JP4000943B2 - High-strength hot-dip galvanized steel sheet and manufacturing method thereof - Google Patents

High-strength hot-dip galvanized steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4000943B2
JP4000943B2 JP2002226267A JP2002226267A JP4000943B2 JP 4000943 B2 JP4000943 B2 JP 4000943B2 JP 2002226267 A JP2002226267 A JP 2002226267A JP 2002226267 A JP2002226267 A JP 2002226267A JP 4000943 B2 JP4000943 B2 JP 4000943B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolling
hot
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002226267A
Other languages
Japanese (ja)
Other versions
JP2004068051A (en
Inventor
茂樹 野村
一彦 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002226267A priority Critical patent/JP4000943B2/en
Publication of JP2004068051A publication Critical patent/JP2004068051A/en
Application granted granted Critical
Publication of JP4000943B2 publication Critical patent/JP4000943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、自動車ボディに用いられる衝突安全を確保するための部品等であって耐食性が重要な部位の素材として好適な成形性に優れる高強度溶融亜鉛めっき鋼板及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車の安全及び軽量化対策としての高強度鋼板への要望が益々高くなっている。
しかしながら、鋼板を高強度化していくと成形性が問題になってくる。特に伸びフランジ成形やバ−リング成形に大きく影響する局部伸びと、張り出し成形への影響が大きい一様伸びを高めるのは重要なことである。
なお、図1は、鋼板の引張試験を実施したときの公称応力−公称歪み曲線であり、局部伸びと一様伸びを把握することができる。
【0003】
高強度冷延鋼板の製造方法としては、例えば特開平7−188767号公報にベイナイト主体の金属組織にすることで伸びフランジ性を改善する製造方法が開示されている。
しかしながら、ベイナイト主体の組織だけでは一様伸びが低いという問題があった。
更に、上記特開平7−188767号公報に記載の高強度冷延鋼板の製造方法では高強度を得るために焼鈍後100℃/c以上の冷却速度が必要で、冷却中に生じる歪により平坦度を確保することが困難であるとの問題もあった。
【0004】
また、特開平9−263838号公報には、鋼板の金属組織をフェライトとベイナイトの混合組織にして穴拡げ性を改善する方法が開示されている。
しかしながら、この方法でも局部伸び及び一様伸びの確保は不十分である。また、何れも耐食性を考慮しておらず、溶融亜鉛めっきを施すには困難な製造条件である。
【0005】
【発明が解決しようとする課題】
このようなことから、本発明が目的としたのは、前述したような従来技術の問題点を解決し、高強度を有すると共に一様伸びと局部伸びで表現される成形性が良好な高強度溶融亜鉛めっき鋼板及びその製造方法を提供することであった。
【0006】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究を行った結果、高強度と一様伸び及び局部伸びで表現される成形性が両立した溶融亜鉛めっき鋼板を実現するためには、母材鋼板の金属組織を、フェライトが体積率で30%以上を占め、更に粒内にセメンタイト又はマルテンサイト又は残留オ−ステナイトの何れか1種以上を含むフェライト粒の数が総フェライトの数の20%以上である組織とすることが重要であるとの知見を得ることができた。
【0007】
即ち、本発明者らは、まず、局部伸びでの破断の起点はフェライト粒界に存在する硬質なマルテンサイトや粗大で脆い炭化物を含むパ−ライトであることを見出した。更に、高強度を得るために必要なマルテンサイトやセメンタイトや残留オ−ステナイトは、フェライト粒内にあれば割れの起点になりにくいことも明らかとした。
そして、この解明事項と高強度が得られる母材鋼板組織の検討、並びに母材鋼板に好ましい金属組織が得られる溶融亜鉛めっき手段の検討により、高強度と一様伸び及び局部伸びで表現される成形性が両立した溶融亜鉛めっき鋼板を実現する上での前記母材鋼板組織の有効性を確認するに至ったわけである。
【0008】
本発明は、上記知見事項等を基に完成されたものであり、次の 1)〜 4)項に示す耐食性が重要な部位の素材として好適な成形性に優れる高強度溶融亜鉛めっき鋼板及びその製造方法を提供するものである。
1) 量割合にて、C:0.005 〜0.20%(以降、成分割合を示す%は量%とする), Si:0.10%未満,Mn:0.7 〜3.0 %,P:0.10%以下,S:0.010 %以下,Al:0.00 1 〜0.20%,N:0.0046%以下を含むと共に残部がFe及び不可避的不純物から成り、 かつ金属組織として、フェライトを体積率で30%以上有し、更に粒内にセメンタイ ト又はマルテンサイト又は残留オ−ステナイトの何れか1種以上を含むフェライト粒 の数が総フェライトの数の20%以上である組織を持つ母材鋼板の表面に、溶融亜鉛 めっき層を有して成ることを特徴とする、高強度溶融亜鉛めっき鋼板。
2) C:0.005 〜0.20%,Si:0.10 %未満,Mn:0.7 〜3.0 %,P:0.10%以下,S: 0.010 %以下,Al:0.001 〜0.20%,N:0.0046%以下を含み、更に Ti:0.20%以 下,Nb:0.20%以下,V:0.10%以下,B:0.01%以下,Cr:1.0 %以下,Mo:1.0 %以下(但し、 0.05 %以上の場合を除く),Cu:1.0 %以下,Ni:1.0 %以下,Ca: 0.01%以下の1種以上を含むと共に残部がFe及び不可避的不純物から成り、かつ金属 組織として、フェライトを体積率で30%以上有し、更に粒内にセメンタイト又はマ ルテンサイト又は残留オ−ステナイトの何れか1種以上を含むフェライト粒の数が総 フェライトの数の20%以上である組織を持つ母材鋼板の表面に、溶融亜鉛めっき層 を有して成ることを特徴とする、高強度溶融亜鉛めっき鋼板。
3) 前記 1)項又は 2)項に記載の成分組成を有した鋼片を、1050℃以上に加熱し た後に粗圧延を開始し、粗圧延終了後、そのままあるいは粗バ−の加熱又は温度保定 を実施してから仕上圧延を開始し、仕上温度740〜1030℃で圧延終了した後、 5℃/s 以上の平均冷却速度で冷却して700℃以下で巻き取り、更に巻き戻してか らそのまま酸洗、或いはスキンパス圧延と酸洗を施した後に冷間圧延を施し、次いで 720〜900℃の温度範囲で5秒以上保持する焼鈍を行った後、2〜30℃/s の 平均冷却速度で460〜600℃まで冷却して該温度範囲で10〜90秒保持し、更 に冷却してから溶融亜鉛めっきを施し、続く冷却過程において200℃から100℃ 以下までを300秒以内で冷却することを特徴とする、高強度溶融亜鉛めっき鋼板の 製造方法。
4) 前記 1)項又は 2)項に記載の成分組成を有した鋼片を、1050℃以上に加熱し た後に粗圧延を開始し、粗圧延終了後、そのままあるいは粗バ−の加熱又は温度保定 を実施してから仕上圧延を開始し、仕上温度740〜1030℃で圧延終了した後、 5℃/s 以上の平均冷却速度で冷却して700℃以下で巻き取り、更に巻き戻してか らそのまま酸洗、或いはスキンパス圧延と酸洗を施した後に冷間圧延を施し、次いで 720〜900℃の温度範囲で5秒以上保持する焼鈍を行った後、2〜30℃/s の 平均冷却速度で460〜600℃まで冷却して該温度範囲で10〜90秒保持し、更 に冷却してから溶融亜鉛めっきを施すと共に、合金化処理を施し、続く冷却過程にお いて200℃から100℃以下までを300秒以内で冷却することを特徴とする、高 強度溶融亜鉛めっき鋼板の製造方法。
【0009】
【発明の実施の形態】
次に、本発明において溶融亜鉛めっき鋼板における母材鋼板の金属組織,鋼片又は母材鋼板の成分組成、並びに溶融亜鉛めっき鋼板の製造条件を前記の如くに限定した理由を説明する。
(A) 母材鋼板の金属組織
母材鋼板の金属組織は本発明の重要な要素であり、母材鋼板を、フェライトが体積率で30%以上を占め、更に粒内にセメンタイト又はマルテンサイト又は残留オ−ステナイトの何れか1種以上を有しているフェライト粒の数が総フェライトの数の20%以上となる金属組織とすることにより、優れた一様伸びと局部伸びを有する高強度溶融亜鉛めっき鋼板が得られる。
【0010】
なお、フェライトはそれ自体優れた延性を有しているため、鋼板に優れた一様伸びを確保するためには体積率で30%以上必要である。フェライトが体積率で30%未満である場合には、優れた一様伸びを確保できない。鋼板組織に占めるフェライトの体積率は、好ましくは50%以上、更に好ましくは70%以上である。
【0011】
ただ、フェライトのみでは高強度の確保は困難であり、従って硬質な第2相を生成させて鋼板の高強度を図る必要がある。
しかし、フェライト粒界に存在する硬質なマルテンサイトや脆い炭化物であるセメンタイト、又は成形により硬質なマルテンサイトに変化する残留オ−ステナイトは局部伸びの割れの起点となりやすい。そのため、これらはフェライト粒内に存在するのが好ましく、粒内にセメンタイト又はマルテンサイト又は残留オ−ステナイトの何れか1種以上を有しているフェライト粒の数が総フェライトの数の20%以上である必要がある。なお、このようなフェライト粒の数は、好ましくは30%以上、更には50%以上が望ましい。
【0012】
(B) 鋼片乃至は母材鋼板の化学組成
C: Cは高張力を得るのに重要な成分である。Cの含有量が 0.005%未満では必要な高張力が得られず、また0.20%を超えてCを含有させると靱性や溶接性が低下すると共にフェライト生成量が不足する。従って、C含有量を0.005 〜0.20%と定めたが、好ましくは0.03〜0.12%に調整するのが良い。
【0013】
Si: Siも鋼板を高強度化するのに有効な成分であるが、溶融亜鉛めっきを施す際の不めっきや、合金化処理時の処理不足の原因となる。従って、Si含有量 0.10%未満に調整するのが良い。
【0014】
Mn: Mnは変態強化を促進して高強度化を図るのに有効な成分であり、そのためには 0.7%以上含有させることが必要である。また、3.0 %を超えてMnを含有させるとフェライトが生成しにくくなると同時にバンド組織が発達して局部伸びが低下する。従って、Mn含有量については 0.7〜 3.0%と定めたが、好ましくは 0.9〜 3.0%、更に好ましくは 1.3〜 3.0%に調整するのが良い。
【0015】
P: Pは靱性を劣化させる好ましくない元素である。従って、その許容量を確認し、P含有量を0.10%以下と定めた。
S: SはMnSとなり、曲げ性を劣化させる。従って、その許容量を確認し、Sの含有量を 0.010%以下と定めたが、好ましくは0.0040%以下に、より好ましくは0.0015%以下とするのが良い。
【0016】
Al: Alは脱酸のために添加される元素であるが、その効果は 0.001%未満では不十分であり、また0.20%を超えて含有させても効果が飽和し経済的に不利となる。従って、Al含有量は 0.001〜0.20%と定めた。
N: Nは、連続鋳造中に窒化物を形成してスラブのひび割れの原因となるので、その含有量は低い方が好ましい。従って、その許容量を確認し、N含有量は0.0046%以下と定めた。
【0017】
Ti,Nb,V,B: Ti,Nb,V,Bは再結晶を遅らせて結晶粒を微細化させる効果を有しているので、必要に応じて1種以上が含有せしめられる。しかしながら、その効果は、Ti含有量が0.20%を超え、Nb含有量が0.20%を超え、V含有量が0.10%を超え、そしてB含有量が 0.010%を超えると飽和してしまいコスト的に不利となる。そのため、Ti含有量は0.20%以下、Nb含有量は0.20%以下、V含有量は0.10%以下、B含有量は 0.010%以下とそれぞれ定めた。
【0018】
Cr,Mo: Cr及びMoには何れもMnと同様にオ−ステナイトを安定化することで変態強化を促進する働きがあり、鋼板の高強度化に有効であるので必要に応じて1種以上が含有せしめられる。しかし、Cr含有量が 1.0%を超え、そしてMo含有量が 1.0%を超えると鋼板の表面処理性に問題が出てくる。従って、Cr含有量は1.0 %以下、Mo含有量は他の鋼種例との重複を配慮して 1.0%以下(但し、 0.05 %以上の場合を除く)とそれぞれ定めた。
【0019】
Cu,Ni: Cu及びNiは腐食抑制効果があり、表面に濃化し水素の侵入を抑え、遅れ破壊を抑制する働きがあるので、必要に応じて1種以上が含有される。しかしながら、何れもその含有量が 1.0%を超えると前記効果は飽和しコスト的に不利となる。従って、Cu含有量もNi含有量も 1.0%以下とそれぞれ定めた。
【0020】
Ca: CaはSと結合し、硫化物を球状化させることにより局部延性を向上させる効果があるので、必要に応じて添加される。しかしながら、0.01%を超えて含有させてもその効果は飽和し、コスト的に不利となることから、Ca含有量は0.01%以下と定めた。
【0021】
なお、上記以外の組成はFe及び不可避的不純物である。
そして、上記組成の鋼は、例えば転炉,電気炉又は平炉等により溶製される。鋼種もリムド鋼,キャップド鋼,セミキルド鋼又はキルド鋼の何れでも良い。更に、鋼片の鋳造は“造塊−分塊圧延”あるいは“連続鋳造”の何れの手段によっても構わない。
また、本発明に係る溶融亜鉛めっき鋼板は、亜鉛系めっき鋼板であれば格別にそのめっき層の種類が問われるものではなく、溶融亜鉛めっき層,溶融亜鉛合金めっき層,合金化溶融亜鉛めっき層等の何れであっても構わない。また、めっき層は鋼板の両面に施されていても良いし、片面に施されていても良い。
【0022】
(C) 製造条件
本発明に係る“耐食性が重要な部位の素材として好適な成形性に優れる高強度溶融亜鉛めっき鋼板”を製造するには、まず本発明が規定する成分組成の鋼片を1050℃以上に加熱後粗圧延を開始し、粗圧延終了後、そのまま或いは必要に応じて粗バ−を加熱又は温度保定を施してから仕上圧延を開始し、仕上温度740〜1030℃で圧延を終了後、平均冷却速度5℃/s以上で冷却し、700℃以下で巻き取る熱間圧延を施す。
【0023】
1050℃以上への鋼片の加熱は、仕上温度を確保するのに必要である。そして、仕上温度740℃以上は、変態点以下の圧延に伴ってフェライトが粗大化するのを抑制するのに必要な条件であり、また1030℃以下の仕上温度は熱延板での組織を微細化して冷延板焼鈍後に十分なフェライトを生成させるのに必要な条件である。
なお、仕上温度を確保するために仕上圧延前に粗バ−を加熱或いは温度保定することは有効である。また、粗バ−を接合して連続圧延を施しても何ら問題はない。
熱間圧延に際し、加熱炉に挿入する鋳片は“鋳造後の高温ままでのスラブ”でも“室温で放置されたスラブ”でも構わない。
【0024】
仕上圧延を終了した後は、バンド状組織軽減のために平均冷却速度5℃/s以上で冷却し、700℃以下で巻き取る。巻取り温度が700℃を上回ると製品においても曲げ性を低下させるバンド状組織が発達するので好ましくない。
【0025】
熱間圧延後は、必要に応じて平坦矯正のためのスキンパス圧延やスケ−ル除去のための酸洗を施し、好ましくは圧下率30%以上の冷間圧延を施して焼鈍(連続焼鈍)及び溶融亜鉛めっきを施す。焼鈍では、720〜900℃の温度範囲で5秒以上保持する処理を行った後、2〜30℃/sの冷却速度で460〜600℃まで冷却して該温度範囲で10〜90秒保持し、更に冷却して溶融亜鉛めっきを施し、必要に応じて合金化処理を施してから、更に200℃から100℃以下まで300秒以内で急冷する。
【0026】
この場合、720℃未満の焼鈍温度及び5秒未満の加熱保持時間ではオ−ステナイト化が不十分で、高強度化に有効なフェライト粒内のセメンタイト又はマルテンサイト又は残留オ−ステナイトの量が少ない。一方、900℃を超える焼鈍温度では体積率で30%以上のフェライトが得られない。
焼鈍後は2℃/s以上の平均冷却速度で冷却を行うが、これは硬質相のフェライト粒界への析出を抑えるためである。また、平均冷却速度の上限は、平坦不良が出ないように60℃/sと定めた。
なお、焼鈍後の冷却過程では、フェライトと第2相を分離させるために460〜600℃の温度範囲で10〜90秒保持する必要がある。
【0027】
そして、上記冷却に続いて溶融亜鉛めっきを施し、必要に応じて合金化処理を行うが、これらの処理条件は特に限定されるものではない。
めっき処理後は、200℃から100℃以下までは300秒以内で冷却することが重要である。これにより、フェライト粒界に粗大なセメンタイトが析出するのが抑制できる。なお、200℃から100℃までの冷却は60秒以内とするのが好ましく、30秒以内がより望ましい。
【0028】
なお、めっき処理に続く冷却が終わった後、平坦矯正のため伸び率4%以下のスキンパスを施しても何ら問題がない。また、めっき層の上に潤滑作用のある皮膜を施しても構わない。
【0029】
【実施例】
表1に示す化学組成の鋼を転炉にて溶製した後、連続鋳造にてスラブとした。
そして、そのスラブを表2に示す条件で熱間圧延し、 2.6mm厚の熱延鋼板を製造した。
次に、得られた熱延鋼板を酸洗してから 1.2mm厚まで冷間圧延し、その後、表3に示す条件の連続焼鈍及び溶融亜鉛めっきを施した。
溶融亜鉛めっき後、一部の材料では加熱による合金化処理を施し、めっき中のFeを重量割合で10%前後とした。
【0030】
【表1】

Figure 0004000943
【0031】
【表2】
Figure 0004000943
【0032】
【表3】
Figure 0004000943
【0033】
このようにして得られた溶融亜鉛めっき鋼板につき、その母材をナイタル腐食して光学顕微鏡及びSEM観察、更に電子顕微鏡での観察にて金属組織の観察及び特定を行った。
また、圧延直角方向にJIS5号試験片と曲げ試験片を採取し、引張試験にて特性を調査した。
更に、粒内にセメンタイト又はマルテンサイト又は残留オ−ステナイトを1種以上含むフェライトの数は、ある任意の母材板厚断面でフェライトが100個入る領域を観察して、相当する粒数の割合(%)を把握した。
上述のようにして調査した金属組織及び材料特性を、表4に示す。
【0034】
【表4】
Figure 0004000943
【0035】
表4に示される結果から明らかなように、本発明に係る溶融亜鉛めっき鋼板は一様伸びと局部伸びの両方とも高い値を示した。
これに対して、本発明で規定する金属組織が得られなかった材料は、一様伸び或いは局部伸びの一方又は両方が低い値となった。
また、Si含有量の高い試験番号25に係る溶融亜鉛めっき鋼板は、特性に問題は無かったが、めっき合金化処理不足が部分的に生じ、めっき品質に問題が認められた。
【0036】
【発明の効果】
以上に説明した如く、この発明によれば、優れた一様伸びと局部伸びを有し、ロッカ−インナ−等といった耐食性が必要な自動車の補強部品等に好適な溶融亜鉛めっき鋼板を安定して得ることができるなど、産業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】鋼板の引張試験を実施したときの公称応力−公称歪み曲線であり、局部伸びと一様伸びについての説明図でもある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength hot-dip galvanized steel sheet that is excellent in formability and is suitable as a material for parts that are important for corrosion resistance, such as parts for ensuring collision safety used in an automobile body, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, there has been an increasing demand for high-strength steel sheets as safety and weight reduction measures for automobiles.
However, formability becomes a problem as the strength of steel sheets increases. In particular, it is important to increase the local elongation that greatly affects stretch flange molding and burring molding, and uniform elongation that has a great influence on overhang molding.
In addition, FIG. 1 is a nominal stress-nominal strain curve when carrying out the tensile test of a steel plate, and it can grasp | ascertain local elongation and uniform elongation.
[0003]
As a method for producing a high-strength cold-rolled steel sheet, for example, Japanese Patent Application Laid-Open No. 7-188767 discloses a production method for improving stretch flangeability by forming a bainite-based metal structure.
However, there is a problem that the uniform elongation is low only in the structure mainly composed of bainite.
Furthermore, in the method for producing a high strength cold-rolled steel sheet described in JP-A-7-188767, a cooling rate of 100 ° C./c or more is required after annealing in order to obtain high strength. There was also a problem that it was difficult to ensure.
[0004]
Japanese Patent Application Laid-Open No. 9-263838 discloses a method for improving hole expansibility by making the metal structure of a steel plate a mixed structure of ferrite and bainite.
However, even with this method, securing of local elongation and uniform elongation is insufficient. Further, none of them considers corrosion resistance, and it is a difficult manufacturing condition for performing hot dip galvanizing.
[0005]
[Problems to be solved by the invention]
For this reason, the present invention aims to solve the problems of the prior art as described above, and has high strength and high strength that has high strength and good formability expressed by uniform elongation and local elongation. It was to provide a hot-dip galvanized steel sheet and a method for producing the same.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned object, the present inventors have realized that in order to realize a hot-dip galvanized steel sheet that is compatible with formability expressed by high strength, uniform elongation, and local elongation , a base steel sheet The ferrite accounts for 30% or more by volume, and the number of ferrite grains containing at least one of cementite, martensite, or retained austenite in the grains is 20% or more of the total ferrite. It was possible to obtain the knowledge that it is important to make the organization.
[0007]
That is, the present inventors have first found that the starting point of fracture at local elongation is pearlite containing hard martensite and coarse and brittle carbides present in the ferrite grain boundaries. Furthermore, it has also been clarified that martensite, cementite, and retained austenite necessary for obtaining high strength are less likely to be the starting point of cracking if they are within the ferrite grains.
And by this examination of the clarified matter and the base steel plate structure that can obtain high strength, and the hot dip galvanizing means that can obtain a preferable metal structure for the base steel plate, it is expressed by high strength, uniform elongation and local elongation. This has led to the confirmation of the effectiveness of the base steel sheet structure in realizing a hot-dip galvanized steel sheet having both formability.
[0008]
The present invention has been completed based on the above knowledge and the like, and is a high-strength hot-dip galvanized steel sheet excellent in formability suitable as a material of the part where corrosion resistance is important as shown in the following items 1) to 4) and its A manufacturing method is provided.
1) at mass ratio, C: 0.005 to 0.20% (hereinafter,% indicating the component ratio is the mass%), Si: less than 0.10%, Mn: 0.7 ~3.0% , P: 0.10% or less, S : 0.010% or less, Al: 0.001 to 0.20%, N: 0.0046% or less and the balance is composed of Fe and unavoidable impurities, and the metal structure has ferrite in volume ratio of 30% or more, and further within the grains In addition, a hot dip galvanized layer is provided on the surface of the base steel plate having a structure in which the number of ferrite grains containing at least one of cementite, martensite, and retained austenite is 20% or more of the total ferrite. A high-strength hot-dip galvanized steel sheet characterized by comprising:
2) C: 0.005 to 0.20%, Si: Less than 0.10 % , Mn: 0.7 to 3.0%, P: 0.10% or less, S: 0.010% or less, Al: 0.001 to 0.20%, N: 0.0046% or less, and Ti: 0.20% or less, Nb: 0.20% or less, V: 0.10% or less, B: 0.01% or less, Cr: 1.0% or less, Mo: 1.0% or less (except when 0.05 % or more) , Cu: 1.0% Hereafter, Ni: 1.0% or less, Ca: 0.01% or less, and the balance consists of Fe and unavoidable impurities, and has a volume of ferrite of 30% or more as a metal structure. It has a hot-dip galvanized layer on the surface of a base steel sheet having a structure in which the number of ferrite grains containing at least one of cementite, martensite, and retained austenite is 20% or more of the total number of ferrites. A high-strength hot-dip galvanized steel sheet characterized by comprising:
3) The steel slab having the composition described in 1) or 2) above is heated to 1050 ° C. or higher and then rough rolling is started. Finish rolling is started after holding, and after finishing rolling at a finishing temperature of 740 to 1030 ° C., cooling at an average cooling rate of 5 ° C./s or more, winding at 700 ° C. or less, and further rewinding. After pickling as it is, or after performing skin pass rolling and pickling, cold rolling is performed, and then annealing is performed at a temperature range of 720 to 900 ° C. for 5 seconds or more, and then an average cooling rate of 2 to 30 ° C./s Cool to 460-600 ° C and hold in this temperature range for 10-90 seconds, further cool and then hot dip galvanize, and cool from 200 ° C to 100 ° C within 300 seconds in the subsequent cooling process It is characterized by high strength Manufacturing method of hot-dip galvanized steel sheet.
4) After heating the steel slab having the composition described in the above 1) or 2) to 1050 ° C or higher, rough rolling is started, and after the rough rolling is finished, the steel bar is heated as it is or is heated or heated. Finish rolling is started after holding, and after finishing rolling at a finishing temperature of 740 to 1030 ° C., cooling at an average cooling rate of 5 ° C./s or more, winding at 700 ° C. or less, and further rewinding. After pickling as it is, or after performing skin pass rolling and pickling, cold rolling is performed, and then annealing is performed at a temperature range of 720 to 900 ° C. for 5 seconds or more, and then an average cooling rate of 2 to 30 ° C./s Then, it is cooled to 460 to 600 ° C. and held in this temperature range for 10 to 90 seconds, and after further cooling, hot dip galvanizing is applied and alloying treatment is performed, and in the subsequent cooling process, 200 ° C. to 100 ° C. Cool down to less than 300 seconds Wherein the method for manufacturing a high strength galvanized steel sheet.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the metal structure of the base steel sheet in the hot dip galvanized steel sheet, the composition of the steel slab or the base steel sheet, and the manufacturing conditions of the hot dip galvanized steel sheet are limited as described above.
(A) Metal structure of the base steel sheet The metal structure of the base steel sheet is an important element of the present invention. The base steel sheet is composed of 30% or more of ferrite by volume, and further cementite or martensite in the grains. High strength melt with excellent uniform elongation and local elongation by using a metal structure in which the number of ferrite grains containing any one or more of retained austenite is 20% or more of the number of total ferrite A galvanized steel sheet is obtained.
[0010]
In addition, since ferrite has excellent ductility itself, 30% or more in volume ratio is required to ensure excellent uniform elongation in the steel sheet. When ferrite is less than 30% by volume, excellent uniform elongation cannot be secured. The volume fraction of ferrite in the steel sheet structure is preferably 50% or more, more preferably 70% or more.
[0011]
However, it is difficult to ensure high strength with ferrite alone, and therefore it is necessary to generate a hard second phase to increase the strength of the steel sheet.
However, hard martensite existing in the ferrite grain boundary, cementite which is brittle carbide, or residual austenite which changes to hard martensite by molding tends to be a starting point of local elongation cracks. Therefore, these are preferably present in the ferrite grains, and the number of ferrite grains having one or more of cementite, martensite, or retained austenite in the grains is 20% or more of the total number of ferrites. Need to be. The number of such ferrite grains is preferably 30% or more, more preferably 50% or more.
[0012]
(B) Chemical composition C of steel slab or base steel plate C: C is an important component for obtaining high tension. If the C content is less than 0.005%, the required high tension cannot be obtained. If the C content exceeds 0.20%, the toughness and weldability are deteriorated and the amount of ferrite produced is insufficient. Therefore, the C content is determined to be 0.005 to 0.20%, but is preferably adjusted to 0.03 to 0.12%.
[0013]
Si: Si is also an effective component for increasing the strength of steel sheets, but it causes non-plating when hot dip galvanizing is performed and insufficient processing during alloying. Therefore, Si content is preferably adjusted to less than 0.10%.
[0014]
Mn: Mn is an effective component for promoting transformation strengthening and increasing strength, and for that purpose it is necessary to contain 0.7% or more. On the other hand, if Mn is contained in an amount exceeding 3.0%, it becomes difficult to produce ferrite, and at the same time, a band structure develops and local elongation decreases. Therefore, the Mn content is set to 0.7 to 3.0%, preferably 0.9 to 3.0%, more preferably 1.3 to 3.0%.
[0015]
P: P is an undesirable element that deteriorates toughness. Therefore, the allowable amount was confirmed, and the P content was determined to be 0.10% or less.
S: S becomes MnS and deteriorates bendability. Therefore, the allowable amount was confirmed, and the S content was determined to be 0.010% or less, but is preferably 0.0040% or less, more preferably 0.0015% or less.
[0016]
Al: Al is an element added for deoxidation, but its effect is insufficient if it is less than 0.001%, and if it exceeds 0.20%, the effect is saturated and economically disadvantageous. Therefore, the Al content is determined to be 0.001 to 0.20%.
N: Since N forms a nitride during continuous casting and causes cracks in the slab, its content is preferably low. Therefore, the allowable amount was confirmed, and the N content was determined to be 0.0046 % or less.
[0017]
Ti, Nb, V, and B: Ti, Nb, V, and B have the effect of delaying recrystallization and refining crystal grains, so that one or more of them can be contained as necessary. However, the effect is saturated when the Ti content exceeds 0.20%, the Nb content exceeds 0.20%, the V content exceeds 0.10%, and the B content exceeds 0.010%. Disadvantageous. Therefore, the Ti content is 0.20% or less, the Nb content is 0.20% or less, the V content is 0.10% or less, and the B content is 0.010% or less.
[0018]
Cr, Mo: Cr and Mo all have the function of promoting transformation strengthening by stabilizing austenite, like Mn, and are effective in increasing the strength of steel sheets. Is contained. However, if the Cr content exceeds 1.0% and the Mo content exceeds 1.0%, a problem arises in the surface treatment properties of the steel sheet. Therefore, the Cr content is set to 1.0% or less, and the Mo content is set to 1.0% or less (except for 0.05 % or more) in consideration of duplication with other steel types .
[0019]
Cu, Ni: Cu and Ni have a corrosion-inhibiting effect, have a function of concentrating on the surface and suppressing the penetration of hydrogen and suppressing delayed fracture, so that one or more kinds are contained as required. However, in any case, if the content exceeds 1.0%, the effect is saturated and disadvantageous in cost. Therefore, the Cu content and Ni content were determined to be 1.0% or less, respectively.
[0020]
Ca: Since Ca has an effect of improving local ductility by combining with S and spheroidizing the sulfide, it is added as necessary. However, even if contained over 0.01%, the effect is saturated and disadvantageous in terms of cost. Therefore, the Ca content is set to 0.01% or less.
[0021]
Compositions other than the above are Fe and inevitable impurities.
And the steel of the said composition is smelted by a converter, an electric furnace, a flat furnace, etc., for example. The steel type may be any of rimmed steel, capped steel, semi-killed steel or killed steel. Further, the casting of the steel slab may be performed by any means of “ingot-bundling rolling” or “continuous casting”.
In addition, the hot dip galvanized steel sheet according to the present invention is not particularly limited as long as it is a galvanized steel sheet. Any of these may be used. Moreover, the plating layer may be given to both surfaces of the steel plate, and may be given to one side.
[0022]
(C) Production conditions In order to produce a “high-strength hot-dip galvanized steel sheet excellent in formability suitable as a material for a part where corrosion resistance is important” according to the present invention, first, a steel piece having a composition defined by the present invention is 1050. Start rough rolling after heating to above ℃, and after finishing rough rolling, finish rolling starts after heating or holding the temperature as it is or if necessary, and finishes rolling at finishing temperatures of 740 to 1030 ° C. Then, it is cooled at an average cooling rate of 5 ° C./s or more, and hot rolling is performed at a temperature of 700 ° C. or less.
[0023]
Heating the steel slab to 1050 ° C. or higher is necessary to ensure the finishing temperature. The finishing temperature of 740 ° C. or higher is a necessary condition for suppressing the ferrite from coarsening with rolling below the transformation point, and the finishing temperature of 1030 ° C. or lower is a fine structure in the hot-rolled sheet. This is a necessary condition for generating sufficient ferrite after annealing and cold-rolled sheet annealing.
In order to secure the finishing temperature, it is effective to heat or maintain the temperature of the rough bar before finishing rolling. Further, there is no problem even if the rough bar is joined and subjected to continuous rolling.
In the hot rolling, the slab inserted into the heating furnace may be “slab as it is at high temperature after casting” or “slab left at room temperature”.
[0024]
After finishing rolling, the steel sheet is cooled at an average cooling rate of 5 ° C./s or more and wound at 700 ° C. or less in order to reduce the band-like structure. When the coiling temperature exceeds 700 ° C., a band-like structure that lowers the bendability develops even in the product, which is not preferable.
[0025]
After hot rolling, if necessary, it is subjected to skin pass rolling for flattening and pickling for scale removal, preferably cold rolling with a reduction rate of 30% or more and annealing (continuous annealing) and Apply hot dip galvanizing. In the annealing, after performing a treatment for holding at a temperature range of 720 to 900 ° C. for 5 seconds or more, it is cooled to 460 to 600 ° C. at a cooling rate of 2 to 30 ° C./s and held at the temperature range for 10 to 90 seconds. Then, after further cooling, hot dip galvanizing is performed, and if necessary, alloying treatment is performed, and then rapidly cooling from 200 ° C. to 100 ° C. within 300 seconds.
[0026]
In this case, at an annealing temperature of less than 720 ° C. and a heating and holding time of less than 5 seconds, austenitization is insufficient, and the amount of cementite, martensite or residual austenite in the ferrite grains effective for increasing the strength is small. . On the other hand, at an annealing temperature exceeding 900 ° C., ferrite with a volume ratio of 30% or more cannot be obtained.
After annealing, cooling is performed at an average cooling rate of 2 ° C./s or more in order to suppress precipitation of the hard phase on the ferrite grain boundaries. Further, the upper limit of the average cooling rate was set to 60 ° C./s so as not to cause flatness failure.
In the cooling process after annealing, it is necessary to hold for 10 to 90 seconds in a temperature range of 460 to 600 ° C. in order to separate the ferrite and the second phase.
[0027]
Then, hot dip galvanization is performed following the cooling, and alloying treatment is performed as necessary, but these treatment conditions are not particularly limited.
After the plating treatment, it is important to cool within 200 seconds from 200 ° C. to 100 ° C. or less. Thereby, it can suppress that coarse cementite precipitates in a ferrite grain boundary. The cooling from 200 ° C. to 100 ° C. is preferably within 60 seconds, and more preferably within 30 seconds.
[0028]
It should be noted that there is no problem even if a skin pass having an elongation of 4% or less is applied for flattening after the cooling following the plating process. Moreover, you may give the film | membrane which has a lubrication effect | action on a plating layer.
[0029]
【Example】
The steel having the chemical composition shown in Table 1 was melted in a converter and then made into a slab by continuous casting.
The slab was hot rolled under the conditions shown in Table 2 to produce a 2.6 mm thick hot rolled steel sheet.
Next, the obtained hot-rolled steel sheet was pickled and cold-rolled to a thickness of 1.2 mm, and then subjected to continuous annealing and hot-dip galvanizing under the conditions shown in Table 3.
After hot-dip galvanization, some materials were subjected to alloying treatment by heating, and Fe in the plating was adjusted to around 10% by weight.
[0030]
[Table 1]
Figure 0004000943
[0031]
[Table 2]
Figure 0004000943
[0032]
[Table 3]
Figure 0004000943
[0033]
The hot-dip galvanized steel sheet thus obtained was subjected to a night corrosion on the base material, and the metal structure was observed and specified by observation with an optical microscope and SEM, and further with an electron microscope.
Moreover, a JIS No. 5 test piece and a bending test piece were taken in the direction perpendicular to the rolling direction, and the characteristics were examined by a tensile test.
Furthermore, the number of ferrites containing one or more types of cementite, martensite, or retained austenite in the grains is the ratio of the number of grains corresponding to the observation of the region where 100 ferrites are contained in a certain base metal plate thickness section. (%)
Table 4 shows the metal structures and material properties investigated as described above.
[0034]
[Table 4]
Figure 0004000943
[0035]
As is clear from the results shown in Table 4, the hot-dip galvanized steel sheet according to the present invention showed high values for both uniform elongation and local elongation.
On the other hand, the material in which the metal structure defined in the present invention was not obtained had a low value in one or both of uniform elongation and local elongation.
Further, the hot dip galvanized steel sheet according to test number 25 having a high Si content had no problem in characteristics, but insufficient plating alloying treatment was partially caused and a problem in plating quality was recognized.
[0036]
【The invention's effect】
As described above, according to the present invention, a hot-dip galvanized steel sheet having excellent uniform elongation and local elongation and suitable for automotive reinforcement parts such as rocker inners that require corrosion resistance can be stably produced. Industrially useful effects can be obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a nominal stress-nominal strain curve when a tensile test of a steel sheet is performed, and is also an explanatory diagram of local elongation and uniform elongation.

Claims (4)

量割合にて、C:0.005 〜0.20%,Si:0.10%未満,Mn:0.7 〜3.0 %,P:0.10%以下,S:0.010 %以下,Al:0.001 〜0.20%,N:0.0046%以下を含むと共に残部がFe及び不可避的不純物から成り、かつ金属組織として、フェライトを体積率で30%以上有し、更に粒内にセメンタイト又はマルテンサイト又は残留オ−ステナイトの何れか1種以上を含むフェライト粒の数が総フェライトの数の20%以上である組織を持つ母材鋼板の表面に、溶融亜鉛めっき層を有して成ることを特徴とする、高強度溶融亜鉛めっき鋼板。At mass ratio, C: 0.005 ~0.20%, Si : less than 0.10%, Mn: 0.7 ~3.0% , P: 0.10% or less, S: 0.010% or less, Al: 0.001 ~0.20%, N : 0.0046% or less And the balance is composed of Fe and inevitable impurities, and has a metal structure containing ferrite of 30% or more by volume, and further contains any one or more of cementite, martensite, or retained austenite in the grains. A high-strength hot-dip galvanized steel sheet comprising a hot-dip galvanized layer on the surface of a base steel sheet having a structure in which the number of ferrite grains is 20% or more of the total number of ferrites. 量割合にて、C:0.005 〜0.20%,Si:0.10 %未満,Mn:0.7 〜3.0 %,P:0.10%以下,S:0.010 %以下,Al:0.001 〜0.20%,N:0.0046%以下を含み、更にTi:0.20%以下,Nb:0.20%以下,V:0.10%以下,B:0.01%以下,Cr:1.0 %以下,Mo:1.0 %以下(但し、 0.05 %以上の場合を除く),Cu:1.0 %以下,Ni:1.0 %以下,Ca:0.01%以下の1種以上を含むと共に残部がFe及び不可避的不純物から成り、かつ金属組織として、フェライトを体積率で30%以上有し、更に粒内にセメンタイト又はマルテンサイト又は残留オ−ステナイトの何れか1種以上を含むフェライト粒の数が総フェライトの数の20%以上である組織を持つ母材鋼板の表面に、溶融亜鉛めっき層を有して成ることを特徴とする、高強度溶融亜鉛めっき鋼板。At mass ratio, C: 0.005 ~0.20%, Si : less than 0.10%, Mn: 0.7 ~3.0% , P: 0.10% or less, S: 0.010% or less, Al: 0.001 ~0.20%, N : 0.0046% or less Ti: 0.20% or less, Nb: 0.20% or less, V: 0.10% or less, B: 0.01% or less, Cr: 1.0% or less, Mo: 1.0% or less (except when 0.05 % or more) , Cu: 1.0% or less, Ni: 1.0% or less, Ca: 0.01% or less, with the balance being Fe and inevitable impurities, and having a metal structure with ferrite in a volume ratio of 30% or more Furthermore, hot dip galvanizing is performed on the surface of the base steel sheet having a structure in which the number of ferrite grains containing at least one of cementite, martensite, and retained austenite in the grains is 20% or more of the total number of ferrites. A high-strength hot-dip galvanized steel sheet characterized by comprising a layer. 請求項1又は2に記載の成分組成を有した鋼片を、1050℃以上に加熱した後に粗圧延を開始し、粗圧延終了後、そのままあるいは粗バ−の加熱又は温度保定を実施してから仕上圧延を開始し、仕上温度740〜1030℃で圧延終了した後、5℃/s 以上の平均冷却速度で冷却して700℃以下で巻き取り、更に巻き戻してからそのまま酸洗、或いはスキンパス圧延酸洗を施した後に冷間圧延を施し、次いで720〜900℃の温度範囲で5秒以上保持する焼鈍を行った後、2〜30℃/s の平均冷却速度で460〜600℃まで冷却して該温度範囲で10〜90秒保持し、更に冷却してから溶融亜鉛めっきを施し、続く冷却過程において200℃から100℃以下までを300秒以内で冷却することを特徴とする、高強度溶融亜鉛めっき鋼板の製造方法。After the steel slab having the component composition according to claim 1 or 2 is heated to 1050 ° C. or more, rough rolling is started, and after the rough rolling is finished, as it is or after heating or maintaining the temperature of the coarse bar. After finishing rolling, finishing at a finishing temperature of 740 to 1030 ° C., cooling at an average cooling rate of 5 ° C./s or more, winding at 700 ° C. or less, rewinding, and pickling or skin pass rolling as it is And then pickling and then cold rolling, followed by annealing at a temperature range of 720 to 900 ° C for 5 seconds or more, and then cooling to 460 to 600 ° C at an average cooling rate of 2 to 30 ° C / s. held 10 to 90 seconds at this temperature range by further facilities galvanizing is cooled, characterized by cooling from 200 ° C. to 100 ° C. or less within 300 seconds in the subsequent cooling process, high Strength molten zinc A method for manufacturing steel sheets. 請求項1又は2に記載の成分組成を有した鋼片を、1050℃以上に加熱した後に粗圧延を開始し、粗圧延終了後、そのままあるいは粗バ−の加熱又は温度保定を実施してから仕上圧延を開始し、仕上温度740〜1030℃で圧延終了した後、5℃/After the steel slab having the component composition according to claim 1 or 2 is heated to 1050 ° C. or more, rough rolling is started, and after the rough rolling is finished, as it is or after heating or maintaining the temperature of the coarse bar. After finishing rolling and finishing at a finishing temperature of 740 to 1030 ° C., 5 ° C. / s s 以上の平均冷却速度で冷却して700℃以下で巻き取り、更に巻き戻してからそのまま酸洗、或いはスキンパス圧延と酸洗を施した後に冷間圧延を施し、次いで720〜900℃の温度範囲で5秒以上保持する焼鈍を行った後、2〜30℃/Cool at the above average cooling rate, wind up at 700 ° C. or lower, further rewind and pickle as it is, or subject to cold pass after skin pass rolling and pickling, and then in a temperature range of 720 to 900 ° C. After annealing for 5 seconds or longer, 2-30 ° C / s s の平均冷却速度で460〜600℃まで冷却して該温度範囲で10〜90秒保持し、更に冷却してから溶融亜鉛めっきを施すと共に、合金化処理を施し、続く冷却過程において200℃から100℃以下までを300秒以内で冷却することを特徴とする、高強度溶融亜鉛めっき鋼板の製造方法。At an average cooling rate of 460 to 600 ° C. and maintained at this temperature range for 10 to 90 seconds, further cooled and then hot dip galvanized and alloyed, and in the subsequent cooling process from 200 ° C. to 100 ° C. A method for producing a high-strength hot-dip galvanized steel sheet, characterized by cooling to below 300C within 300 seconds.
JP2002226267A 2002-08-02 2002-08-02 High-strength hot-dip galvanized steel sheet and manufacturing method thereof Expired - Fee Related JP4000943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226267A JP4000943B2 (en) 2002-08-02 2002-08-02 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226267A JP4000943B2 (en) 2002-08-02 2002-08-02 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004068051A JP2004068051A (en) 2004-03-04
JP4000943B2 true JP4000943B2 (en) 2007-10-31

Family

ID=32013665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226267A Expired - Fee Related JP4000943B2 (en) 2002-08-02 2002-08-02 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4000943B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676918A (en) * 2012-06-13 2012-09-19 鞍钢股份有限公司 Hot rolled steel plate for hot-dip galvanizing pot and production method of hot rolled steel plate

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250939B2 (en) * 2005-03-31 2013-07-31 Jfeスチール株式会社 Method for producing galvannealed steel sheet
JP5250938B2 (en) * 2005-03-31 2013-07-31 Jfeスチール株式会社 Low yield ratio type high strength galvannealed steel sheet with excellent ductility and method for producing the same
JP4967360B2 (en) * 2006-02-08 2012-07-04 住友金属工業株式会社 Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members
JP4837604B2 (en) * 2007-03-16 2011-12-14 新日本製鐵株式会社 Alloy hot-dip galvanized steel sheet
KR100957967B1 (en) 2007-12-27 2010-05-17 주식회사 포스코 High Strength Cold Rolled Steel Sheet, Galvanized Steel Sheet having Excellent Yield Strength Anisotropic Properties
JP4930393B2 (en) * 2008-01-31 2012-05-16 Jfeスチール株式会社 Cold rolled steel sheet manufacturing method
KR101076092B1 (en) 2008-09-29 2011-10-21 현대제철 주식회사 Hot dip galvanized hot rolled steel sheet having high strength and high elongation property and the method for manufacturing the same
KR101149193B1 (en) * 2009-04-27 2012-05-24 현대제철 주식회사 Steel sheet having excellent formability and galvanizing property, and method for producing the same
CN102719751B (en) * 2011-03-29 2015-03-11 鞍钢股份有限公司 High-strength cold-rolled hot-galvanized dual-phase steel plate and manufacture method thereof
KR101505268B1 (en) * 2013-03-28 2015-03-24 현대제철 주식회사 Skin pass roll and method of manufacturing galvannealed steel sheet using the same
KR101672102B1 (en) * 2014-12-22 2016-11-02 주식회사 포스코 Hot rolled steel sheet for hot galvanized iron having high surface quality and high strength, and method for producing the same
WO2017169871A1 (en) 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
WO2018220412A1 (en) * 2017-06-01 2018-12-06 Arcelormittal Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
WO2018220430A1 (en) * 2017-06-02 2018-12-06 Arcelormittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
KR102134310B1 (en) * 2017-12-26 2020-07-15 주식회사 포스코 Cold-rolled steel sheet for flux cored wire and manufacturing the same
CN110541107B (en) * 2018-05-28 2021-04-06 上海梅山钢铁股份有限公司 Hot-dip aluminum-zinc steel plate with tensile strength of 600MPa and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676918A (en) * 2012-06-13 2012-09-19 鞍钢股份有限公司 Hot rolled steel plate for hot-dip galvanizing pot and production method of hot rolled steel plate

Also Published As

Publication number Publication date
JP2004068051A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4306202B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP5578289B2 (en) Cold-rolled steel sheet, method for producing the same, and hot stamping molded body
CN111433380B (en) High-strength galvanized steel sheet and method for producing same
JP5651964B2 (en) Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same
JP5365673B2 (en) Hot rolled steel sheet with excellent material uniformity and method for producing the same
CN114990431A (en) Alloyed hot-dip galvanized steel sheet and method for producing same
JP5092507B2 (en) High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2008291304A (en) High-strength cold-rolled steel sheet and high strength hot-dip galvanized steel sheet both excellent in deep-drawability and strength-ductility balance, and producing method of the both
JP3956550B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent balance of strength and ductility
JP2023011853A (en) Cold rolled and heat treated steel sheet and method of manufacturing thereof
WO2013046693A1 (en) Hot-rolled steel sheet and method for producing same
JP5531757B2 (en) High strength steel plate
JP2003213369A (en) High-strength steel sheet, high-strength galvanized steel sheet and high-strength galvannealed steel sheet having excellent stretch-flanging property and impact resistance, and production method therefor
JP4855442B2 (en) Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP5953693B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
EP4180547A1 (en) Hot-pressed member and manufacturing method therefor
CN111448329A (en) Cold rolled and coated steel sheet and method for manufacturing the same
CN112689684B (en) Cold rolled and coated steel sheet and method for manufacturing the same
JP2006283071A (en) Method for producing galvannealed high strength steel sheet excellent in workability
JP5953695B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JPWO2014178358A1 (en) Galvanized steel sheet and manufacturing method thereof
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
JP4351465B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP5434787B2 (en) Hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4000943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees