減することができる。これにより、磁気漏れ損失が問題とならない磁石と制動部材との距離が、非磁性材の中間薄板部材を使用した場合に比べ短くできる。その結果、永久磁石等の磁界発生部材を用いた場合に移動ストロークが短くなり、装置を小型化することが可能となる。なお、制動中においては、中間薄板部材に磁石が近接し、非制動時に比べ中間薄板部材の磁束密度は極端に大きくなるため、飽和磁束密度の小さい軟磁性の中間薄板部材では磁気短絡することがなく、非磁性体の中間薄板部材と比較して制動効率の低下は殆ど無い。
【0012】
【発明の実施の形態】
以下、本発明についてディスク状の制動部材に対して永久磁石を近接、離間させるタイプの渦電流式減速装置を一例に説明する。しかし、本発明の技術的思想は、制動部材の形状及び磁気発生部の方式等に限定されず、磁気発生部の温度上昇及び装置の小型が要求される種々のタイプの渦電流式減速装置に適用可能である。すなわち、ドラム状の制動部材を用い、あるいは、電磁石又は電磁石と永久磁石とを組み合わせた磁石等を磁気発生部として採用した渦電流式減速装置等にも適用可能である。
【0013】
図1及び図2は、第1参考例に係るリターダの要部の構造を示す断面図であり、各々、図1が非制動状態、図2が制動状態を示す。本実施例に係る渦電流式減速装置(リターダ)は、機関の回転軸1に対して固定された強磁性体からなる制動ディスク2と;制動ディスク2の近傍に配置される制動ユニット(3〜7)とを備えている。
【0014】
回転軸1は、例えば、大型車両(トラック)のプロペラシャフトに連結される。制動ディスク2は円盤(ディスク)状に成形され、中心部を回転軸1が貫通する格好で配置される。制動ユニットは、制動用の磁界を発生する複数の永久磁石6と;当該永久磁石6を保持するリング状又は円弧状の保持部材4と;これら永久磁石6及び保持部材4を収容するケース3と;保持部材4に連結され、永久磁石6を制動ディスク2に対して近接、離間移動させるための駆動機構(エアシリンダー)5と;ケース3の制動ディスク2側端部に配置されたカバー(中間薄板部材)7とを備えている。
【0015】
制動ディスク2は強磁性体によって成形され、図の左側面が制動面として機能する。永久磁石6は、保持部材4の表面上に円周方向に所定間隔で複数配置される。カバー7は、熱伝導率が高く、且つ軟磁性の材料によって成形する。ここで、カバー7の熱伝導率としては、少なくとも10W/(m・k)以上が適切であり、30W/(m・k)以上がより好ましい。また、カバー7の磁性は、磁界強度10000A/mにおける微分透磁率より規定した真空に対する比透磁率(μs)で10以上、130以下が好ましい。この値が10より小さいと常磁性又は非磁性の領域となってしまい、130より大きい場合にはカバー7内にできる磁気短絡回路にまわる磁束が増加し、制動力の低下につながる。
【0016】
カバー7は、プレスや鋳造加工によってケース(案内筒)3と一体で成形することも可能である。カバー7をケース3と別部材とする場合には、ビス止め、カシメ、圧入、接着、溶接などの方法によって、当該カバー7をケース3に対して固定することができる。また、カバー7の断面形状は、一様である必要はなく、磁石と対向しない部分を厚く成形したり、部分的にリブを設けて補強しても良い。
【0017】
また,カバー7の厚さが厚いほど非制動時の磁気漏れ量は低減し、磁石6の温度上昇量も低減するが、磁石6とディスクとの距離が長くなるので、制動効率が低下する。従って,カバー7の厚さは、磁気漏れ抑制効果と磁石温度上昇抑制効果及び制動効率から最適値を決める。厚さの最適値は、カバー7の磁気的特性と熱伝導率だけでなく、磁石の温度特性によってもかわるので、これらを考慮して決定する。
【0018】
ケース3は、例えば、アルミニウム、アルミニウム合金、炭素鋼、鋳鉄、ステンレス鋼等の材質によって成形することが望ましい。
【0019】
本参考例の渦電流式減速装置において、図1に示すように、非制動時には、永久磁石6が制動ディスク2から遠ざかる方向に移動(退避)する。本参考例においては、カバー7の材質を軟磁性体としているため、非制動時に磁石6からカバー7を通して制動ディスク2に到達する磁束量を低減することができる。これにより、磁気漏れ損失が問題とならない磁石と制動部材との距離が、非磁性材のカバーを使用した場合に比べ短くできる。その結果、永久磁石6の移動ストロークが短くなり、装置を小型化することが可能となる。
【0020】
なお、制動中においては、カバー7が薄くて飽和磁束密度が小さいために、カバー7に磁石が近接し、磁束が大きくなり、カバー7内部で磁気短絡を生じても磁気短絡回路に回る磁束が非常に少ないので、非磁性体のカバーと比較して制動効率の低下は殆ど無い。
【0021】
一方、制動時には、図2に示すように、永久磁石6が制動ディスク2に接近し、磁束を作用させる。ところで、制動時には制動ディスク2で発生した熱が永久磁石6側に伝わるが、本参考例においては、カバー7が熱伝導率の高い材質で成形されているため、図3に示すように、制動ディスク2で発生した熱は当該カバー7を介して外部に放熱され易くなる。このため、永久磁石6の温度上昇を低減するために、制動時の磁石6と制動ディスク2との間隔を必要以上に大きくする事態を回避でき、その結果、制動効率の向上を図ることが可能となる。
【0022】
図4は、本発明の第1実施例に係るリターダの要部の構造を示す断面図であり、制動状態を示す。本実施例において、上述した参考例と同一又は対応する構成要素については、同一の符号を付し、重複した説明は省略する。
【0023】
本実施例においては、カバー7を熱伝導率が高い材料からなる第1部材7aと、軟磁性の材料からなる第2部材7bを貼り合わせた構成(クラッド構造)としている。そして、第2部材7bを制動ディスク2側、第1部材7aを永久磁石6側に配置している。ここで、第1部材7aと第2部材7bの位置を反対とし、第1部材7aを制動ディスク2側、第2部材7bを永久磁石6側に配置しても同様な効果が期待できる。
【0024】
また、カバー7の熱膨張による変形を考慮し、熱伝導率の高い部材(7a)を軟磁性の部材(7b)で挟み込む、あるいは、逆に軟磁性の部材(7b)を熱伝導率の高い部材(7a)で挟み込む構造を採ることができる。このようなサンドイッチ構造にすれば、カバー7が熱膨張した場合にも一方向への偏った反り等の変形を抑制することができる。
【0025】
第1部材7aに使用される熱伝導率の高い材料としては、軟磁性材料よりも高い熱伝導率を有するアルミニウム、アルミニウム合金、銅、黄銅などの銅合金、マグネシウム、マグネシウム合金などがある。また、これらの材料を主成分として他の物質を添加することもできる。熱伝導率の最も望ましい値としては、100W/(m・k)以上を有する程度である。
【0026】
一方、第2部材7bに使用される軟磁性材としては、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼や、二相ステンレス鋼などがある。第2部材7bの磁界強度10000A/mにおける微分透磁率より規定した真空に対する比透磁率(μs)としては、10≦μs≦130が望ましい。なお、一般にオーステナイト系ステンレス鋼は冷間加工を施していない場合、磁気的性質が悪い(透磁率が低い)ため、非磁性材料に分類される場合があるが、冷間加工を施すことにより、マルテンサイト相が誘起され、透磁率が高くなり、本発明でいう軟磁性材料となる。
【0027】
要するに、本発明における軟磁性材料としては、オーステナイト系ステンレス鋼やフェライト系ステンレス鋼であり、且つ比透磁率(μs)が10≦μs≦130であるものが最も望ましい。なお、フェライト系ステンレス鋼においては、クロム(Cr)の含有量を調整することにより、上記のような望ましい比透磁率を得ることが可能である。
【0028】
本実施例においても、第1参考例と同様の作用効果を得ることができる。
【0029】
図5は、本発明の第2実施例に係るリターダの要部の構造を示す断面図であり、制動状態を示す。本実施例において、上述した参考例及び実施例と同一又は対応する構成要素については、同一の符号を付し、重複した説明は省略する。
【0030】
本実施例は、図4に示した第1実施例の応用であり、カバー7をクラッド構造ではなく、全く別の2つの独立した部材によって構成する。そして、永久磁石6側の第2部材7bをケース3に対して固定した後に、制動ディスク2側の第1部材を第2部材7bの上から覆うように固定する。特性の異なる第1部材7a及び第2部材7bを全く別の部材とすることにより、装置の使用条件や状況に応じて種々の組み合わせを選択することが可能となる。
【0031】
また、カバー7の熱膨張による変形を考慮し、熱伝導率の高い部材(7a)を軟磁性の部材(7b)で挟み込む、あるいは、逆に軟磁性の部材(7b)を熱伝導率の高い部材(7a)で挟み込む構造を採ることができる。このようなサンドイッチ構造にすれば、カバー7が熱膨張した場合にも一方向への偏った反り等の変形を抑制することができる。
【0032】
図6は、第2参考例に係るリターダの要部の構造を示す断面図であり、制動状態を示す。また、図7は、図6におけるA−A方向の断面の一部を示す。本参考例において、上述した各実施例と同一又は対応する構成要素については、同一の符号を付し、重複した説明は省略する。
【0033】
本参考例においては、軟磁性の第2部材7bを永久磁石6と対向しないように部分的に配置し、非磁性(高熱伝導率)の第1部材のみが永久磁石6に対向する構成としている。本実施例によれば、磁石6と制動ディスク2との距離を短くすることができ、一層制動効率が高くなる。なお、非制動時の磁気漏れに関しては、軟磁性の第2部材7bの厚さを厚くすることにより、対応することができる。
【0034】
以上、本発明の実施例(実施形態、実施態様)について説明したが、本発明はこれらの実施例に何ら限定されるものではなく、特許請求の範囲に示された技術的思想の範疇において変更可能なものである。
【図面の簡単な説明】
【図1】 図1は、第1参考例に係るリターダの要部の構造を示す断面図であり、非制動状態を示す。
【図2】 図2は、第1参考例に係るリターダの要部の構造を示す断面図であり、制動状態を示す。
【図3】 図3は、第1参考例に係るリターダの制動時の放熱状態を示す説明図(断面図)である。
【図4】 図4は、本発明の第実施例に係るリターダの要部の構造を示す断面図であり、制動状態を示す。
【図5】 図5は、本発明の第実施例に係るリターダの要部の構造を示す断面図であり、制動状態を示す。
【図6】 図6は、第2参考例に係るリターダの要部の構造を示す断面図であり、制動状態を示す。
【図7】 図7は、図6におけるA−A方向の断面の一部を示す。
[0001]
[Industrial application fields]
The present invention relates to an eddy current type reduction device, and more particularly to an improvement of an eddy current type reduction device in which a permanent magnet is brought close to and away from a braking disk connected to a rotating shaft of an engine.
[0002]
[Prior art]
There are several types of eddy current type speed reducers used for auxiliary brakes of large vehicles such as trucks. Focusing on the shape of the braking member connected to the rotating shaft of the engine, it is roughly divided into a type that employs a disc-shaped braking member (disc type) and a type that employs a drum-shaped braking member. Focusing on the configuration that generates magnetism, it is roughly divided into those using permanent magnets, those using electromagnets, and so-called hybrid types using both permanent magnets and electromagnets.
[0003]
[Problems to be solved by the invention]
In any type of eddy current type reduction gear, improvement of braking efficiency and downsizing of the device are always important issues. For example, in a disk type eddy current type speed reducer using a permanent magnet, the temperature of the permanent magnet approaching the braking disk rises during braking. When the temperature of the permanent magnet increases, the magnetic force of the magnet decreases, and the braking efficiency decreases. On the other hand, if the distance between the permanent magnet and the braking disk during braking is increased in order to suppress the temperature rise of the magnet, the magnetic path length of the magnetic lines of force is reduced, and the braking efficiency is reduced.
[0004]
In addition, magnetic leakage may occur when the permanent magnet is retracted from the brake disk during non-braking, and a magnetic field may act on the brake disk. If this happens, a minute braking force will act on the rotating shaft in the non-braking state. In order to avoid this, it is conceivable to adopt a structure in which the permanent magnet is largely separated from the braking disk during non-braking. However, in this case, the movement stroke of the permanent magnet at the time of braking / non-braking becomes large, and the entire apparatus becomes large.
[0005]
The present invention has been made in view of the above situation, and a first object of the present invention is to provide an eddy current reduction device that contributes to improvement in braking efficiency and downsizing of the device.
[0006]
It is a second object of the present invention to provide a magnet case for an eddy current reduction device that contributes to improvement of braking efficiency and downsizing of the device.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an eddy current type speed reducer according to a first aspect of the present invention includes a braking member coupled to a rotating shaft of an engine; and a magnetic field acting on a braking surface of the braking member during braking. A magnetic field generating unit that causes the magnetic field generating unit to switch between braking and non-braking with respect to a braking surface of the braking member; and disposed between the magnetic field generating member and the braking surface, the entire braking surface And an intermediate thin plate member opposite to each other . The intermediate thin plate member has a structure in which a first member having high thermal conductivity and a soft magnetic second member are bonded to each other so that each member is parallel to the magnetic pole surface .
[0008]
Here, the high thermal conductivity means a thermal conductivity higher than that of a general soft magnetic material. Soft magnetism means a property of a magnetic material having a high magnetic permeability and a small coercive force, and is also a property of most magnetic materials except general non-magnetic materials and permanent magnets. The intermediate thin plate member is a soft magnetic material having a thickness less than the maximum thickness at which the magnetic short circuit magnetic flux generated inside the thin magnetic material of the thin plate is saturated by the magnetic flux generated from the magnetic field generating member during braking. A conductive material is a laminate of materials having a thickness sufficient to ensure at least the required thermal conductivity.
[0009]
A magnet case according to a second aspect of the present invention comprises a braking disk made of a ferromagnetic material and connected to a rotating shaft of an engine; and a plurality of magnetic fields acting on the braking surface of the braking member during braking. Used in an eddy current type speed reducer comprising a permanent magnet and a drive mechanism for moving the permanent magnet toward and away from the braking surface of the braking member, and applied to a case that accommodates the permanent magnet in a movable state Is done. At least the entire surface of the end facing the braking surface of the braking disk is formed of a member having a structure in which a first member having high thermal conductivity and a soft magnetic second member are bonded together .
[0010]
As described above, according to the present invention, since the material having high thermal conductivity is used for the intermediate thin plate member disposed between the magnetic field generating member such as a permanent magnet and the braking member, the heat generated from the braking member Is easily radiated to the outside through the intermediate thin plate member. As a result, the distance between the magnet and the braking member can be shortened, which contributes to an improvement in braking efficiency.
[0011]
In addition, since the material of the intermediate thin plate member is a soft magnetic material, the amount of magnetic flux reaching the braking member from the magnet through the intermediate thin plate member during non-braking can be reduced. As a result, the distance between the magnet and the braking member where magnetic leakage loss does not become a problem can be shortened compared to the case where a non-magnetic intermediate thin plate member is used. As a result, when a magnetic field generating member such as a permanent magnet is used, the moving stroke is shortened, and the apparatus can be miniaturized. During braking, the magnet is close to the intermediate thin plate member, and the magnetic flux density of the intermediate thin plate member becomes extremely larger than that during non-braking, so a soft magnetic intermediate thin plate member with a low saturation magnetic flux density may cause a magnetic short circuit. There is almost no decrease in braking efficiency as compared with the non-magnetic intermediate thin plate member.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described by taking as an example an eddy current type speed reducer in which a permanent magnet is brought close to and away from a disc-shaped braking member. However, the technical idea of the present invention is not limited to the shape of the braking member and the method of the magnetic generation unit, but to various types of eddy current type reduction gears that require a temperature increase of the magnetic generation unit and downsizing of the device. Applicable. In other words, the present invention can be applied to an eddy current reduction device using a drum-shaped braking member or an electromagnet or a combination of an electromagnet and a permanent magnet as a magnetism generator.
[0013]
1 and 2 are cross-sectional views showing the structure of the main part of a retarder according to a first reference example , in which FIG. 1 shows a non-braking state and FIG. 2 shows a braking state. The eddy current type speed reducer (retarder) according to the present embodiment includes a braking disk 2 made of a ferromagnetic material fixed to the rotating shaft 1 of the engine, and a braking unit (3- 7).
[0014]
The rotating shaft 1 is connected to a propeller shaft of a large vehicle (truck), for example. The brake disc 2 is formed in a disc shape and is arranged in such a manner that the rotation shaft 1 passes through the center. The braking unit includes a plurality of permanent magnets 6 that generate a braking magnetic field; a ring-shaped or arc-shaped holding member 4 that holds the permanent magnet 6; and a case 3 that houses the permanent magnet 6 and the holding member 4. A drive mechanism (air cylinder) 5 connected to the holding member 4 and moving the permanent magnet 6 close to and away from the brake disk 2; a cover (intermediate) disposed at the end of the case 3 on the brake disk 2 side; Thin plate member) 7.
[0015]
The brake disk 2 is formed of a ferromagnetic material, and the left side of the figure functions as a brake surface. A plurality of permanent magnets 6 are arranged on the surface of the holding member 4 at a predetermined interval in the circumferential direction. The cover 7 is formed of a soft magnetic material having a high thermal conductivity. Here, the thermal conductivity of the cover 7 is suitably at least 10 W / (m · k) or more, and more preferably 30 W / (m · k) or more. Further, the magnetism of the cover 7 is preferably 10 or more and 130 or less in terms of relative permeability (μs) with respect to vacuum defined by differential permeability at a magnetic field strength of 10000 A / m. If this value is smaller than 10, it becomes a paramagnetic or non-magnetic region, and if it is larger than 130, the magnetic flux around the magnetic short circuit formed in the cover 7 increases, leading to a reduction in braking force.
[0016]
The cover 7 can be formed integrally with the case (guide cylinder) 3 by pressing or casting. When the cover 7 is a separate member from the case 3, the cover 7 can be fixed to the case 3 by a method such as screwing, caulking, press fitting, adhesion, or welding. Moreover, the cross-sectional shape of the cover 7 does not need to be uniform, and a portion that does not face the magnet may be formed thick, or a rib may be partially provided to be reinforced.
[0017]
Further, as the cover 7 is thicker, the amount of magnetic leakage during non-braking is reduced and the temperature rise of the magnet 6 is also reduced, but the distance between the magnet 6 and the disk is increased, so that the braking efficiency is lowered. Accordingly, the thickness of the cover 7 is determined to be an optimum value from the magnetic leakage suppression effect, the magnet temperature increase suppression effect, and the braking efficiency. The optimum value of the thickness depends on not only the magnetic characteristics and thermal conductivity of the cover 7 but also the temperature characteristics of the magnet, and is therefore determined in consideration of these.
[0018]
The case 3 is desirably formed of a material such as aluminum, aluminum alloy, carbon steel, cast iron, stainless steel, or the like.
[0019]
In the eddy current type speed reducer of this reference example , as shown in FIG. 1, the permanent magnet 6 moves (withdraws) in a direction away from the braking disk 2 during non-braking. In this reference example , since the cover 7 is made of a soft magnetic material, the amount of magnetic flux reaching the brake disk 2 from the magnet 6 through the cover 7 during non-braking can be reduced. As a result, the distance between the magnet and the braking member where magnetic leakage loss does not become a problem can be shortened as compared with the case of using a nonmagnetic cover. As a result, the moving stroke of the permanent magnet 6 is shortened, and the apparatus can be miniaturized.
[0020]
During braking, since the cover 7 is thin and the saturation magnetic flux density is small, the magnet is close to the cover 7, the magnetic flux increases, and even if a magnetic short circuit occurs inside the cover 7, the magnetic flux that rotates around the magnetic short circuit is not generated. Since there are very few, there is almost no fall of braking efficiency compared with the cover of a nonmagnetic material.
[0021]
On the other hand, at the time of braking, as shown in FIG. 2, the permanent magnet 6 approaches the braking disk 2 and acts on the magnetic flux. By the way, the heat generated in the braking disk 2 is transmitted to the permanent magnet 6 side during braking, but in this reference example , the cover 7 is formed of a material having high thermal conductivity, so that the braking is performed as shown in FIG. Heat generated in the disk 2 is easily radiated to the outside through the cover 7. For this reason, in order to reduce the temperature rise of the permanent magnet 6, it is possible to avoid a situation where the distance between the magnet 6 and the braking disk 2 during braking is increased more than necessary, and as a result, it is possible to improve braking efficiency. It becomes.
[0022]
FIG. 4 is a sectional view showing the structure of the main part of the retarder according to the first embodiment of the present invention, and shows a braking state. In the present embodiment, the same or corresponding components as those in the reference example described above are denoted by the same reference numerals, and redundant description is omitted.
[0023]
In this embodiment, the cover 7 has a configuration (clad structure) in which a first member 7a made of a material having high thermal conductivity and a second member 7b made of a soft magnetic material are bonded together. The second member 7b is disposed on the braking disk 2 side, and the first member 7a is disposed on the permanent magnet 6 side. Here, the same effect can be expected even if the positions of the first member 7a and the second member 7b are reversed and the first member 7a is disposed on the braking disk 2 side and the second member 7b is disposed on the permanent magnet 6 side.
[0024]
In consideration of deformation of the cover 7 due to thermal expansion, a member (7a) having a high thermal conductivity is sandwiched between soft magnetic members (7b), or conversely, a soft magnetic member (7b) has a high thermal conductivity. A structure sandwiched between the members (7a) can be adopted. With such a sandwich structure, even when the cover 7 is thermally expanded, it is possible to suppress deformation such as a biased deflection in one direction.
[0025]
Examples of the material having high thermal conductivity used for the first member 7a include aluminum, aluminum alloy, copper alloys such as copper and brass, magnesium, and magnesium alloys having higher thermal conductivity than the soft magnetic material. In addition, other materials can be added with these materials as main components. The most desirable value for thermal conductivity is about 100 W / (m · k) or more.
[0026]
On the other hand, examples of the soft magnetic material used for the second member 7b include austenitic stainless steel, ferritic stainless steel, and duplex stainless steel. The relative permeability (μs) to vacuum defined by the differential permeability at the magnetic field strength of 10,000 A / m of the second member 7b is preferably 10 ≦ μs ≦ 130. In general, when austenitic stainless steel is not subjected to cold working, the magnetic properties are poor (low magnetic permeability), so it may be classified as a non-magnetic material. The martensite phase is induced, the magnetic permeability is increased, and the soft magnetic material referred to in the present invention is obtained.
[0027]
In short, the soft magnetic material in the present invention is most preferably an austenitic stainless steel or a ferritic stainless steel and a relative permeability (μs) of 10 ≦ μs ≦ 130. In ferritic stainless steel, it is possible to obtain the desired relative magnetic permeability as described above by adjusting the content of chromium (Cr).
[0028]
Also in this embodiment, the same effect as that of the first reference example can be obtained.
[0029]
FIG. 5 is a cross-sectional view showing the structure of the main part of the retarder according to the second embodiment of the present invention, showing a braking state. In the present embodiment, the same or corresponding components as those in the reference example and the embodiment described above are denoted by the same reference numerals, and redundant description is omitted.
[0030]
This embodiment is an application of the first embodiment shown in FIG. 4, and the cover 7 is not formed by a clad structure but is constituted by two completely different independent members. Then, after fixing the second member 7b on the permanent magnet 6 side to the case 3, the first member on the braking disk 2 side is fixed so as to cover the second member 7b. By using the first member 7a and the second member 7b having different characteristics as completely different members, various combinations can be selected according to the use conditions and conditions of the apparatus.
[0031]
In consideration of deformation of the cover 7 due to thermal expansion, a member (7a) having a high thermal conductivity is sandwiched between soft magnetic members (7b), or conversely, a soft magnetic member (7b) has a high thermal conductivity. A structure sandwiched between the members (7a) can be adopted. With such a sandwich structure, even when the cover 7 is thermally expanded, it is possible to suppress deformation such as a biased deflection in one direction.
[0032]
FIG. 6 is a cross-sectional view showing the structure of the main part of the retarder according to the second reference example , showing a braking state. FIG. 7 shows a part of a cross section in the AA direction in FIG. In this reference example , the same or corresponding components as those in the above-described embodiments are denoted by the same reference numerals, and redundant description is omitted.
[0033]
In the present reference example , the soft magnetic second member 7 b is partially arranged so as not to face the permanent magnet 6, and only the non-magnetic (high thermal conductivity) first member faces the permanent magnet 6. . According to the present embodiment, the distance between the magnet 6 and the brake disk 2 can be shortened, and the braking efficiency is further increased. Note that magnetic leakage during non-braking can be dealt with by increasing the thickness of the soft magnetic second member 7b.
[0034]
As mentioned above, although the Example (embodiment, embodiment) of this invention was described, this invention is not limited to these Examples at all, It changes in the category of the technical idea shown by the claim. It is possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of a main part of a retarder according to a first reference example , and shows a non-braking state.
FIG. 2 is a cross-sectional view showing a structure of a main part of a retarder according to a first reference example , showing a braking state.
FIG. 3 is an explanatory view (cross-sectional view) showing a heat dissipation state during braking of the retarder according to the first reference example .
FIG. 4 is a cross-sectional view showing the structure of the main part of the retarder according to the first embodiment of the present invention, showing a braking state.
FIG. 5 is a cross-sectional view showing the structure of the main part of a retarder according to a second embodiment of the present invention, showing a braking state.
FIG. 6 is a cross-sectional view showing a structure of a main part of a retarder according to a second reference example , showing a braking state.
7 shows a part of a cross section in the AA direction in FIG.

Claims (21)

機関の回転軸に連結された制動部材と;
制動時に前記制動部材の制動面に対して磁界を作用させる磁界発生部と;
前記磁界発生部を前記制動部材の制動面に対して制動と非制動とをスイッチさせる機構と;
前記磁界発生部材と前記制動面との間に配置され、前記制動面全面に対向する中間薄板部材とを備え、
前記中間薄板部材は、高熱伝導率を有する第1の部材と軟磁性の第2の部材とを、各部材が磁極面と平行になるように貼り合わせた構造であることを特徴とする渦電流式減速装置。
A braking member connected to the rotating shaft of the engine;
A magnetic field generator for applying a magnetic field to the braking surface of the braking member during braking;
A mechanism for switching between braking and non-braking of the magnetic field generator with respect to the braking surface of the braking member;
An intermediate thin plate member disposed between the magnetic field generating member and the braking surface and facing the entire braking surface ;
The intermediate thin plate member has a structure in which a first member having high thermal conductivity and a soft magnetic second member are bonded so that each member is parallel to the magnetic pole surface. Type speed reducer.
前記第1の部材が前記制動部材の制動面に対向し、前記第2の部材が前記磁界発生部側に配置されることを特徴とする請求項に記載の渦電流式減速装置。2. The eddy current reduction device according to claim 1 , wherein the first member faces a braking surface of the braking member, and the second member is disposed on the magnetic field generation unit side. 前記第2の部材が前記制動部材の制動面に対向し、前記第1の部材が前記磁界発生部側に配置されることを特徴とする請求項に記載の渦電流式減速装置。2. The eddy current reduction device according to claim 1 , wherein the second member faces a braking surface of the braking member, and the first member is disposed on the magnetic field generation unit side. 前記第1の部材を前記第2の部材の表裏両面に貼り合わせた構造であることを特徴とする請求項1に記載の渦電流式減速装置。  2. The eddy current reduction device according to claim 1, wherein the first member has a structure in which both surfaces of the second member are bonded to each other. 前記第2の部材を前記第1の部材の表裏両面に貼り合わせた構造であることを特徴とする請求項に記載の渦電流式減速装置。2. The eddy current reduction device according to claim 1 , wherein the second member has a structure in which both surfaces of the first member are bonded to each other. 前記第1の部材は、アルミニウム、アルミニウム合金、銅、黄銅等の銅合金、マグネシウム、マグネシウム合金から選択される1つ又は2つ以上の混合材を主成分とすることを特徴とする請求項1,2,3,4又は5に記載の渦電流式減速装置。The first member is of aluminum, according to claim 1, an aluminum alloy, wherein the copper, copper alloys such as brass, magnesium, that a main component one or two or more mixed materials are selected from magnesium alloy , 2, 3, 4 or 5. Eddy current type speed reducer. 前記第2の部材は、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼又は二相ステンレス鋼を主成分とすることを特徴とする請求項1,2,3,4,5又は6に記載の渦電流式減速装置。The eddy current type according to claim 1, 2, 3, 4, 5 or 6 , wherein the second member is mainly composed of austenitic stainless steel, ferritic stainless steel or duplex stainless steel. Reducer. 前記制動部材は、前記機関の回転軸と一体に回転する制動ディスクであり、
前記磁界発生部は、複数の永久磁石と、当該永久磁石を保持する保持部材とを有し、
前記永久磁石及び保持部材を移動可能な状態で収容するケースを更に備え、
前記中間薄板部材は、前記制動ディスクの制動面に対向する前記ケースの端面全面に配置されるカバーであることを特徴とする請求項1に記載の渦電流式減速装置。
The braking member is a braking disk that rotates integrally with a rotating shaft of the engine,
The magnetic field generator has a plurality of permanent magnets and a holding member that holds the permanent magnets,
A case for accommodating the permanent magnet and the holding member in a movable state;
2. The eddy current reduction device according to claim 1, wherein the intermediate thin plate member is a cover disposed over the entire end surface of the case facing the braking surface of the braking disk.
前記第1の部材が前記制動部材の制動面に対向し、前記第2の部材が前記永久磁石側に配置されることを特徴とする請求項に記載の渦電流式減速装置。The eddy current reduction device according to claim 8 , wherein the first member faces a braking surface of the braking member, and the second member is disposed on the permanent magnet side. 前記第2の部材が前記制動部材の制動面に対向し、前記第1の部材が前記永久磁石側に配置されることを特徴とする請求項に記載の渦電流式減速装置。The eddy current reduction device according to claim 8 , wherein the second member is opposed to a braking surface of the braking member, and the first member is disposed on the permanent magnet side. 前記第1の部材を前記第2の部材の表裏両面に貼り合わせた構造であることを特徴とする請求項に記載の渦電流式減速装置。The eddy current type speed reducer according to claim 8 , wherein the first member has a structure in which both surfaces of the second member are bonded to each other. 前記第2の部材を前記第1の部材の表裏両面に貼り合わせた構造であることを特徴とする請求項に記載の渦電流式減速装置。The eddy current type speed reducer according to claim 8 , wherein the second member has a structure in which both surfaces of the first member are bonded to each other. 前記第1の部材は、アルミニウム、アルミニウム合金、銅、黄銅等の銅合金、マグネシウム、マグネシウム合金から選択される1つ又は2つ以上の混合材を主成分とすることを特徴とする請求項8,9,10,11又は12に記載の渦電流式減速装置。The first member is aluminum, claim wherein an aluminum alloy, copper, copper alloys such as brass, magnesium, that a main component one or two or more mixed materials are selected from magnesium alloy 8 , 9, 10, 11 or 12. Eddy current type speed reducer. 前記第2の部材は、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼又は二相ステンレス鋼を主成分とすることを特徴とする8,9,10,11,12又は13に記載の渦電流式減速装置。The eddy current type speed reducer according to 8, 9, 10, 11, 12 , or 13 , wherein the second member is mainly composed of austenitic stainless steel, ferritic stainless steel or duplex stainless steel. . 機関の回転軸に連結された制動ディスクと;制動時に前記制動部材の制動面に対して磁界を作用させる複数の永久磁石と;前記永久磁石を前記制動部材の制動面に対して接近、離間させる駆動機構とを備えた渦電流式減速装置に使用され、前記永久磁石を移動可能な状態で収容するケースにおいて、
少なくとも前記制動ディスクの制動面に対向する端部全面が、高熱伝導率を有する第1の部材と軟磁性の第2の部材とを貼り合わせた構造の部材で構成されることを特徴とする渦電流式減速装置用の磁石ケース。
A braking disk coupled to the rotating shaft of the engine; a plurality of permanent magnets that act on the braking surface of the braking member during braking; and the permanent magnet is moved toward and away from the braking surface of the braking member Used in an eddy current type speed reducer equipped with a drive mechanism, and in the case of accommodating the permanent magnet in a movable state,
A vortex characterized in that at least the entire surface of the end facing the braking surface of the braking disk is composed of a member having a structure in which a first member having high thermal conductivity and a soft magnetic second member are bonded together. Magnet case for current type speed reducer.
前記第1の部材が前記制動部材の制動面に対向し、前記第2の部材が前記永久磁石側に配置されることを特徴とする請求項15に記載の磁石ケース。The magnet case according to claim 15 , wherein the first member faces a braking surface of the braking member, and the second member is disposed on the permanent magnet side. 前記第2の部材が前記制動部材の制動面に対向し、前記第1の部材が前記永久磁石側に配置されることを特徴とする請求項15に記載の磁石ケース。The magnet case according to claim 15 , wherein the second member is opposed to a braking surface of the braking member, and the first member is disposed on the permanent magnet side. 前記第1の部材を前記第2の部材の表裏両面に貼り合わせた構造であることを特徴とする請求項15に記載の磁石ケース。The magnet case according to claim 15 , wherein the magnet case has a structure in which the first member is bonded to both front and back surfaces of the second member. 前記第2の部材を前記第1の部材の表裏両面に貼り合わせた構造であることを特徴とする請求項15に記載の磁石ケース。The magnet case according to claim 15 , wherein the magnet case has a structure in which the second member is bonded to both front and back surfaces of the first member. 前記第1の部材は、アルミニウム、アルミニウム合金、銅、黄銅等の銅合金、マグネシウム、マグネシウム合金から選択される1つ又は2つ以上の混合材を主成分とすることを特徴とする請求項15,16,17,18又は19に記載の磁石ケース。The first member is of aluminum, aluminum alloy, according to claim 15 for copper, copper alloys such as brass, magnesium, characterized in that a main component one or two or more mixed materials are selected from magnesium alloy , 16, 17, 18, or 19 . 前記第2の部材は、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼又は二相ステンレス鋼を主成分とすることを特徴とする請求項15,16,17,18,19又は20に記載の磁石ケース。 21. The magnet case according to claim 15, 16, 17, 18 , 19 or 20 , wherein the second member is mainly composed of austenitic stainless steel, ferritic stainless steel or duplex stainless steel.
JP2003126614A 2003-05-01 2003-05-01 Eddy current reduction device and magnet guide case used therefor Expired - Fee Related JP4001051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126614A JP4001051B2 (en) 2003-05-01 2003-05-01 Eddy current reduction device and magnet guide case used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126614A JP4001051B2 (en) 2003-05-01 2003-05-01 Eddy current reduction device and magnet guide case used therefor

Publications (2)

Publication Number Publication Date
JP2004336850A JP2004336850A (en) 2004-11-25
JP4001051B2 true JP4001051B2 (en) 2007-10-31

Family

ID=33503488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126614A Expired - Fee Related JP4001051B2 (en) 2003-05-01 2003-05-01 Eddy current reduction device and magnet guide case used therefor

Country Status (1)

Country Link
JP (1) JP4001051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193724B (en) * 2021-04-30 2023-03-03 哈尔滨工业大学 Low-inertia wide-speed-range permanent magnet eddy current brake

Also Published As

Publication number Publication date
JP2004336850A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
EP1193724A2 (en) Magnet consisting of an electromagnet and a permanent magnet, and eddy current retarder
JP5673899B2 (en) Eddy current reducer
EP1158547A3 (en) Electromagnetic actuator and composite electro-magnetic actuator apparatus
WO1993009590A1 (en) Eddy current type retarder
JP5040441B2 (en) Electric motor
JP4001051B2 (en) Eddy current reduction device and magnet guide case used therefor
JPH10243627A (en) Eddy-current speed reducer
JP5428334B2 (en) Electric motor
JP4600156B2 (en) Eddy current reducer
JP2005124259A (en) Magnetic sensor and motor with brake
JP4715546B2 (en) Eddy current reducer
JP4905148B2 (en) Eddy current reducer
JPH07245933A (en) Eddy current type reduction gear
JPH10174681A (en) Magnetic circuit of permanent magnet
JP2004227966A (en) Operation device and switching device using operation device
JP2701084B2 (en) Eddy current type reduction gear
JPH05122917A (en) Voice coil motor
JPH1098867A (en) Permanent magnet field retarder
JP3859509B2 (en) Electromagnetic retarder device
JP2004072851A (en) Eddy current reduction gear
JP3627432B2 (en) Eddy current reducer
JP4016537B2 (en) Eddy current reducer
JPH114572A (en) Permanent magnet eddy current decelerator
JP3216667B2 (en) Eddy current type reduction gear
JPH10127040A (en) Eddy current reducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4001051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees