JP4000321B2 - Distance measuring method and distance measuring method - Google Patents

Distance measuring method and distance measuring method Download PDF

Info

Publication number
JP4000321B2
JP4000321B2 JP2004197995A JP2004197995A JP4000321B2 JP 4000321 B2 JP4000321 B2 JP 4000321B2 JP 2004197995 A JP2004197995 A JP 2004197995A JP 2004197995 A JP2004197995 A JP 2004197995A JP 4000321 B2 JP4000321 B2 JP 4000321B2
Authority
JP
Japan
Prior art keywords
wave
frequency
radio station
radio
propagation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004197995A
Other languages
Japanese (ja)
Other versions
JP2006017661A (en
Inventor
豪藏 鹿毛
Original Assignee
東京レーダー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京レーダー株式会社 filed Critical 東京レーダー株式会社
Priority to JP2004197995A priority Critical patent/JP4000321B2/en
Publication of JP2006017661A publication Critical patent/JP2006017661A/en
Application granted granted Critical
Publication of JP4000321B2 publication Critical patent/JP4000321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は,距離測定技術に関し,特に,移動通信の分野において,移動局と固定局の間,または,移動局間の電波の伝搬時間を求め,その伝搬時間に相当する距離を測定する距離測定方法及び距離測定方式に関する。   The present invention relates to distance measurement technology, and in particular, in the field of mobile communication, distance measurement is performed for obtaining a radio wave propagation time between a mobile station and a fixed station or between mobile stations and measuring a distance corresponding to the propagation time. The present invention relates to a method and a distance measurement method.

移動通信の分野で,距離を電波で直接測定する方法は,GPSによる衛星を使った距離測定が困難な,ビル影や駅構内等で用いられる。   In the field of mobile communication, the method of directly measuring the distance with radio waves is used in building shadows or in station premises where it is difficult to measure distances using satellites using GPS.

従来の電波による距離測定方法としては,(1)スペクトラム拡散されたデジタル信号の伝搬時間を測定する方法(例えば,特許文献1参照),(2)測量対処物へ同期信号を送信しておき,測量対処物からのキャリア周波数を違えた同期信号を受信して,伝搬時間を測定する方法(例えば,特許文献2参照)があった。
特開2001−69555号公報 特開平9−197036号公報
As a conventional distance measurement method using radio waves, (1) a method for measuring the propagation time of a spread spectrum digital signal (for example, refer to Patent Document 1), (2) a synchronization signal is transmitted to a surveying object, There has been a method (for example, see Patent Document 2) of receiving a synchronization signal from a surveying object with a different carrier frequency and measuring a propagation time.
JP 2001-69555 A Japanese Patent Laid-Open No. 9-197036

上記(1)のスペクトラム拡散されたデジタル信号の伝搬時間を測定する方法は,伝搬時間測定のため,相関検出技術が複雑であるとともに,非常に広い周波数帯域が必要とされる欠点があった。   The method (1) for measuring the propagation time of a spread spectrum digital signal has a drawback in that the correlation detection technique is complicated and a very wide frequency band is required for measuring the propagation time.

他方,上記(2)の測量対処物からのキャリア周波数を違えた同期信号を折り返す方法は,単調な周期性信号では,キャリア周波数を違えるときに,位相の不確定性が発生して,そのために折り返してきた波からは伝搬時間の測定が困難である。そこで,同期信号として,単に送出電波の立ち上がりだけを検出する方法と,何らかのデジタル信号を用いる方法があった。   On the other hand, the method of looping back the synchronization signal with the different carrier frequency from the surveyed object in (2) described above causes a phase uncertainty in the monotonic periodic signal when the carrier frequency is changed. It is difficult to measure the propagation time from the returned wave. Therefore, there are a method for detecting only the rising edge of the transmitted radio wave and a method for using some kind of digital signal as the synchronization signal.

しかし,単に送出電波の立ち上がりだけを検出する方法は,移動通信特有の激しいフェージング環境下において,受信の立ち上がり時刻を正確に検出することが困難であり,同期信号としてデジタル信号を用いる場合には,十分な測定精度を得るため,高速のデジタル信号を送信する必要があり,結果として,やはり広い周波数帯域が必要であった。   However, the method of detecting only the rising edge of the transmitted radio wave is difficult to accurately detect the rising time of reception under the intense fading environment peculiar to mobile communications. When a digital signal is used as a synchronization signal, In order to obtain sufficient measurement accuracy, it was necessary to transmit a high-speed digital signal, and as a result, a wide frequency band was also required.

また,従来の方法において,高速のデジタル信号を使う場合には,1〜2GHz帯以上の高いキャリア周波数を使用する無線システムに限られており,キャリア周波数が低い無線システムでは,信号の周波数帯域幅とキャリア周波数の比が大きくなりすぎて,実用には適さなかった。   Further, in the conventional method, when using a high-speed digital signal, it is limited to a radio system using a high carrier frequency of 1 to 2 GHz band or more. In a radio system having a low carrier frequency, the frequency bandwidth of the signal The carrier frequency ratio was too large and was not suitable for practical use.

本発明は,従来の距離測定方法の問題点を解決して,限られた周波数帯域において,しかも単調な波形(例えば,正弦波)で,移動局と固定局の間,あるいは移動局間の電波伝搬時間を求め,(相対的)距離を電波で直接測定する距離測定方法及び距離測定方式の提供を目的とする。   The present invention solves the problems of the conventional distance measuring method, and in a limited frequency band and with a monotonous waveform (for example, a sine wave), radio waves between a mobile station and a fixed station, or between mobile stations. The purpose is to provide a distance measurement method and a distance measurement method in which the propagation time is obtained and the (relative) distance is directly measured by radio waves.

本発明によって,数百MHz程度の低いキャリア周波数であっても数百m程度の距離測定は可能になる。   According to the present invention, it is possible to measure a distance of several hundred meters even at a carrier frequency as low as several hundred MHz.

本発明は,上記課題を解決するため,周波数の異なる2つの波を送信し,相手局において2つの波を受信すると,それぞれ周波数シフトして折り返し,折り返してきた2つの波と相手局へ送信した2つの波を用いて,相手局で周波数シフト時に付加された周波数や位相の不確定成分の影響を受けずに無線局間の伝搬時間が測定できるように相殺した新たな2つの波を生成し,その2つの波の位相差により伝搬時間を測定することをもっとも主要な特徴とする。   In order to solve the above-mentioned problem, the present invention transmits two waves having different frequencies, and when two waves are received at the partner station, each of the waves is frequency-shifted and looped back. Using the two waves, generate two new waves that cancel each other so that the propagation time between radio stations can be measured without being affected by the frequency and phase uncertainty components added at the time of frequency shift at the partner station. The most important feature is that the propagation time is measured by the phase difference between the two waves.

図1は,本発明の概要を説明する図である。本発明においては,無線局1の第1の発振手段101から周波数f1 の第1の波を発振し,第2の発振手段102から周波数f2 (f2 ≠f1 )の第2の波を発振し,送信手段103からそれぞれの波を無線局2に送信する。 FIG. 1 is a diagram for explaining the outline of the present invention. In the present invention, oscillates a first wave of frequency f 1 from the first oscillating means 101 of the radio station 1, a second wave of frequency f 2 from the second oscillating means 102 (f 2 ≠ f 1) And each wave is transmitted from the transmission means 103 to the radio station 2.

無線局2の受信手段201が,第1の波及び第2の波を受信する。そして,周波数位相シフト手段202が,それぞれの波の周波数と位相を所定の周波数シフト用の波によりシフトする。この周波数位相シフト手段202による周波数と位相のシフト処理により,第1の波から周波数f3 の第3の波が生成され,第2の波から周波数f4 (f4 ≠f3 )の第4の波が生成される。送信手段203は,生成された第3の波及び第4の波を無線局1に送信する。周波数位相シフト手段202によって周波数f1 ,f2 の波の周波数をシフトするのは,送信手段203によって無線局2から無線局1へ送信する波が,無線局2の受信手段201によって受信され,無線局1からの波と混同してしまわないようにするためである。 The receiving means 201 of the radio station 2 receives the first wave and the second wave. Then, the frequency phase shift means 202 shifts the frequency and phase of each wave with a predetermined frequency shift wave. By the frequency and phase shift processing by the frequency phase shift means 202, a third wave of frequency f 3 is generated from the first wave, and a fourth wave of frequency f 4 (f 4 ≠ f 3 ) is generated from the second wave. Wave is generated. The transmission unit 203 transmits the generated third wave and fourth wave to the radio station 1. The frequency phase shift means 202 shifts the frequencies of the waves f 1 and f 2 because the wave transmitted from the radio station 2 to the radio station 1 by the transmission means 203 is received by the reception means 201 of the radio station 2, This is to avoid confusion with the waves from the radio station 1.

無線局1の受信手段104が第3の波及び第4の波を受信すると,周波数位相シフト手段105は,第1の波と第2の波と第3の波と第4の波の,相異なる2組の2つの波を用いて,それぞれ周波数及び位相をシフトすることにより,周波数が同じで位相が異なる第5の波と第6の波を生成する。この第5の波と第6の波の生成方法としては,次のいずれを用いてもよい。
(1)第1の波と第2の波を入力して周波数と位相をシフトする周波数位相シフト手段により第5の波を生成し,第3の波と第4の波を入力して周波数と位相をシフトする他の周波数位相シフト手段により第6の波を生成する。
(2)第1の波と第3の波を入力して周波数と位相をシフトする周波数位相シフト手段により第5の波を生成し,第2の波と第4の波を入力して周波数と位相をシフトする他の周波数位相シフト手段により第6の波を生成する。
(3)第1の波と第4の波を入力して周波数と位相をシフトする周波数位相シフト手段により第5の波を生成し,第2の波と第3の波を入力して周波数と位相をシフトする他の周波数位相シフト手段により第6の波を生成する。
When the receiving means 104 of the radio station 1 receives the third wave and the fourth wave, the frequency phase shift means 105 outputs the phase of the first wave, the second wave, the third wave, and the fourth wave. By using two different sets of two waves and shifting the frequency and phase, respectively, the fifth wave and the sixth wave having the same frequency and different phases are generated. Any of the following may be used as a method of generating the fifth wave and the sixth wave.
(1) The fifth wave is generated by the frequency phase shift means for inputting the first wave and the second wave to shift the frequency and the phase, and the third wave and the fourth wave are input and the frequency The sixth wave is generated by other frequency phase shift means for shifting the phase.
(2) The fifth wave is generated by the frequency phase shift means for shifting the frequency and the phase by inputting the first wave and the third wave, and the frequency and the second wave and the fourth wave are input. The sixth wave is generated by other frequency phase shift means for shifting the phase.
(3) The fifth wave is generated by the frequency phase shift means for inputting the first wave and the fourth wave to shift the frequency and the phase, and the second wave and the third wave are input and the frequency The sixth wave is generated by other frequency phase shift means for shifting the phase.

上記(1)〜(3)のいずれの方法を用いても,無線局2で周波数位相シフト手段202によって周波数シフト時に付加された周波数や位相の不確定成分の影響を受けないように相殺した新たな2つの波を生成することができる。   Even if any of the above methods (1) to (3) is used, a new offset is made so as not to be affected by the frequency and phase indeterminate components added at the time of frequency shift by the frequency phase shift means 202 in the wireless station 2. Two waves can be generated.

測定手段106は,生成された第5の波と第6の波の位相差に基づいて,無線局1と無線局2間の電波の伝搬時間を測定する。電波の速度と伝搬時間とから無線局1と無線局2間の距離を求めることができる。   The measuring means 106 measures the propagation time of the radio wave between the radio station 1 and the radio station 2 based on the generated phase difference between the fifth wave and the sixth wave. The distance between the radio station 1 and the radio station 2 can be obtained from the speed of radio waves and the propagation time.

本発明は,電波の伝搬時間を測定することによる距離測定方式であるから,本発明を使って,移動局と固定局の間,あるいは移動局間の電波の伝搬時間を直接得ることも可能である。この場合,後述する本発明の実施例の表示器において,片道の伝搬時間τ,または往復の伝搬時間2τを表示するようにすればよい。   Since the present invention is a distance measurement method by measuring the propagation time of radio waves, it is also possible to directly obtain the propagation time of radio waves between a mobile station and a fixed station or between mobile stations using the present invention. is there. In this case, the one-way propagation time τ or the round-trip propagation time 2τ may be displayed on the display of the embodiment of the present invention described later.

すなわち,本発明は,単調な周期性信号を使って伝搬時間を測定する方式であるから,周波数帯域を広げることなく,電波で直接,移動局と固定局,あるいは移動局間の距離の測定が可能であるという効果がある。本発明によれば,単調な周期性信号を測定に使用しているにもかかわらず,折り返す電波の周波数や位相の不確定性は,受信側で相殺されて,伝搬時間の測定に全く影響しないメリットがある。また,狭帯域での測定が可能であることは,さらに,無線周波数として,数百MHz程度の低い周波数帯でも実用できることを意味する。   In other words, since the present invention is a method of measuring the propagation time using a monotonic periodic signal, the distance between the mobile station and the fixed station or the mobile station can be measured directly by radio waves without widening the frequency band. There is an effect that it is possible. According to the present invention, although the monotonic periodic signal is used for the measurement, the uncertainty of the frequency and phase of the folded radio wave is canceled on the receiving side and does not affect the measurement of the propagation time at all. There are benefits. Moreover, the fact that measurement in a narrow band is possible means that the radio frequency can be practically used even in a low frequency band of about several hundred MHz.

〔第1の実施の形態〕
本発明の第1の実施の形態は,第1の無線局と第2の無線局の間の伝搬時間を測定する距離測定方式であって,第1の無線局及び第2の無線局は,それぞれ以下に述べる手段を備える。
[First Embodiment]
The first embodiment of the present invention is a distance measurement method for measuring a propagation time between a first radio station and a second radio station, and the first radio station and the second radio station are: Each has the following means.

第1の無線局は,
第1の波を発振する第1の発振手段と,
第2の波を発振する第2の発振手段と,
第1の波を電波として送信する第1の送信手段と,
第2の波を電波として送信する第2の送信手段とを備え,
第1の波と第2の波の電波を第2の無線局へ送信する。
The first radio station
First oscillating means for oscillating a first wave;
A second oscillating means for oscillating a second wave;
First transmission means for transmitting the first wave as a radio wave;
Second transmitting means for transmitting the second wave as a radio wave,
The radio waves of the first wave and the second wave are transmitted to the second radio station.

第2の無線局は,
送信された第1の波を受信する第1の受信手段と,
送信された第2の波を受信する第2の受信手段と,
周波数シフト用の波を発振する第3の発振手段と,
第1の受信手段で受信した第1の波と周波数シフト用の波を入力して,周波数と位相をシフトして第3の波を出力する第1の周波数位相シフト手段と,
第2の受信手段で受信した第2の波と周波数シフト用の波を入力して,周波数と位相をシフトして第4の波を出力する第2の周波数位相シフト手段と,
第3の波を送信する第3の送信手段と,
第4の波を送信する第4の送信手段とを備え,
第3の波と第4の波を第1の無線局へ送信する。
The second radio station
First receiving means for receiving the transmitted first wave;
Second receiving means for receiving the transmitted second wave;
A third oscillation means for oscillating a frequency shift wave;
First frequency phase shift means for inputting a first wave received by the first receiving means and a wave for frequency shift, shifting the frequency and phase, and outputting a third wave;
A second frequency phase shift means for inputting a second wave and a frequency shift wave received by the second reception means, shifting a frequency and a phase and outputting a fourth wave;
A third transmission means for transmitting a third wave;
A fourth transmission means for transmitting the fourth wave,
The third wave and the fourth wave are transmitted to the first radio station.

さらに,第1の無線局は,
第3の波を受信する第3の受信手段と,
第4の波を受信する第4の受信手段と,
第1の発振手段から得られた第1の波,第2の発振手段から得られた第2の波,第3の受信手段から得られた第3の波,及び第4の受信手段から得られた第4の波を入力して,それぞれの周波数及び位相をシフトするマルチ周波数位相シフト手段と,
マルチ周波数位相シフト手段の処理結果に従って,第1の無線局と第2の無線局の間の伝搬時間を測定する伝搬時間測定手段とを備え,
伝搬時間によって距離を測定する。
Furthermore, the first radio station
Third receiving means for receiving a third wave;
A fourth receiving means for receiving a fourth wave;
Obtained from the first wave obtained from the first oscillating means, the second wave obtained from the second oscillating means, the third wave obtained from the third receiving means, and the fourth receiving means. Multi-frequency phase shift means for inputting the received fourth wave and shifting the respective frequencies and phases;
Propagation time measuring means for measuring the propagation time between the first radio station and the second radio station according to the processing result of the multi-frequency phase shift means,
Measure distance by propagation time.

〔第2の実施の形態〕
本発明の第2の実施の形態は,上記第1の実施の形態において,
第1の無線局における前記マルチ周波数位相シフト手段は,
第3の受信手段で受信した第3の波と第4の受信手段で受信した第4の波を入力して,周波数と位相をシフトする第3の周波数位相シフト手段と,
第1の波と第2の波を入力して,周波数と位相をシフトする第4の周波数位相シフト手段とを備え,
伝搬時間測定手段は,
第3の周波数位相シフト手段の出力と第4の周波数位相シフト手段の出力とを使って,第1の無線局と第2の無線局の間の伝搬時間を測定する時間測定手段を備える。
[Second Embodiment]
The second embodiment of the present invention is the same as the first embodiment described above.
The multi-frequency phase shift means in the first radio station is:
A third frequency phase shift means for inputting the third wave received by the third receiving means and the fourth wave received by the fourth receiving means and shifting the frequency and phase;
A fourth frequency phase shift means for inputting the first wave and the second wave and shifting the frequency and phase;
Propagation time measurement means
Time measuring means for measuring the propagation time between the first radio station and the second radio station using the output of the third frequency phase shift means and the output of the fourth frequency phase shift means is provided.

〔第3の実施の形態〕
また,本発明の第3の実施の形態は,上記第1の実施の形態において,
第1の無線局における前記マルチ周波数位相シフト手段は,
第3の受信手段で受信した第3の波と第1の波を入力して,周波数と位相をシフトする第5の周波数位相シフト手段と,
第4の受信手段で受信した第4の波と第2の波を入力して,周波数と位相をシフトする第6の周波数位相シフト手段とを備え,
伝搬時間測定手段は,
第5の周波数位相シフト手段の出力と第6の周波数位相シフト手段の出力とを使って,第1の無線局と第2の無線局の間の伝搬時間を測定する時間測定手段を備える。
[Third Embodiment]
The third embodiment of the present invention is the same as the first embodiment described above.
The multi-frequency phase shift means in the first radio station is:
A fifth frequency phase shift means for inputting the third wave and the first wave received by the third receiving means and shifting the frequency and phase;
A fourth frequency phase shift means for inputting the fourth wave and the second wave received by the fourth reception means and shifting the frequency and phase;
Propagation time measurement means
Time measuring means for measuring the propagation time between the first radio station and the second radio station using the output of the fifth frequency phase shift means and the output of the sixth frequency phase shift means is provided.

〔第4の実施の形態〕
また,本発明の第4の実施の形態は,上記第1の実施の形態において,
第1の無線局のマルチ周波数位相シフト手段は,
第3の受信手段で受信した第3の波と第2の波を入力して,周波数と位相をシフトする第7の周波数位相シフト手段と,
第4の受信手段で受信した第4の波と第1の波を入力して,周波数と位相をシフトする第8の周波数位相シフト手段とを備え,
伝搬時間測定手段は,
第7の周波数位相シフト手段の出力と第8の周波数位相シフト手段の出力とを使って,第1の無線局と第2の無線局の間の伝搬時間を測定する時間測定手段を備える。
[Fourth Embodiment]
The fourth embodiment of the present invention is the same as the first embodiment described above.
The multi-frequency phase shift means of the first radio station is:
A seventh frequency phase shift means for inputting the third wave and the second wave received by the third receiving means and shifting the frequency and the phase;
An eighth frequency phase shift means for inputting the fourth wave and the first wave received by the fourth receiving means and shifting the frequency and phase;
Propagation time measurement means
Time measuring means for measuring the propagation time between the first radio station and the second radio station using the output of the seventh frequency phase shift means and the output of the eighth frequency phase shift means is provided.

〔第5の実施の形態〕
また,本発明の第5の実施の形態は,上記第1〜第4の実施の形態において,
第1の無線局の第1の送信手段と第2の送信手段とを共通に使用する第1の共通送信手段を設け,第1の波と第2の波を合成して,第1の共通送信手段によって送信する。
[Fifth Embodiment]
The fifth embodiment of the present invention is the same as the first to fourth embodiments described above.
A first common transmission unit that uses the first transmission unit and the second transmission unit of the first wireless station in common is provided, and the first common wave and the second wave are combined to form a first common Transmit by transmission means.

〔第6の実施の形態〕
また,本発明の第6の実施の形態は,上記第1〜第5の実施の形態において,
第2の無線局の第1の受信手段と第2の受信手段とを共通に使用する第1の共通受信手段を設け,第1の無線局から送信された第1の波と第2の波を第1の共通受信手段によって受信し,その出力を,分離して使用する。
[Sixth Embodiment]
The sixth embodiment of the present invention is the same as the first to fifth embodiments described above.
First common receiving means for commonly using the first receiving means and the second receiving means of the second wireless station is provided, and the first wave and the second wave transmitted from the first wireless station are provided. Are received by the first common receiving means, and their outputs are used separately.

〔第7の実施の形態〕
また,本発明の第7の実施の形態は,上記第1〜第6の実施の形態において,
第2の無線局の第3の送信手段と第4の送信手段とを共通に使用する第2の共通送信手段を設け,第3の波と第4の波を合成して,第2の共通送信手段によって送信することを特徴とする。
[Seventh Embodiment]
The seventh embodiment of the present invention is the same as the first to sixth embodiments described above.
A second common transmission unit that uses the third transmission unit and the fourth transmission unit of the second radio station in common is provided, and the third wave and the fourth wave are combined to form a second common It transmits by a transmission means, It is characterized by the above-mentioned.

〔第8の実施の形態〕
また,本発明の第8の実施の形態は,上記第1〜第7の実施の形態において,
第1の無線局の第3の受信手段と第4の受信手段とを共通に使用する第2の共通受信手段を設け,第3の波と第4の波を第2の共通受信手段によって受信し,その出力を,分離して使用する。
[Eighth Embodiment]
The eighth embodiment of the present invention is the same as the first to seventh embodiments described above.
A second common receiving means for commonly using the third receiving means and the fourth receiving means of the first radio station is provided, and the third wave and the fourth wave are received by the second common receiving means. The output is used separately.

以下,図面を参照しながら,無線局1と無線局2の間の伝搬時間を求めることにより,無線局1と無線局2の間の距離を電波で直接測定する本発明の実施例について説明する。ここでは,説明を簡略化するため,増幅器やフィルタ等の遅延時間は無視している。   Hereinafter, an embodiment of the present invention in which the distance between the radio station 1 and the radio station 2 is directly measured by radio waves by obtaining the propagation time between the radio station 1 and the radio station 2 will be described with reference to the drawings. . Here, in order to simplify the explanation, delay times of amplifiers, filters, etc. are ignored.

図2は,本発明の実施例1を示す図である。無線局1においては,周波数f1 の波を発振する発振器3と周波数f2 の波を発振する発振器4がある。それぞれの発振器出力は,発振器3の出力が,増幅器5とアンテナ6からなる第1の送信機より送信されて,発振器4の出力が,増幅器7とアンテナ8からなる第2の送信機より送信される。 FIG. 2 is a diagram showing Example 1 of the present invention. The radio station 1 includes an oscillator 3 that oscillates a wave having a frequency f 1 and an oscillator 4 that oscillates a wave having a frequency f 2 . The output of the oscillator 3 is transmitted from the first transmitter including the amplifier 5 and the antenna 6, and the output of the oscillator 4 is transmitted from the second transmitter including the amplifier 7 and the antenna 8. The

アンテナ6から送信された波をX1 (t),アンテナ8から送信された波をX2 (t)として,ω1 =2πf1 ,ω2 =2πf2 とすると,送信された波は,それぞれ,次式のように表される。本説明では,振幅については本質的でないため,記載を省略する。 Assuming that the wave transmitted from the antenna 6 is X 1 (t) and the wave transmitted from the antenna 8 is X 2 (t) and ω 1 = 2πf 1 and ω 2 = 2πf 2 , the transmitted waves are respectively , Is expressed as: In this description, the amplitude is not essential, so the description is omitted.

1 (t)=cos(ω1 t+θ1 ) …(1)
2 (t)=cos(ω2 t+θ2 ) …(2)
無線局2においては,それぞれの波X1 (t)とX2 (t)が伝搬時間τ遅延して受信される。
X 1 (t) = cos (ω 1 t + θ 1 ) (1)
X 2 (t) = cos (ω 2 t + θ 2 ) (2)
The radio station 2 receives the waves X 1 (t) and X 2 (t) with a propagation time τ delay.

アンテナ6から送信された波は,アンテナ9,受信増幅器10,帯域通過フィルタ11からなる第1の受信機により受信され,
1 (t)=X1 (t−τ)
=cos{ω1 (t−τ)+θ1 } …(3)
を出力する。
A wave transmitted from the antenna 6 is received by a first receiver including an antenna 9, a receiving amplifier 10, and a bandpass filter 11.
Y 1 (t) = X 1 (t−τ)
= Cos {ω 1 (t−τ) + θ 1 } (3)
Is output.

他方,アンテナ8から送信された波は,アンテナ12,受信増幅器13,帯域通過フィルタ14からなる第2の受信機により受信され,
2 (t)=X2 (t−τ)
=cos{ω2 (t−τ)+θ2 } …(4)
を出力する。
On the other hand, the wave transmitted from the antenna 8 is received by the second receiver including the antenna 12, the receiving amplifier 13, and the band pass filter 14.
Y 2 (t) = X 2 (t−τ)
= Cos {ω 2 (t−τ) + θ 2 } (4)
Is output.

本発明の実施例1では,発振器15で周波数シフト用の波(周波数Δf,位相Δθ)を発振させておき,それぞれ受信した波Y1 (t),Y2 (t)を周波数位相シフト手段16及び19によって周波数と位相をシフトする。ここでは,説明を簡単にするために,始めに,f1 >f2 >Δf>0の場合について述べる。 In the first embodiment of the present invention, the oscillator 15 oscillates a frequency shift wave (frequency Δf, phase Δθ), and the received waves Y 1 (t) and Y 2 (t) are respectively transmitted to the frequency phase shift means 16. And 19 shift the frequency and phase. Here, in order to simplify the description, a case where f 1 > f 2 >Δf> 0 will be described first.

周波数位相シフト手段16はミキサー17と高域通過フィルタ18から構成され,Y1 (t)の周波数と位相について,加算する方向(MIX−UP:以下同様)にシフトする。すなわち,周波数位相シフト手段16の出力として,
1 (t)=cos{ω1 (t−τ)+θ1 +(Δωt+Δθ)} …(5)
を得る。ここで,Δω=2πΔfである。
The frequency phase shift means 16 comprises a mixer 17 and a high-pass filter 18, and shifts the frequency and phase of Y 1 (t) in the adding direction (MIX-UP: the same applies hereinafter). That is, as an output of the frequency phase shift means 16,
Z 1 (t) = cos {ω 1 (t−τ) + θ 1 + (Δωt + Δθ)} (5)
Get. Here, Δω = 2πΔf.

周波数位相シフト手段19はミキサー20と高域通過フィルタ21から構成され,Y2 (t)の周波数と位相について,加算する方向にシフトする。すなわち,周波数位相シフト手段19の出力として,
2 (t)=cos{ω2 (t−τ)+θ2 +(Δωt+Δθ)} …(6)
を得る。
The frequency phase shift means 19 includes a mixer 20 and a high-pass filter 21 and shifts the frequency and phase of Y 2 (t) in the adding direction. That is, as an output of the frequency phase shift means 19,
Z 2 (t) = cos {ω 2 (t−τ) + θ 2 + (Δωt + Δθ)} (6)
Get.

周波数と位相のシフトした波Z1 (t)は,増幅器22,アンテナ23からなる第3の送信機によって送信され,他方,Z2 (t)は,増幅器24,アンテナ25からなる第4の送信機によって送信される。 The frequency and phase shifted wave Z 1 (t) is transmitted by a third transmitter consisting of an amplifier 22 and an antenna 23, while Z 2 (t) is a fourth transmission consisting of an amplifier 24 and an antenna 25. Sent by the machine.

無線局1においては,それぞれの波Z1 (t)とZ2 (t)が伝搬時間τ遅延して受信される。アンテナ23から送信された波は,アンテナ26,受信増幅器27,帯域通過フィルタ28からなる第3の受信機により受信され,
1 (t)=Z1 (t−τ)
=cos{ω1 (t−2τ)+θ1 +Δω(t−τ)+Δθ}…(7)
を出力する。他方,アンテナ25から送信された波は,アンテナ29,受信増幅器30,帯域通過フィルタ31からなる第4の受信機により受信され,
2 (t)=Z2 (t−τ)
=cos{ω2 (t−2τ)+θ2 +Δω(t−τ)+Δθ}…(8)
を出力する。
In the radio station 1, the waves Z 1 (t) and Z 2 (t) are received with a propagation time τ delay. A wave transmitted from the antenna 23 is received by a third receiver including the antenna 26, the reception amplifier 27, and the band pass filter 28.
R 1 (t) = Z 1 (t−τ)
= Cos {ω 1 (t−2τ) + θ 1 + Δω (t−τ) + Δθ} (7)
Is output. On the other hand, the wave transmitted from the antenna 25 is received by the fourth receiver including the antenna 29, the receiving amplifier 30, and the band pass filter 31,
R 2 (t) = Z 2 (t−τ)
= Cos {ω 2 (t−2τ) + θ 2 + Δω (t−τ) + Δθ} (8)
Is output.

無線局1では,X1 (t),X2 (t),R1 (t),R2 (t)の4つの波をマルチ周波数位相シフト手段32へ入力し,その結果を使って,無線局1と無線局2の伝搬時間を求める。 In the wireless station 1, four waves of X 1 (t), X 2 (t), R 1 (t), R 2 (t) are input to the multi-frequency phase shift means 32, and the result is used for wireless communication. The propagation time of the station 1 and the radio station 2 is obtained.

図2に示す実施例1の場合,マルチ周波数位相シフト手段32は,2つの周波数位相シフト手段33及び34からなる。周波数位相シフト手段33は,ミキサー35と低域通過フィルタ36からなり,受信した波R1 (t)とR2 (t)の周波数と位相について,減算する方向(MIX−DOWN:以下同様)にシフトする。その結果,周波数位相シフト手段33の出力は,
R(t)=cos{(ω1 −ω2 )(t−2τ)+(θ1 −θ2 )} …(9)
となる。周波数位相シフト手段34は,ミキサー37と低域通過フィルタ38からなり,無線局1で発振している2つの波X1 (t)とX2 (t)を入力して,周波数と位相について,減算する方向にシフトして,次の波を得る。
In the case of the first embodiment shown in FIG. 2, the multi-frequency phase shift means 32 includes two frequency phase shift means 33 and 34. The frequency phase shift means 33 comprises a mixer 35 and a low-pass filter 36, and subtracts the frequency and phase of the received waves R 1 (t) and R 2 (t) (MIX-DOWN: the same applies hereinafter). shift. As a result, the output of the frequency phase shift means 33 is
R (t) = cos {(ω 1 −ω 2 ) (t−2τ) + (θ 1 −θ 2 )} (9)
It becomes. The frequency phase shift means 34 is composed of a mixer 37 and a low-pass filter 38, and inputs two waves X 1 (t) and X 2 (t) oscillated in the radio station 1, and regarding the frequency and phase, Shift in the direction of subtraction to get the next wave.

X(t)=cos{(ω1 −ω2 )t+(θ1 −θ2 )} …(10)
(9)式と(10)式とを比べると,周波数は同じで,位相差だけが2(ω1 −ω2 )τの値異なる。
X (t) = cos {(ω 1 −ω 2 ) t + (θ 1 −θ 2 )} (10)
Comparing equation (9) and equation (10), the frequency is the same and only the phase difference is different from 2 (ω 1 −ω 2 ) τ.

そこで,(9)式で表されるR(t)と,(10)式で表されるX(t)との位相差を求めて,
[測定した位相差]/{2(ω1 −ω2 )}
なる値を時間測定器39で求めれば,片道の伝搬時間τが得られる。
Therefore, the phase difference between R (t) represented by equation (9) and X (t) represented by equation (10) is obtained,
[Measured phase difference] / {2 (ω 1 −ω 2 )}
Is obtained by the time measuring device 39, the one-way propagation time τ can be obtained.

往復の伝搬時間2τを得るには,
[測定した位相差]/(ω1 −ω2
を求めるようにすればよい。以下の実施例でも同様である。時間測定器39としては,R(t)とX(t)との時間差を直接測定して1/2しても,伝搬時間τを得ることができる。
To obtain the round-trip propagation time 2τ,
[Measured phase difference] / (ω 1 −ω 2 )
Should be requested. The same applies to the following embodiments. The time measuring device 39 can obtain the propagation time τ even if the time difference between R (t) and X (t) is directly measured and halved.

以上のように,(9)式および(10)式で表される同じ周波数の2つの波の位相差に着目して伝搬時間を測定するため,波そのものに仮に不確定成分があったとしても,それらは2つの波の間で相殺されることになり,伝搬時間の測定には影響しない。したがって,安定した精度のよい測定が可能である。   As described above, since the propagation time is measured by paying attention to the phase difference between two waves having the same frequency expressed by the equations (9) and (10), even if the wave itself has an uncertain component. , They will cancel out between the two waves and will not affect the measurement of propagation time. Therefore, stable and accurate measurement is possible.

得られた伝搬時間τに電波の伝搬速度をかけると無線局1と無線局2の間の距離が得られるので,その値を表示器40で表示すれば,伝搬時間に相当する距離が表示される。往復の距離を求める場合には,往復の伝搬時間2τに伝搬速度をかけると得られる。以下の実施例でも同様である。   When the propagation speed of the radio wave is applied to the obtained propagation time τ, the distance between the radio station 1 and the radio station 2 can be obtained. If the value is displayed on the display 40, the distance corresponding to the propagation time is displayed. The When the round-trip distance is obtained, it is obtained by multiplying the round-trip propagation time 2τ by the propagation speed. The same applies to the following embodiments.

測定可能な最大伝搬時間τ[MAX] は,次の関係により得られる。   The maximum measurable propagation time τ [MAX] is obtained by the following relationship.

τ[MAX]=π/(ω1 −ω2
=1/{2(f1 −f2 )} …(11)
例えば,f1 −f2 =100kHzであれば,τ[MAX]=5μsecであり,この伝搬時間は,1.5kmの距離に相当する。
τ [MAX] = π / (ω 1 −ω 2 )
= 1 / {2 (f 1 -f 2 )} (11)
For example, if f 1 −f 2 = 100 kHz, τ [MAX] = 5 μsec, and this propagation time corresponds to a distance of 1.5 km.

図2の本発明の実施例1では,周波数位相シフト手段16,19,33,34の周波数と位相に関してシフトする極性は,周波数位相シフト手段16,19は加算する方向(MIX−UP)に,周波数位相シフト手段33,34は減算する方向(MIX−DOWN)にシフトしたが,それぞれの周波数位相シフト手段でシフトする極性について,それ以外に複数の組み合わせが可能である。   In the first embodiment of the present invention shown in FIG. 2, the frequency phase shift means 16, 19, 33, and 34 are shifted with respect to the frequency and phase in the direction in which the frequency phase shift means 16 and 19 add (MIX-UP). The frequency phase shift means 33 and 34 are shifted in the subtracting direction (MIX-DOWN), but a plurality of other combinations are possible for the polarity shifted by the respective frequency phase shift means.

1 >f2 >Δf>0の場合について,測定可能な最大伝搬時間τ[MAX]とそれぞれの周波数位相シフト手段の極性の関係例を表1に示す。「加算」は周波数の絶対値が大きくなる方向(MIX−UP)にシフトする意味であり,減算は周波数の絶対値が減少する方向(MIX−DOWN)にシフトする意味である。 Table 1 shows an example of the relationship between the maximum measurable propagation time τ [MAX] and the polarity of each frequency phase shift means for the case of f 1 > f 2 >Δf> 0. “Addition” means shifting in a direction in which the absolute value of the frequency increases (MIX-UP), and subtraction means shifting in a direction in which the absolute value of the frequency decreases (MIX-DOWN).

Figure 0004000321
1 >Δf>f2 >0の場合について,測定可能な最大伝搬時間τ[MAX]とそれぞれの周波数位相シフト手段の極性の関係例を表2に示す。
Figure 0004000321
Table 2 shows an example of the relationship between the maximum measurable propagation time τ [MAX] and the polarity of each frequency phase shift means when f 1 >Δf> f 2 > 0.

Figure 0004000321
Δf>f1 >f2 >0の場合について,測定可能な最大伝搬時間τ[MAX]とそれぞれの周波数位相シフト手段の極性の関係例を表3に示す。
Figure 0004000321
Table 3 shows an example of the relationship between the maximum measurable propagation time τ [MAX] and the polarity of each frequency phase shift means when Δf> f 1 > f 2 > 0.

Figure 0004000321
τ[MAX]=1/{2(f1 −f2 )}となる場合は,伝搬距離が長い場合の測定に適しており,他方,τ[MAX]=1/{2(f1 +f2 )}となる場合は,伝搬時間が短く至近距離の場合の測定に適している。
Figure 0004000321
When τ [MAX] = 1 / {2 (f 1 −f 2 )}, it is suitable for measurement when the propagation distance is long, while τ [MAX] = 1 / {2 (f 1 + f 2). )}, It is suitable for measurement when the propagation time is short and the distance is short.

図3は,本発明の実施例2を示す図である。実施例1と実施例2との差異は,実施例1では,図2のマルチ周波数位相シフト手段32において,第1の波と第2の波(送信波どうし)をミキシングして得た波と,第3の波と第4の波(受信波どうし)をミキシングして得た波とを比べて伝搬時間を求めたが,実施例2では,図3のマルチ周波数位相シフト手段41において,第1の波と第3の波(送信波と受信波)をミキシングして得た波と,第2の波と第4の波(もう一方の送信波と受信波)をミキシングして得た波とを比べて伝搬時間を測定する点にある。   FIG. 3 is a diagram showing a second embodiment of the present invention. The difference between the first embodiment and the second embodiment is that, in the first embodiment, the multi-frequency phase shift means 32 in FIG. 2 uses the wave obtained by mixing the first wave and the second wave (transmission waves). The propagation time is obtained by comparing the third wave and the wave obtained by mixing the fourth wave (received waves). In the second embodiment, the multi-frequency phase shift means 41 in FIG. Wave obtained by mixing 1 wave and 3rd wave (transmitted wave and received wave) and wave obtained by mixing 2nd wave and 4th wave (the other transmitted wave and received wave) And the propagation time is measured.

図3の無線局1においては,図2の場合と同様に,アンテナ6及びアンテナ8から次の波が送信される。   In the radio station 1 of FIG. 3, the next wave is transmitted from the antenna 6 and the antenna 8 as in the case of FIG.

1 (t)=cos(ω1 t+θ1 ) …(12)
2 (t)=cos(ω2 t+θ2 ) …(13)
図3の無線局2においては,それぞれの波X1 (t)とX2 (t)が伝搬時間τ遅延して受信され,図2の場合と同様に,帯域通過フィルタ11及び帯域通過フィルタ14から次の波形が得られる。
X 1 (t) = cos (ω 1 t + θ 1 ) (12)
X 2 (t) = cos (ω 2 t + θ 2 ) (13)
In the radio station 2 of FIG. 3, the respective waves X 1 (t) and X 2 (t) are received with a propagation time τ delayed, and the band pass filter 11 and the band pass filter 14 are received as in the case of FIG. The following waveform is obtained from

1 (t)=X1 (t−τ)
=cos{ω1 (t−τ)+θ1 } …(14)
2 (t)=X2 (t−τ)
=cos{ω2 (t−τ)+θ2 } …(15)
本発明の実施例2でも,発振器15で周波数シフト用の波(周波数Δf,位相Δθ)を発振させておき,それぞれの波Y1 (t),Y2 (t)を周波数位相シフト手段16及び19によって周波数と位相を加算する方向にシフトして,次の波を得る。この場合も,説明を簡単にするために,始めは,f1 >f2 >Δf>0の場合について述べる。
Y 1 (t) = X 1 (t−τ)
= Cos {ω 1 (t−τ) + θ 1 } (14)
Y 2 (t) = X 2 (t−τ)
= Cos {ω 2 (t−τ) + θ 2 } (15)
Also in the second embodiment of the present invention, a wave for frequency shift (frequency Δf, phase Δθ) is oscillated by the oscillator 15, and the waves Y 1 (t) and Y 2 (t) are converted into frequency phase shift means 16 and 19 shifts in the direction of adding the frequency and phase to obtain the next wave. Also in this case, in order to simplify the description, a case where f 1 > f 2 >Δf> 0 will be described first.

1 (t)=cos{ω1 (t−τ)+θ1 +(Δωt+Δθ)} …(16)
2 (t)=cos{ω2 (t−τ)+θ2 +(Δωt+Δθ)} …(17)
周波数と位相のシフトした波Z1 (t)とZ2 (t)は,アンテナ23とアンテナ25から送信される。
Z 1 (t) = cos {ω 1 (t−τ) + θ 1 + (Δωt + Δθ)} (16)
Z 2 (t) = cos {ω 2 (t−τ) + θ 2 + (Δωt + Δθ)} (17)
Waves Z 1 (t) and Z 2 (t) shifted in frequency and phase are transmitted from antenna 23 and antenna 25.

無線局1においては,それぞれの波Z1 (t)とZ2 (t)が伝搬時間τ遅延して受信される。帯域通過フィルタ28と帯域通過フィルタ31の出力は,
1 (t)=Z1 (t−τ)
=cos{ω1 (t−2τ)+θ1 +Δω(t−τ)+Δθ}…(18)
2 (t)=Z2 (t−τ)
=cos{ω2 (t−2τ)+θ2 +Δω(t−τ)+Δθ}…(19)
が得られる。
In the radio station 1, the waves Z 1 (t) and Z 2 (t) are received with a propagation time τ delay. The outputs of the bandpass filter 28 and the bandpass filter 31 are
R 1 (t) = Z 1 (t−τ)
= Cos {ω 1 (t−2τ) + θ 1 + Δω (t−τ) + Δθ} (18)
R 2 (t) = Z 2 (t−τ)
= Cos {ω 2 (t−2τ) + θ 2 + Δω (t−τ) + Δθ} (19)
Is obtained.

無線局1では,X1 (t),X2 (t),R1 (t),R2 (t)の4つの波をマルチ周波数位相シフト手段41へ入力し,その結果を使って,無線局1と無線局2の伝搬時間を求める。 In the radio station 1, four waves X 1 (t), X 2 (t), R 1 (t), and R 2 (t) are input to the multi-frequency phase shift means 41, and the result is used for radio transmission. The propagation time of the station 1 and the radio station 2 is obtained.

実施例2の場合,マルチ周波数位相シフト手段41は,2つの周波数位相シフト手段42及び43からなる。周波数位相シフト手段42は,ミキサー44と低域通過フィルタ45からなり,受信した波R1 (t)と自局で発振したX1 (t)を入力して,周波数と位相について,減算する方向にシフトする。その結果,周波数位相シフト手段42の出力は,
1 (t)=cos{Δω(t−τ)−2ω1 τ+Δθ} …(20)
となる。周波数位相シフト手段43は,ミキサー46と低域通過フィルタ47からなり,受信した波R2 (t)と自局で発振したX2 (t)を入力して,周波数と位相について,減算する方向にシフトして,次の波を得る。
In the case of the second embodiment, the multi-frequency phase shift unit 41 includes two frequency phase shift units 42 and 43. The frequency phase shift means 42 comprises a mixer 44 and a low-pass filter 45, and receives the received wave R 1 (t) and X 1 (t) oscillated at its own station, and subtracts the frequency and phase. Shift to. As a result, the output of the frequency phase shift means 42 is
S 1 (t) = cos {Δω (t−τ) −2ω 1 τ + Δθ} (20)
It becomes. The frequency phase shift means 43 comprises a mixer 46 and a low-pass filter 47, and receives the received wave R 2 (t) and X 2 (t) oscillated at its own station, and subtracts the frequency and phase. To get the next wave.

2 (t)=cos{Δω(t−τ)−2ω2 τ+Δθ} …(21)
(20)式と(21)式とを比べると,周波数は同じで,位相差だけが2(ω1 −ω2 )τの値異なる。
S 2 (t) = cos {Δω (t−τ) −2ω 2 τ + Δθ} (21)
Comparing equation (20) and equation (21), the frequency is the same and only the phase difference is different by 2 (ω 1 −ω 2 ) τ.

そこで,時間測定器39では,(20)式で表されるS1 (t)と,(21)式で表されるS2 (t)との位相差を求めて,
[測定した位相差]/{2(ω1 −ω2 )}
なる値を求めれば,伝搬時間τが得られる。この場合も,測定可能な最大伝搬時間τ[MAX]は,次の関係により得られる。
Therefore, the time measuring device 39 obtains the phase difference between S 1 (t) expressed by the equation (20) and S 2 (t) expressed by the equation (21),
[Measured phase difference] / {2 (ω 1 −ω 2 )}
Is obtained, the propagation time τ can be obtained. Also in this case, the maximum measurable propagation time τ [MAX] is obtained by the following relationship.

τ[MAX]=π/(ω1 −ω2
=1/{2(f1 −f2 )} …(22)
図3の本発明の実施例2では,周波数位相シフト手段16,19,42,43の周波数と位相に関してシフトする極性は,周波数位相シフト手段16,19は加算する方向,周波数位相シフト手段42,43は減算する方向にシフトしたが,必ずしもその必要はなく,それぞれの周波数位相シフト手段の極性について,複数の組み合わせが可能である。
τ [MAX] = π / (ω 1 −ω 2 )
= 1 / {2 (f 1 −f 2 )} (22)
In the second embodiment of the present invention shown in FIG. 3, the frequency phase shift means 16, 19, 42, 43 shift in polarity with respect to the frequency and phase. Although 43 is shifted in the subtracting direction, it is not always necessary, and a plurality of combinations are possible for the polarity of each frequency phase shift means.

1 >f2 >Δf>0の場合について,測定可能な最大伝搬時間τ[MAX]とそれぞれの周波数位相シフト手段の極性の関係例を表4に示す。 Table 4 shows an example of the relationship between the maximum measurable propagation time τ [MAX] and the polarity of each frequency phase shift means for the case of f 1 > f 2 >Δf> 0.

Figure 0004000321
1 >Δf>f2 >0の場合について,測定可能な最大伝搬時間τ[MAX]とそれぞれの周波数位相シフト手段の極性の関係例を表5に示す。
Figure 0004000321
Table 5 shows an example of the relationship between the maximum measurable propagation time τ [MAX] and the polarity of each frequency phase shift means when f 1 >Δf> f 2 > 0.

Figure 0004000321
Δf>f1 >f2 >0の場合について,測定可能な最大伝搬時間τ[MAX]とそれぞれの周波数位相シフト手段の極性の関係例を表6に示す。
Figure 0004000321
Table 6 shows an example of the relationship between the maximum measurable propagation time τ [MAX] and the polarity of each frequency phase shift means when Δf> f 1 > f 2 > 0.

Figure 0004000321
Figure 0004000321

図4は,本発明の実施例3を示す図である。実施例2と実施例3との差異は,実施例3では,実施例2における図3のマルチ周波数位相シフト手段41の代わりに,図4のマルチ周波数位相シフト手段48において,第2の波と第3の波をミキシングして得た波と,第1の波と第4の波をミキシングして得た波を比べて伝搬時間を測定している点であり,それ以外は,同じ構成になっている。この場合も,始めは,f1 >f2 >Δf>0の場合について述べる。 FIG. 4 is a diagram showing a third embodiment of the present invention. The difference between the second embodiment and the third embodiment is that in the third embodiment, instead of the multi-frequency phase shift means 41 in FIG. 3 in the second embodiment, the multi-frequency phase shift means 48 in FIG. The propagation time is measured by comparing the wave obtained by mixing the third wave with the wave obtained by mixing the first wave and the fourth wave. Otherwise, the configuration is the same. It has become. Also in this case, the case of f 1 > f 2 >Δf> 0 will be described first.

図4の無線局1においては,図2,図3の場合と同様に,帯域通過フィルタ28と帯域通過フィルタ31の出力は,
1 (t)=Z1 (t−τ)
=cos{ω1 (t−2τ)+θ1 +Δω(t−τ)+Δθ}…(23)
2 (t)=Z2 (t−τ)
=cos{ω2 (t−2τ)+θ2 +Δω(t−τ)+Δθ}…(24)
が得られる。
In the radio station 1 of FIG. 4, as in the case of FIGS. 2 and 3, the outputs of the band pass filter 28 and the band pass filter 31 are
R 1 (t) = Z 1 (t−τ)
= Cos {ω 1 (t−2τ) + θ 1 + Δω (t−τ) + Δθ} (23)
R 2 (t) = Z 2 (t−τ)
= Cos {ω 2 (t−2τ) + θ 2 + Δω (t−τ) + Δθ} (24)
Is obtained.

無線局1では,X1 (t),X2 (t),R1 (t),R2 (t)の4つの波をマルチ周波数位相シフト手段48へ入力し,その結果を使って,無線局1と無線局2間の伝搬時間を求める。 In the radio station 1, four waves X 1 (t), X 2 (t), R 1 (t), and R 2 (t) are input to the multi-frequency phase shift means 48, and the result is used to The propagation time between the station 1 and the radio station 2 is obtained.

図4の場合,周波数位相シフト手段49は,ミキサー51と高域通過フィルタ52からなり,受信した波R1 (t)と自局で発振したX2 (t)を入力して,周波数と位相について,加算する方向にシフトする。その結果,周波数位相シフト手段49の出力は,
1 (t)=cos{(ω1 +ω2 )t+(θ1 +θ2 )+Δω(t−τ)
+Δθ−2ω1 τ} …(25)
となる。周波数位相シフト手段50は,ミキサー53と高域通過フィルタ54からなり,受信した波R2 (t)と自局で発振したX1 (t)を入力して,周波数と位相について,加算する方向にシフトして,次の波を得る。
In the case of FIG. 4, the frequency phase shift means 49 comprises a mixer 51 and a high-pass filter 52, and receives the received wave R 1 (t) and X 2 (t) oscillated at its own station, and the frequency and phase. Shift in the direction of addition. As a result, the output of the frequency phase shift means 49 is
S 1 (t) = cos {(ω 1 + ω 2 ) t + (θ 1 + θ 2 ) + Δω (t−τ)
+ Δθ-2ω 1 τ} (25)
It becomes. The frequency phase shift means 50 comprises a mixer 53 and a high-pass filter 54, and inputs the received wave R 2 (t) and X 1 (t) oscillated at its own station, and adds the frequency and phase. To get the next wave.

2 (t)=cos{(ω1 +ω2 )t+(θ1 +θ2 )+Δω(t−τ)
+Δθ−2ω2 τ} …(26)
(25)式と(26)式とを比べると,周波数は同じで,位相差だけが2(ω1 −ω2 )τの値異なる。そこで,時間測定器39では,(25)式で表されるS1 (t)と,(26)式で表されるS2 (t)の位相差を求めて,
[測定した位相差]/{2(ω1 −ω2 )}
なる値を求めれば,伝搬時間τが得られる。この場合も,測定可能な最大伝搬時間τ[MAX]は,次の関係により得られる。
S 2 (t) = cos {(ω 1 + ω 2 ) t + (θ 1 + θ 2 ) + Δω (t−τ)
+ Δθ-2ω 2 τ} (26)
Comparing equation (25) and equation (26), the frequency is the same and only the phase difference is different from 2 (ω 1 −ω 2 ) τ. Therefore, the time measuring device 39 obtains the phase difference between S 1 (t) expressed by the equation (25) and S 2 (t) expressed by the equation (26),
[Measured phase difference] / {2 (ω 1 −ω 2 )}
Is obtained, the propagation time τ can be obtained. Also in this case, the maximum measurable propagation time τ [MAX] is obtained by the following relationship.

τ[MAX]=π/(ω1−ω2)
=1/{2(f1−f2)} …(27)
図4の本発明の実施例3では,周波数位相シフト手段16,19,49,50の周波数と位相に関してシフトする極性は,周波数位相シフト手段16,19は加算する方向,周波数位相シフト手段49,50も加算する方向にシフトしたが,必ずしもその必要はなく,それぞれの周波数位相シフト手段の極性について,複数の組み合わせが可能である。
τ [MAX] = π / (ω1-ω2)
= 1 / {2 (f1-f2)} (27)
In the third embodiment of the present invention shown in FIG. 4, the frequency and phase of the frequency phase shift means 16, 19, 49, 50 are shifted with respect to the polarity, the frequency phase shift means 16, 19 are added, the frequency phase shift means 49, Although 50 is also shifted in the adding direction, it is not always necessary, and a plurality of combinations are possible for the polarity of each frequency phase shift means.

1 >f2 >Δf>0の場合について,測定可能な最大伝搬時間τ[MAX]とそれぞれの周波数位相シフト手段の極性の関係例を表7に示す。 Table 7 shows an example of the relationship between the maximum measurable propagation time τ [MAX] and the polarity of each frequency phase shift means for the case of f 1 > f 2 >Δf> 0.

Figure 0004000321
1 >Δf>f2 >0の場合について,測定可能な最大伝搬時間τ[MAX]とそれぞれの周波数位相シフト手段の極性の関係例を表8に示す。
Figure 0004000321
Table 8 shows an example of the relationship between the maximum measurable propagation time τ [MAX] and the polarity of each frequency phase shift means for the case of f 1 >Δf> f 2 > 0.

Figure 0004000321
Δf>f1 >f2 >0の場合について,測定可能な最大伝搬時間τ[MAX]とそれぞれの周波数位相シフト手段の極性の関係例を表9に示す。
Figure 0004000321
Table 9 shows an example of the relationship between the maximum measurable propagation time τ [MAX] and the polarity of each frequency phase shift means when Δf> f 1 > f 2 > 0.

Figure 0004000321
Figure 0004000321

図5は,本発明の実施例4を示す図である。この実施例では,第1の実施例における図2の第1の送信機と第2の送信機に相当する増幅器5,アンテナ6と,増幅器7,アンテナ8とを,図5の加算器55,及び増幅器56とアンテナ57からなる第1の共通送信手段で構成して,図2の第1の受信機と第2の受信機に相当するアンテナ9,受信増幅器10,帯域通過フィルタ11とアンテナ12,受信増幅器13,帯域通過フィルタ14を,アンテナ58,受信増幅器59,帯域通過フィルタ11,14からなる第1の共通受信手段で構成している。   FIG. 5 is a diagram showing a fourth embodiment of the present invention. In this embodiment, the amplifier 5, the antenna 6, the amplifier 7, and the antenna 8 corresponding to the first transmitter and the second transmitter of FIG. 2 in the first embodiment are connected to the adder 55, FIG. And an antenna 9 corresponding to the first receiver and the second receiver in FIG. 2, a receiving amplifier 10, a band-pass filter 11 and an antenna 12. The reception amplifier 13 and the band pass filter 14 are constituted by a first common receiving means including an antenna 58, a reception amplifier 59, and band pass filters 11 and 14.

さらに,図2の第3の送信機と第4の送信機に相当する増幅器22,アンテナ23と,増幅器24,アンテナ25とを,図5の加算器60,及び増幅器61とアンテナ62からなる第2の共通送信手段で構成しており,図2の第3の受信機と第4の受信機に相当するアンテナ26,受信増幅器27,帯域通過フィルタ28とアンテナ29,受信増幅器30,帯域通過フィルタ31を,図5のアンテナ63,受信増幅器64,帯域通過フィルタ28,31からなる第2の共通受信手段で構成している。   Further, an amplifier 22, an antenna 23, an amplifier 24, and an antenna 25 corresponding to the third transmitter and the fourth transmitter in FIG. 2 are added to an adder 60, an amplifier 61, and an antenna 62 in FIG. The antenna 26, the reception amplifier 27, the band-pass filter 28 and the antenna 29, the reception amplifier 30, and the band-pass filter corresponding to the third receiver and the fourth receiver in FIG. 31 is constituted by the second common receiving means comprising the antenna 63, the receiving amplifier 64, and the band pass filters 28 and 31 of FIG.

実施例4では,加算器55で,周波数f1 の第1の波と周波数f2 (f2 ≠f1 )の第2の波とを加算して周波数f12の波とし,上記第1の共通送信手段から無線局2の第1の共通受信手段に送信する。また,周波数位相シフト手段16,周波数位相シフト手段19からそれぞれ出力された波を,加算器60で加算して周波数f34の波とした上で,上記第2の共通送信手段から無線局1の第2の共通受信手段に送信する。 In Example 4, the adder 55, and a wave of frequency f 12 by adding the second wave of the first wave and the frequency f 2 of the frequency f 1 (f 2 ≠ f 1), said first Transmission is performed from the common transmission unit to the first common reception unit of the radio station 2. The waves output from the frequency phase shift means 16 and the frequency phase shift means 19 are added by an adder 60 to form a wave of frequency f 34 , and then the second common transmission means to the radio station 1. Transmit to the second common receiving means.

本発明の実施例1〜実施例3は,周波数f1 とf2 が非常に離れている場合にそれぞれ,周波数毎に専用の増幅器を用いた例であるが,実施例4では,お互いの周波数f1 とf2 が近いときには,増幅器を共通に使用可能であり,経済的である。 The first to third embodiments of the present invention are examples in which a dedicated amplifier is used for each frequency when the frequencies f 1 and f 2 are very far apart. When f 1 and f 2 are close, the amplifier can be used in common, which is economical.

また,増幅器を共通化した場合,増幅器による遅延時間のバラツキが,別々に構成される場合に比べて,軽減されるメリットがある。   In addition, when amplifiers are shared, there is an advantage that variations in delay time due to amplifiers are reduced compared to a case where they are configured separately.

本発明の概要を説明する図である。It is a figure explaining the outline | summary of this invention. 本発明の実施例1を示す図である。It is a figure which shows Example 1 of this invention. 本発明の実施例2を示す図である。It is a figure which shows Example 2 of this invention. 本発明の実施例3を示す図である。It is a figure which shows Example 3 of this invention. 本発明の実施例4を示す図である。It is a figure which shows Example 4 of this invention.

符号の説明Explanation of symbols

1,2 無線局
3,4,15 発振器
5,7,22,24,56,59,61,64 増幅器
6,8,9,12,23,25,26,29,57,58,62,63 アンテナ
10,13,27,30 受信増幅器
11,14,28,31 帯域通過フィルター
16,19,33,34,42,43,49,50,105,202 周波数位相シフト手段
17,20,35,37,44,46,51,53 ミキサー
18,21,52,54 高域通過フィルター
32,41,48 マルチ周波数位相シフト手段
36,38,45,47 低域通過フィルター
39 時間測定器
40 表示器
55,60 加算器
101 第1の発振手段
102 第2の発振手段
103,203 送信手段
104,201 受信手段
106 測定手段
1, 2 Radio station 3, 4, 15 Oscillator 5, 7, 22, 24, 56, 59, 61, 64 Amplifier 6, 8, 9, 12, 23, 25, 26, 29, 57, 58, 62, 63 Antenna 10, 13, 27, 30 Receiving amplifier 11, 14, 28, 31 Band pass filter 16, 19, 33, 34, 42, 43, 49, 50, 105, 202 Frequency phase shift means 17, 20, 35, 37 , 44, 46, 51, 53 Mixer 18, 21, 52, 54 High-pass filter 32, 41, 48 Multi-frequency phase shift means 36, 38, 45, 47 Low-pass filter 39 Time measuring device 40 Indicator 55, 60 adder 101 first oscillating means 102 second oscillating means 103, 203 transmitting means 104, 201 receiving means 106 measuring means

Claims (2)

第1の無線局と第2の無線局間の電波の伝搬時間を測定する距離測定方法であって,
前記第1の無線局から周波数の異なる第1の波および第2の波を電波として送信し,
前記第2の無線局では,前記第1の無線局から送信された第1の波および第2の波を受信し,所定の周波数と位相をシフトするための波を使って前記第1の波および第2の波の周波数と位相をそれぞれシフトすることにより第3の波および第4の波を生成し,その第3の波および第4の波を電波として送信し,
前記第1の無線局では,前記第2の無線局から送信された第3の波および第4の波を受信し,前記第1の波と第2の波と第3の波と第4の波の,相異なる2組の2つの波を用いて,それぞれ周波数および位相をシフトすることにより,周波数が同じで位相が異なる第5の波と第6の波を生成し,前記第5の波と第6の波の位相差に基づいて,前記第1の無線局と第2の無線局間の電波の伝搬時間を測定する
ことを特徴とする距離測定方法。
A distance measurement method for measuring a propagation time of a radio wave between a first radio station and a second radio station,
Transmitting a first wave and a second wave having different frequencies from the first radio station as radio waves;
The second radio station receives the first wave and the second wave transmitted from the first radio station, and uses the first wave and a wave for shifting the phase to shift the first wave. And generating a third wave and a fourth wave by shifting the frequency and phase of the second wave, respectively, and transmitting the third wave and the fourth wave as radio waves,
The first radio station receives the third wave and the fourth wave transmitted from the second radio station, and receives the first wave, the second wave, the third wave, and the fourth wave. Using two different sets of two waves, the frequency and phase are shifted to generate fifth and sixth waves having the same frequency but different phases, and the fifth wave A distance measurement method, comprising: measuring a radio wave propagation time between the first radio station and the second radio station based on a phase difference between the first radio station and the sixth wave.
第1の無線局と第2の無線局間の電波の伝搬時間を測定する距離測定方式であって,
前記第1の無線局は,
周波数の異なる第1の波および第2の波を電波として送信する送信手段と,
前記第2の無線局から送信された第3の波および第4の波を受信する受信手段と,
前記第1の波と第2の波と第3の波と第4の波の,相異なる2組の2つの波を用いて,それぞれ周波数および位相をシフトすることにより,周波数が同じで位相が異なる第5の波と第6の波を生成する周波数位相シフト手段と,
前記第5の波と第6の波の位相差に基づいて,前記第1の無線局と第2の無線局間の電波の伝搬時間を測定する伝搬時間測定手段とを備え,
前記第2の無線局は,
前記第1の無線局から送信された第1の波および第2の波を受信する受信手段と,
所定の周波数と位相をシフトするための波を使って前記第1の波および第2の波の周波数と位相をそれぞれシフトすることにより前記第3の波および第4の波を生成する周波数位相シフト手段と,
前記第3の波および第4の波を電波として送信する送信手段とを備える
ことを特徴とする距離測定方式。
A distance measurement method for measuring a propagation time of a radio wave between a first radio station and a second radio station,
The first radio station is:
Transmitting means for transmitting the first wave and the second wave having different frequencies as radio waves;
Receiving means for receiving a third wave and a fourth wave transmitted from the second radio station;
By using two different sets of two waves, the first wave, the second wave, the third wave, and the fourth wave, and shifting the frequency and the phase, respectively, the frequency is the same and the phase is the same. Frequency phase shift means for generating different fifth and sixth waves;
Propagation time measuring means for measuring the propagation time of the radio wave between the first radio station and the second radio station based on the phase difference between the fifth wave and the sixth wave,
The second radio station is
Receiving means for receiving the first wave and the second wave transmitted from the first radio station;
Frequency phase shift for generating the third wave and the fourth wave by shifting the frequency and phase of the first wave and the second wave, respectively, using a wave for shifting the predetermined frequency and phase Means,
Transmitting means for transmitting the third wave and the fourth wave as radio waves.
JP2004197995A 2004-07-05 2004-07-05 Distance measuring method and distance measuring method Expired - Fee Related JP4000321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197995A JP4000321B2 (en) 2004-07-05 2004-07-05 Distance measuring method and distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197995A JP4000321B2 (en) 2004-07-05 2004-07-05 Distance measuring method and distance measuring method

Publications (2)

Publication Number Publication Date
JP2006017661A JP2006017661A (en) 2006-01-19
JP4000321B2 true JP4000321B2 (en) 2007-10-31

Family

ID=35792080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197995A Expired - Fee Related JP4000321B2 (en) 2004-07-05 2004-07-05 Distance measuring method and distance measuring method

Country Status (1)

Country Link
JP (1) JP4000321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208355A (en) * 2004-12-28 2006-08-10 Tokyo Rader Kk Method for measuring inter radio stations distance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520365B2 (en) * 2004-12-28 2010-08-04 東京レーダー株式会社 Wireless communication method
JP6256131B2 (en) * 2014-03-14 2018-01-10 オムロン株式会社 Communication status output device, communication status output method, communication status output program, transmission module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868073B1 (en) * 2000-06-06 2005-03-15 Battelle Memorial Institute K1-53 Distance/ranging by determination of RF phase delta
ITTO20010035A1 (en) * 2001-01-19 2002-07-19 Comau Systems Spa PROCEDURE AND SYSTEM FOR MEASURING THE DISTANCE OF A MOBILE BODY FROM A FIXED PART.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208355A (en) * 2004-12-28 2006-08-10 Tokyo Rader Kk Method for measuring inter radio stations distance

Also Published As

Publication number Publication date
JP2006017661A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP4293194B2 (en) Distance measuring device and distance measuring method
JP4630735B2 (en) Radio station distance measurement method
KR101418380B1 (en) Mobile communication systems and ranging methods thereof
JP4464416B2 (en) Lightwave ranging method and ranging device
JPH02504673A (en) Navigation and tracking system
CN108072870A (en) The method that burst communication range accuracy is improved using carrier phase
JP2011237359A (en) Device and method for detecting radio wave arrival angle
US11269054B2 (en) Partially coordinated radar system
US20110292982A1 (en) Method of Using Average Phase Difference to Measure a Distance and Apparatus for the Same
JP4000321B2 (en) Distance measuring method and distance measuring method
JP2011038836A (en) Short range radar device and distance measuring method
JP4485285B2 (en) Moving speed measuring method and moving speed measuring method
CN109347539B (en) High-precision absolute time delay calibration method for USB measurement and control responder
JP2009210372A (en) Distance measuring device
JP3818204B2 (en) Radar equipment
JP2001183447A (en) Range finding method and device
JP2003114274A (en) Range finder and radar device provide therewith
JP2892971B2 (en) Multipath delay spread measuring apparatus and method
RU95412U1 (en) NONLINEAR RADAR STATION FOR DETECTION OF RADIO ELECTRONIC EXPLOSION CONTROL DEVICES
US20230236308A1 (en) Communication apparatus and distance generation method thereof
JPH05203732A (en) Range finder
CN212569123U (en) Resonant frequency correction device, electronic equipment and reversing radar alarm and distance measurement system
WO2023125041A1 (en) Area positioning method, distance measurement apparatus, and electronic device
JP2962983B2 (en) CW Doppler measurement radar device
JP3731335B2 (en) Distance measuring system and distance measuring machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees