JP3999343B2 - Ash melting furnace - Google Patents

Ash melting furnace Download PDF

Info

Publication number
JP3999343B2
JP3999343B2 JP10561098A JP10561098A JP3999343B2 JP 3999343 B2 JP3999343 B2 JP 3999343B2 JP 10561098 A JP10561098 A JP 10561098A JP 10561098 A JP10561098 A JP 10561098A JP 3999343 B2 JP3999343 B2 JP 3999343B2
Authority
JP
Japan
Prior art keywords
ash
exhaust gas
furnace
molten slag
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10561098A
Other languages
Japanese (ja)
Other versions
JPH11287432A (en
Inventor
昌夫 田熊
岳洋 橘田
裕姫 本多
鉄雄 佐藤
公利 小瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10561098A priority Critical patent/JP3999343B2/en
Publication of JPH11287432A publication Critical patent/JPH11287432A/en
Application granted granted Critical
Publication of JP3999343B2 publication Critical patent/JP3999343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみや産業廃棄物の焼却炉より排出される焼却灰や飛灰並びに石炭焚事業用ボイラ等から排出される灰等の被溶融部材である灰の表面をバーナにより加熱溶融して、溶融灰を溶融スラグとして出滓部より排出する灰溶融炉において、溶融スラグの安定出滓用の加熱部よりなる出滓部加熱手段を備えた灰溶融炉に関する。
【0002】
【従来の技術】
従来の一般に使用されているバーナ式灰溶融炉においては、灰を主バーナで溶融した溶融スラグを安定的に排出させるため、溶融スラグの出滓部の対応部位に補助バーナを設け、常時燃焼させることにより、温度低下を防止して溶融スラグの安定出滓を図っている。
【0003】
即ち、図6に示すように、従来の灰溶融炉は、炉本体の一端側に設けた灰供給部53と、他端側に設けた排出口57と、前記灰供給部53と排出口57との間に設けた傾斜状炉底55と、該炉底55上に前記灰供給部53より排出口57へ向け形成された灰供給層59の表面を加熱して溶融灰25を形成する炉天井56に設けた主バーナ52とより構成されている。
【0004】
そして、上記主バーナ52は、灰溶融炉の炉天井56の中央軸線上に設けられ、該バーナ内に圧送された液体燃料を高圧空気ないし排熱ボイラの蒸気により微粒子化して噴射し、それとともに供給される高温の燃焼空気と混合させて前記微粒化された燃料を燃焼させ、その火炎輻射熱が灰供給層59の表面を加熱溶融するようにしてある。
また、前記排出口57側の炉底末端近くが前記バーナ52の火炎輻射領域に入るよう配設し、前記排出口57に向け移動を続ける灰供給層59の外表面を加熱溶融し、溶融灰25を形成して溶融スラグ25aとして排出口57に設けた出滓部64より滴下させ、不図示の下部の水封コンベアを介して外部へ排出している。
【0005】
上記溶融スラグ25aとして溶融灰25を滴下させる際、溶融スラグ25aの安定出滓を維持すべく補助バーナ66を備え、常時燃焼させて溶融スラグ25aの滴下する出滓部64の温度低下を防止している。
【0006】
【発明が解決しようとする課題】
ところで、上記補助バーナによる溶融スラグが滴下する出滓部の温度低下の防止には、設備費や運転経費、排ガス処理の問題が伴い、
1)設備費としては、
主バーナ同様の構成部品を必要とするとともに、補助バーナ用高温燃焼空気加熱のための空気予熱手段を必要とし、更に、補助バーナ燃焼排ガスが常時発生するため、排ガス処理設備の大型化等の設備費増大の問題がある。
2)排ガス処理の点では、
一般に溶融炉から排出される燃焼ガスは高温のため、燃焼空気中の窒素の一部が酸化されてサーマルNOxに転化する。このため、炉内に供給する燃焼空気を2段または多段に制御してNOxの発生抑制を図っている。
【0007】
ところで、上記サーマルNOxの発生のもとになる窒素は灰分中にも、また燃料中にも含まれていないため、ひとえに燃焼空気中に含まれる窒素に基因するものと考えられ燃焼気体には窒素含有分の少ない純酸素を使用する傾向にある。
この点からも、上記窒素を含んだ高温燃焼空気を使用する補助バーナの設置は、排ガス処理費の増大に繋がる問題である。
3)運転経費の点では、燃費過大に繋がる問題がある。
【0008】
本発明は、上記問題点の解決のためになされたもので、溶融スラグの出滓部における安価で効果的な加熱を可能とする、出滓部加熱手段を備えた灰溶融炉の提供を目的とするものである。
【0009】
【課題を解決するための手段】
そこで、本第1発明の灰溶融炉は、炉本体の一端側に灰供給口を設け、他端側に溶融スラグの排出口を形成し、前記灰供給口から供給された灰を傾斜した炉底に沿って前記排出口側へ移動させながら主バーナにより加熱溶融する灰溶融炉において、
前記排出口への溶融スラグ出滓部の溶融灰滴下位置に対面してコントローラにより制御された酸素ガス若しくは酸素富化空気の吹き出し手段を設けた出滓部間欠加熱手段を備え、
前記吹き出し手段は、出滓部より滴下している溶融スラグ表面側と対面する部位に位置する、2次燃焼室に排ガスを導く排ガス流路が形成されている炉壁側に設けられ、
該吹き出し手段は、前記炉壁側から、出滓部の温度を検出するセンサ信号を受けて自動的に炉内に挿入され、出滓部を加熱するとともに主バーナの燃焼排ガスの未燃分を燃焼させて排ガスとし、該排ガスを前記排ガス流路を介し2次燃焼室に導入されるようにし、そして前記加熱終了後は前記吹き出し手段を炉壁近傍まで引き戻され待機することを特徴とするものである。
【0010】
即ち、上記出滓部間欠加熱手段は、コントローラにより制御された酸素ガス(若しくは酸素富化空気)とLPGなどの気体燃料の供給手段と、吹き出し使用時のみ加熱部へ挿入可能の吹き出し手段とより構成される。
【0011】
また本第2発明は、炉本体の一端側に灰供給口を設け、他端側に溶融スラグの排出口を形成し、前記灰供給口から供給された灰を傾斜した炉底に沿って前記排出口側へ移動させながらバーナにより加熱溶融する灰溶融炉において、
前記排出口への溶融スラグ出滓部の溶融灰滴下位置に対面してなる出滓部間欠加熱手段を具え、
該出滓部間欠加熱手段は酸素ガス若しくは酸素富化空気とLPGなどの気体燃料の間欠吹き出し手段を持つ出滓部間欠加熱手段であり、
前記間欠吹き出し手段は、前記溶融スラグ出滓部より滴下している溶融スラグ表面側と対面する部位に位置する、2次燃焼室に排ガスを導く排ガス流路が形成されている炉壁側に設けられ、
前記スラグ出滓部から出滓される溶融スラグの出滓状況を監視するコントローラに制御されて、前記間欠吹き出し手段が同出滓状況に対応して、前記炉壁側から、自動的に炉内に挿入され、出滓部を加熱するとともに、前記主バーナの燃焼排ガスの未燃分を燃焼させて排ガスとし、該排ガスを前記排ガス流路を介し2次燃焼室に導入されるようにし、そして前記加熱終了後は前記吹き出し手段を炉壁近傍まで引き戻され待機するように構成され、前記溶融スラグを安定的に出滓することを特徴とする。
【0012】
【作用】
本発明の第1発明である請求項1記載の発明は、炉本体の他端側に設けた溶融スラグの出滓部において、前記出滓部より滴下している溶融スラグ表面側と対面する部位に、コントローラにより制御された酸素ガス若しくは酸素富化ガスを吹き出す吹き出し手段(以下酸素ランスという)を設けたため、該酸素ランスの先端より吹き出す酸素ないし酸素富化空気により、前記出滓部で未燃ガスが燃焼し、溶融スラグ及び出滓部を加熱することになり、出滓部の温度低下を防止でき、安定した溶融スラグの出滓を可能にすることができる。
上記酸素ランスは好ましくはパイプ状若しくはノズル状のもので、センサ信号を受けて自動的に炉壁より炉内に挿入され、出滓部を加熱し、加熱終了後は炉壁近傍まで引き戻され待機する仕組みになっている。
【0013】
上記請求項1記載の発明において、出滓部加熱手段を酸素ガス(若しくは酸素富化空気)とLPGなどの気体燃料の供給手段と、使用時のみ加熱部へ挿入して酸素ガス(若しくは酸素富化空気)とLPGなどの気体燃料を吹き出す前記酸素ランスよりなる吹き出し手段とより構成すれば、使用時には前記気体燃料と酸素ガスは燃焼し、加熱部を強制的に加熱できる。
【0014】
また、本発明の第2発明である請求項2記載の発明は、出滓部間欠加熱手段とそれを出滓状況に応じて制御する出滓部監視制御手段を備える構成としたもので、炉本体の他端側に設けた溶融スラグの出滓部において、該出滓部間欠加熱手段は酸素ガス若しくは酸素富化空気とLPGなどの気体燃料の間欠吹き出し手段(以下酸素ランスという)を持つ出滓部間欠加熱手段であり、
前記出滓部の温度を検出するセンサ信号を受けてスラグ出滓部から出滓される溶融スラグの出滓状況を監視するコントローラに制御されて、前記酸素ランスが同出滓状況に対応して、自動的に前記炉壁より炉内に挿入され、酸素ランスを加熱部まで前進させ、その先端より酸素(ないし酸素富化空気)とLPGなどの気体燃料を吹き出させ燃焼させ、その燃焼ガスにより溶融スラグ出滓部を加熱し、出滓部の温度低下を防止でき、安定した溶融スラグの出滓を可能にすることができる。
上記酸素ランスはパイプ状若しくはノズル状のもので、コントローラの制御信号を受けて自動的に炉壁より炉内に挿入され、出滓部を加熱し、加熱終了後は自動的に炉壁近傍まで引き戻され、待機する仕組みになっている。
【0015】
【発明の実施の形態】
以下、本発明の実施例の形態を、図示例と共に説明する。ただし、この実施例に記載されている構成部品の寸法、形状、その相対的位置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。なお従来例を示す図面と同一機能部材については同一符号を使用する。
【0016】
図1は本発明の第1発明である出滓部加熱手段を備えた灰溶融炉の概略の構成を示す模式図で、本発明の灰溶融炉10は、炉本体の一端側に設けた灰供給部53と、該灰供給部53の灰貯留部60より灰50を灰供給層59を形成しながら炉本体の他端側に設けた排出口57に向け送り出す傾斜下降状の炉底55と、前記排出口57と、炉本体の炉天井56に設けた主バーナ52とよりなり、上記主バーナ52は、前記排出口57に向け移動する灰供給層59の表面上に火炎輻射領域を形成して該領域を含む近傍の加熱領域の灰を加熱溶融させ、溶融灰25を形成して前記排出口57へ溶融スラグ出滓部64を介して下部に向け溶融スラグ25aを滴下させ、下部に設けた水封コンベア69を介して外部へ排出させる構成とし、一方主バーナ52の燃焼ガスは、矢印に示すように排ガスとなり、前記排出口57を経て排ガス流路67を介し、不図示の2次燃焼室に導入されるようにしてある。
【0017】
上記構成よりなる灰溶融炉10において、上記出滓部64の滴下する溶融スラグ25aの対面部位に酸素ランス11を設け、前記排ガス流路67へ誘導される排ガスの流れを介して酸素ランス11は酸素発生装置13より供給される酸素を加熱部17の溶融スラグ25aに吹き出すように構成し、吹き出された酸素は排ガス中の未燃分を燃焼させ、溶融スラグ25aの出滓部64を加熱し、安定した溶融スラグ25aの出滓を可能にしてある。
なお、上記酸素ランス11は、好ましくはパイプ状若しくはノズル状のもので、センサ14により出滓部64の温度を検出し、該検出信号によりコントローラ12の指令によって自動的に可動機構16を介して炉内に挿入され、前記出滓部64を加熱し、加熱終了後は炉壁近傍まで引き戻され待機する仕組みになつている。
なお、上記酸素は酸素濃度略30%程度の酸素富化空気を使用しても良い。
【0018】
図2には、図1に示す灰溶融炉において別の実施形態よりなる出滓部加熱手段を備えた灰溶融炉の概略の構成を示してある。
図に見るように、出滓部加熱手段を、酸素ガス(若しくは酸素富化空気)とLPGなどの気体燃料の供給手段と、使用時のみ加熱部へ挿入可能の酸素ランスよりなる吹き出し手段により構成したものである。
【0019】
即ち、センサ14の検出信号により作動するコントローラ12と、燃料吹き出し用酸素ランス11と、該酸素ランス11を使用時のみ前記コントローラ12の指令により加熱部17に挿入する可動機構16と、酸素ランス11へコンントローラ12の指令により酸素ガス若しくは酸素富化空気を供給する酸素発生装置13と、同じくLPGなどの気体燃料を供給する燃料タンク18とより構成してある。
【0020】
上記構成により、センサ14の検出信号に対応して酸素ランス11を加熱部17の近傍へ挿入させるとともに、適当に混合された酸素ガス(若しくは酸素富化空気)とLPGなどの気体燃料とを吹き出し燃焼させ、出滓部64を強制的に適宜加熱させることができ、溶融スラグ25aの安定出滓を可能とする。
【0021】
図3は本発明の第2発明の概略の構成を示す模式図で、出滓部間欠加熱手段とそれを出滓状況に応じて制御する出滓部監視制御手段を備える構成としたもので、下記構成よりなる。
本発明の灰溶融炉20は、炉本体の一端側に設けた灰供給部53と、該灰供給部53の灰貯留部60より灰50を灰供給層59を形成しながら炉本体の他端側に設けた排出口57に向け送り出す傾斜下降状の炉底55と、前記排出口と57と、炉本体の炉天井56に設けた主バーナ52とよりなり、上記主バーナ52は、前記排出口57に向け移動する灰供給層59の表面上に火炎輻射領域を形成して該領域を含む近傍の加熱領域の灰50を加熱溶融させ、溶融灰25を形成して前記排出口57への溶融スラグ25aの出滓部64を介して下部に向け溶融スラグ25aを滴下させ、下部に設けた水封コンベア69を介して外部へ排出させる構成とし、一方主バーナ52の燃焼ガスは、矢印に示すように排ガスとなり、前記排出口57を経て排ガス流路67を介し不図示の2次燃焼室に導入されるようにしてある。
【0022】
上記構成よりなる灰溶融炉20において、上記出滓部64の滴下する溶融スラグ25aの対面部位に酸素ランス21を可動機構22を介して前進後退可能に設け、コントローラ29の可動指令により加熱部23近傍まで前進させ、または挿入位置より炉壁近傍まで後退させる構造にしてある。
【0023】
上記酸素ランス21は、高圧空気供給源(空気ブロア)32aより流量指示制御弁FIC−32を介して供給された高圧空気に酸素供給源(酸素発生装置PSAまたは酸素ボンベ)33aより流量指示制御弁FIC−33を介して酸素を添加して所用濃度(25〜40%)とした酸素富化空気ないし、高圧空気の供給を零にして酸素のみの単独供給を受けるとともに、気体燃料供給源31aより流量指示制御弁FIC−31を介してLPGなどの気体燃料の供給を前記コントローラ29の指令を介して受け、出滓部64の近傍に接近したノズルより間欠噴射し燃焼させ、併せて未燃ガスも燃焼させ、加熱部23を強制的に加熱するようにしてある。
【0024】
また、炉本体の他端側の前記出滓部64の対面部位にあたる端面に、赤外線カメラ等の工業用CCDカメラ24を設け、該カメラ24により前記出滓部64より落下する溶融スラグ25aの出滓状況を監視撮像し、その状況に対応して前記酸素ランス21への燃料である酸素ないし酸素富化空気またはLPGなどの気体燃料を適量供給の間欠制御をするとともに、前記酸素ランス21の可動機構22の制御を可能とする出滓部監視制御装置30を設ける構成とする。
【0025】
上記出滓部監視制御装置30は、赤外線CCDカメラ24と該CCDカメラ24により得られた画像に所用の加工、除去、合成、照合等の処理をする画像処理部27と、該処理部27より得られたデータより所用の演算をする演算部28と、演算結果より所用の制御指令を出力するコントローラ29とより構成し、前記コントローラ29からの制御指令により前記流量指示制御弁FIC−31、FIC−32、FIC−33、可動機構22がそれぞれ個別に作動するようにし、前記酸素ランス21に酸素ないし酸素富化空気と気体燃料が供給されるときは可動機構22を介して加熱部23の近傍まで前進し、前記供給が終了したときは同じく可動機構22を介して炉壁近くまで後退するようにしてある。
【0026】
上記出滓部64の溶融スラグ25aの出滓状況の監視に当たっては、まず、赤外線CCDカメラ24により、図4に示す堰63に設けた出滓部64のスラグ出滓口26より落下する溶融スラグ25aの出口の幅Yに対する、出口より所定距離だけ離れた位置における幅yの基準値を設定して関連データを演算するとともに、色信号による溶融スラグ25aの温度検出をする。
【0027】
以下に制御のための手順を図5により説明する。
図5(1)に示すように、赤外線CCDカメラ24から溶融スラグ25aの温度を求め、これをセット値と比較して一定値以上変化したことが検知されたときは酸素ランス21の酸素ないし酸素富化空気の量または気体燃料の間欠供給量を加減してスラグ温度を設定値に戻す。
【0028】
また、同図(2)に示すように、積分処理により溶融スラグ25aの面積を求め、その経時的変化により流出スラグ量を検出しセット値面積と比較し、スラグ温度に変化があったときは上記(1)の制御を行ない、スラグ温度を調節する。このようにしてスラグ流出量を所定値に維持する。
【0029】
さらに、同図(3)に示すように、スラグ流れの変位Lをスキャンタイムtを置いて検知し、これによりスラグ流出速度を求め、セット値と比較してスラグ流出速度が一定値以上変化したことが検出されたときは、上記(1)(2)により酸素ないし酸素富化空気の供給量または気体燃料の供給量の調節によりスラグ流出速度を一定値に維持する。
【0030】
【発明の効果】
上記記載のように、本発明の第1発明によれば、前記炉本体の他端側に溶融スラグの出滓部を備えた灰溶融炉において、溶融スラグ出滓部の温度検出値に対応して純酸素ないし酸素富化空気を吹き出すノズルを持つ酸素ランスを設けてあるため、前記出滓部の温度により随時酸素ランスを作動させ排ガス中の未燃分を燃焼させ、出滓部を加熱して安定した溶融スラグの排出を可能にすることができる。
また、設備費としては、高温燃焼空気用予熱装置の必要もなく、また酸素は主バーナ用の酸素発生装置を兼用すればよく、温度検出制御部とノズル状の酸素吹き出し用酸素ランスだけの設備で済み、安価に抑えることができる。
また、サーマルNOxの問題も純酸素または酸素富化空気の使用により低く抑えることができる。
【0031】
また、請求項2記載の第2発明により、出滓部間欠加熱手段とそれを出滓状況に応じて制御する出滓部監視制御手段を備える構成としたもので、炉本体の他端側に溶融スラグの出滓部を備えた灰溶融炉において、前記出滓部の溶融スラグの出滓状況を監視しその状況に応じて、燃料吹き出し用酸素ランスを加熱部近傍に前進させ、純酸素ないし酸素富化空気と気体燃料の間欠吹き出し燃焼させ、併せて未燃ガスも燃焼させて、出滓状況に的確に対応して出滓部を加熱するようにしたため、効率的、且つ安定した溶融スラグの出滓を可能にすることができる。
【図面の簡単な説明】
【図1】本発明の第1発明である出滓部加熱手段を備えた灰溶融炉の概略の構成を示す模式図である。
【図2】図1に示す灰溶融炉において別の実施形態よりなる出滓部加熱手段を備えた灰溶融炉の概略の構成を示す模式図である。
【図3】本発明の第2発明である、出滓部間欠加熱手段とそれを制御する出滓部監視制御手段を備えた灰溶融炉の概略の構成を示す模式図である。
【図4】図2のスラグ出滓口における溶融スラグの出滓状況を示す図である。
【図5】図2の出滓部監視制御装置の制御の手順を示す図である。
【図6】従来の灰溶融炉における出滓部加熱手段を示す模式図である。
【符号の説明】
10、20 灰溶融炉
11、21 酸素ランス
12、29 コントローラ
13 酸素発生装置
14 温度センサ
15 出滓部
17、23 加熱部
16、22 可動機構
24 赤外線カメラ
25 溶融灰
25a 溶融スラグ
26 溶融スラグ出滓口
27 画像処理部
28 演算部
29 コントローラ
30 出滓部監視制御装置
31a 気体燃料供給源
32a 高圧空気供給源
33a 酸素供給源
[0001]
BACKGROUND OF THE INVENTION
The present invention heats and melts the surface of ash, which is a material to be melted, such as incineration ash and fly ash discharged from municipal waste and industrial waste incinerators, and ash discharged from coal fired boilers, etc. with a burner. In addition, the present invention relates to an ash melting furnace provided with a tapping part heating means including a heating part for stable tapping of molten slag in an ash melting furnace that discharges molten ash as molten slag from a tapping part.
[0002]
[Prior art]
In a conventional burner-type ash melting furnace that is generally used, an auxiliary burner is provided at the corresponding portion of the molten slag outlet to stably discharge the molten slag obtained by melting the ash with the main burner, and always burns. Thus, temperature drop is prevented and stable slag outflow is achieved.
[0003]
That is, as shown in FIG. 6, the conventional ash melting furnace includes an ash supply part 53 provided on one end side of the furnace body, a discharge port 57 provided on the other end side, and the ash supply part 53 and the discharge port 57. A furnace in which the molten ash 25 is formed by heating the inclined furnace bottom 55 provided between the ash supply layer 59 and the surface of the ash supply layer 59 formed on the furnace bottom 55 from the ash supply part 53 toward the discharge port 57. The main burner 52 is provided on the ceiling 56.
[0004]
The main burner 52 is provided on the central axis of the furnace ceiling 56 of the ash melting furnace, and the liquid fuel pumped into the burner is atomized by high-pressure air or steam from the exhaust heat boiler, and injected. The atomized fuel is burned by mixing with high-temperature combustion air to be supplied, and the flame radiant heat heats and melts the surface of the ash supply layer 59.
Further, the furnace bottom end on the discharge port 57 side is disposed so as to enter the flame radiation region of the burner 52, and the outer surface of the ash supply layer 59 that continues to move toward the discharge port 57 is heated and melted, and molten ash is obtained. 25 is dropped as a molten slag 25a from a brewing portion 64 provided at the discharge port 57, and discharged to the outside via a lower water-sealed conveyor (not shown).
[0005]
When the molten ash 25 is dropped as the molten slag 25a, an auxiliary burner 66 is provided to maintain the stable slag of the molten slag 25a, and it is always burned to prevent a temperature drop of the brewing part 64 where the molten slag 25a is dripped. ing.
[0006]
[Problems to be solved by the invention]
By the way, the prevention of the temperature drop of the tap part where molten slag is dripped by the auxiliary burner is accompanied by problems of equipment cost, operation cost, exhaust gas treatment,
1) As equipment costs,
It requires the same components as the main burner, requires air preheating means for heating high-temperature combustion air for the auxiliary burner, and further generates auxiliary burner combustion exhaust gas. There is a problem of increased costs.
2) In terms of exhaust gas treatment,
In general, since the combustion gas discharged from the melting furnace is high temperature, a part of nitrogen in the combustion air is oxidized and converted into thermal NOx. For this reason, the combustion air supplied into the furnace is controlled in two stages or multiple stages to suppress generation of NOx.
[0007]
By the way, the nitrogen that is the source of the above-mentioned thermal NOx is not contained in the ash or the fuel, so it is considered that it is mainly caused by the nitrogen contained in the combustion air. There is a tendency to use pure oxygen with a low content.
Also from this point, the installation of the auxiliary burner using the high-temperature combustion air containing nitrogen is a problem that leads to an increase in exhaust gas treatment cost.
3) In terms of operating costs, there is a problem that leads to excessive fuel consumption.
[0008]
The present invention has been made to solve the above-described problems, and an object thereof is to provide an ash melting furnace provided with a tapping part heating means that enables inexpensive and effective heating in a tapping part of molten slag. It is what.
[0009]
[Means for Solving the Problems]
Therefore, the ash melting furnace of the first invention is a furnace in which an ash supply port is provided on one end side of the furnace body, a discharge port for molten slag is formed on the other end side, and the ash supplied from the ash supply port is inclined. In the ash melting furnace heated and melted by the main burner while moving to the discharge port side along the bottom,
A spout part intermittent heating means provided with a blowing means for oxygen gas or oxygen-enriched air controlled by a controller facing the molten ash dropping position of the molten slag spout part to the discharge port,
It said balloon means, located at a site facing the molten slag surface being dropped from tapping unit, the secondary combustion chamber provided in a furnace wall side of the exhaust gas flow path for guiding the exhaust gas is formed,
The blowing means is automatically inserted into the furnace in response to a sensor signal for detecting the temperature of the tapping part from the furnace wall side, and heats the tapping part and removes the unburned portion of the combustion exhaust gas from the main burner. Combusted into exhaust gas, the exhaust gas is introduced into the secondary combustion chamber through the exhaust gas flow path, and after the heating is finished, the blowing means is pulled back to the vicinity of the furnace wall and waits It is.
[0010]
That is, the spout part intermittent heating means includes oxygen gas (or oxygen-enriched air) controlled by a controller and gaseous fuel supply means such as LPG, and blowing means that can be inserted into the heating part only when the blowing is used. It is constructed.
[0011]
The second aspect of the present invention provides an ash supply port on one end side of the furnace body, forms a discharge port for molten slag on the other end side, and moves the ash supplied from the ash supply port along the inclined furnace bottom. In the ash melting furnace that is heated and melted by the main burner while moving to the discharge port side,
Comprising an outgoing slag portion intermittent heating means ing facing the molten ash dropping position of the molten slag tapping portion to the outlet,
The tapping part intermittent heating means is tapping part intermittent heating means having intermittent blowing means for gaseous fuel such as oxygen gas or oxygen-enriched air and LPG,
The intermittent blowing means is provided on the furnace wall side where an exhaust gas flow path for guiding exhaust gas to the secondary combustion chamber is formed, located at a portion facing the molten slag surface side dripping from the molten slag tapping portion. And
Controlled by a controller that monitors the output status of the molten slag output from the slag output portion, the intermittent blow-out means automatically responds to the output status from the furnace wall side in the furnace. is inserted into, as well as heating the tapping unit, the main and the unburned combustion exhaust gas is burned in the burner and the exhaust gas, the exhaust gas to be introduced into the secondary combustion chamber through the exhaust gas flow channel, and After the heating, the blowing means is pulled back to the vicinity of the furnace wall and waits, and the molten slag is stably discharged.
[0012]
[Action]
The invention according to claim 1, which is the first aspect of the present invention, is a portion facing the molten slag surface side dripping from the tapping portion in the tapping portion of the molten slag provided on the other end side of the furnace body. In addition, a blow-out means (hereinafter referred to as an oxygen lance) for blowing out oxygen gas or oxygen-enriched gas controlled by the controller is provided, so that oxygen or oxygen-enriched air blown out from the tip of the oxygen lance causes unburned fuel in the outlet portion. The gas burns and heats the molten slag and the tapping part, so that the temperature drop of the tapping part can be prevented and stable tapping of the molten slag can be made possible.
The oxygen lance is preferably in the form of a pipe or nozzle, and is automatically inserted into the furnace from the furnace wall in response to a sensor signal, heats the tapping part, and after heating is pulled back to the vicinity of the furnace wall and waits. It is a mechanism to do.
[0013]
In the first aspect of the present invention, the brewing part heating means is inserted into the oxygen gas (or oxygen-enriched air) and gaseous fuel supply means such as LPG and the heating part only when in use, and oxygen gas (or oxygen-enriched) is inserted. Gas) and the blowing means composed of the oxygen lance that blows out gaseous fuel such as LPG, the gaseous fuel and oxygen gas are combusted during use, and the heating section can be forcibly heated.
[0014]
The invention according to claim 2, which is the second aspect of the present invention, is configured to include an output portion intermittent heating means and an output portion monitoring control means for controlling the output portion according to the output condition. in tapping of molten slag which is provided on the other end side of the body, that the intermittent balloon means (hereinafter oxygen lance of said output slag portion intermittent heating means gaseous fuels, such as oxygen gas Broiler properly oxygen Tomikasora gas and LPG ) Intermittent heating means with
In response to the sensor signal for detecting the temperature of the output portion, the controller monitors the output status of the molten slag output from the slag output portion, and the oxygen lance corresponds to the output status. And automatically inserted into the furnace through the furnace wall, the oxygen lance is advanced to the heating section, oxygen (or oxygen-enriched air) and gaseous fuel such as LPG are blown out from the tip and burned, and the combustion gas The molten slag tapping portion can be heated to prevent a temperature drop of the tapping portion, and stable tapping of molten slag can be enabled.
The oxygen lance is pipe-shaped or nozzle-shaped and automatically inserted into the furnace from the furnace wall in response to the controller's control signal. It is pulled back and waits.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the form of the Example of this invention is demonstrated with the example of illustration. However, unless otherwise specified, the dimensions, shapes, relative positions, and the like of the components described in this embodiment are merely illustrative examples, and are not intended to limit the scope of the present invention. Absent. In addition, the same code | symbol is used about the same functional member as drawing which shows a prior art example.
[0016]
FIG. 1 is a schematic view showing a schematic configuration of an ash melting furnace provided with a tapping part heating means according to the first invention of the present invention. The ash melting furnace 10 of the present invention is an ash provided on one end side of the furnace body. A supply unit 53, and an inclined bottom furnace 55 that sends ash 50 from an ash storage unit 60 of the ash supply unit 53 toward an outlet 57 provided on the other end of the furnace body while forming an ash supply layer 59; The discharge port 57 and a main burner 52 provided on the furnace ceiling 56 of the furnace body, and the main burner 52 forms a flame radiation area on the surface of the ash supply layer 59 moving toward the discharge port 57. Then, the ash in the heating region in the vicinity including the region is heated and melted to form the molten ash 25, and the molten slag 25a is dropped to the lower portion through the molten slag taping portion 64 to the discharge port 57, It is configured to discharge to the outside through the provided water-sealed conveyor 69, while the main burner 2 of the combustion gas becomes the exhaust gas as shown by the arrow, through the exhaust gas flow channel 67 through the outlet 57, it is to be introduced into the secondary combustion chamber (not shown).
[0017]
In the ash melting furnace 10 having the above-described configuration, the oxygen lance 11 is provided at the facing portion of the molten slag 25a where the dredging portion 64 is dropped, and the oxygen lance 11 is connected via the flow of the exhaust gas guided to the exhaust gas passage 67. The oxygen supplied from the oxygen generator 13 is configured to be blown out to the molten slag 25a of the heating unit 17, and the blown out oxygen burns the unburned portion in the exhaust gas and heats the tap portion 64 of the molten slag 25a. Thus, it is possible to stably extract the molten slag 25a.
The oxygen lance 11 is preferably in the form of a pipe or a nozzle, and the sensor 14 detects the temperature of the spout 64 and automatically detects the temperature of the tread 64 via the movable mechanism 16 in response to a command from the controller 12. It is inserted into the furnace to heat the brewing portion 64, and after the heating is finished, it is pulled back to the vicinity of the furnace wall and stands by.
The oxygen may be oxygen-enriched air having an oxygen concentration of about 30%.
[0018]
FIG. 2 shows a schematic configuration of an ash melting furnace provided with a tapping part heating means according to another embodiment in the ash melting furnace shown in FIG.
As shown in the figure, the outlet heating means is composed of oxygen gas (or oxygen-enriched air) and gaseous fuel supply means such as LPG, and blowing means consisting of an oxygen lance that can be inserted into the heating part only when in use. It is a thing.
[0019]
That is, a controller 12 that operates according to a detection signal of the sensor 14, a fuel blowing oxygen lance 11, a movable mechanism 16 that inserts the oxygen lance 11 into the heating unit 17 according to a command from the controller 12 only when in use, and an oxygen lance 11 An oxygen generator 13 that supplies oxygen gas or oxygen-enriched air according to a command from the control roller 12 and a fuel tank 18 that also supplies gaseous fuel such as LPG.
[0020]
With the above configuration, the oxygen lance 11 is inserted in the vicinity of the heating unit 17 in response to the detection signal of the sensor 14, and an appropriately mixed oxygen gas (or oxygen-enriched air) and gaseous fuel such as LPG are blown out. It is made to combust and the tapping part 64 can be forcedly heated appropriately, and the stable tapping of the molten slag 25a is enabled.
[0021]
FIG. 3 is a schematic diagram showing a schematic configuration of the second invention of the present invention, which is configured to include an output portion intermittent heating means and an output portion monitoring control means for controlling it according to the output condition. Consists of the following configuration.
The ash melting furnace 20 according to the present invention includes an ash supply part 53 provided on one end side of the furnace body, and an ash supply layer 59 formed from an ash storage part 60 of the ash supply part 53 while forming an ash supply layer 59. The furnace bottom 55 which is inclined downwardly sent toward the discharge port 57 provided on the side, the discharge port 57, and the main burner 52 provided on the furnace ceiling 56 of the furnace main body, the main burner 52 is configured to include the discharge port 57. A flame radiation region is formed on the surface of the ash supply layer 59 moving toward the outlet 57, and the ash 50 in the heating region in the vicinity including the region is heated and melted to form the molten ash 25 to the discharge port 57. The molten slag 25a is dropped toward the lower part through the tap part 64 of the molten slag 25a and discharged to the outside through the water-sealed conveyor 69 provided at the lower part, while the combustion gas of the main burner 52 is indicated by an arrow. As shown, it becomes exhaust gas and exhausted through the outlet 57 Through the scan channel 67 are to be introduced into the secondary combustion chamber (not shown).
[0022]
In the ash melting furnace 20 having the above-described configuration, an oxygen lance 21 is provided at a facing portion of the molten slag 25a dripped by the tapping portion 64 so as to be able to advance and retreat via a movable mechanism 22, and a heating unit 23 according to a movable command from a controller 29. It is structured to be advanced to the vicinity or to be retracted from the insertion position to the vicinity of the furnace wall.
[0023]
The oxygen lance 21 is supplied from a high pressure air supply source (air blower) 32a through a flow rate instruction control valve FIC-32 to a high pressure air supplied from an oxygen supply source (oxygen generator PSA or oxygen cylinder) 33a. Oxygen-enriched air added to oxygen through FIC-33 to a desired concentration (25 to 40%) or high-pressure air is supplied to zero to receive oxygen alone, and from gaseous fuel supply source 31a The supply of gaseous fuel such as LPG is received via the command of the controller 29 via the flow rate indicating control valve FIC-31, and the fuel is intermittently injected and burned from the nozzle close to the vicinity of the spout 64, and unburned gas. Also, the heating unit 23 is forcibly heated.
[0024]
Further, an industrial CCD camera 24 such as an infrared camera is provided on an end face corresponding to the facing portion of the taping portion 64 on the other end side of the furnace body, and the molten slag 25a falling from the taping portion 64 by the camera 24 is provided. The dredge situation is monitored and imaged, and the oxygen lance 21 is supplied with an appropriate amount of gaseous fuel such as oxygen or oxygen-enriched air or LPG, and the oxygen lance 21 is moved in accordance with the situation. A configuration is provided in which an output portion monitoring control device 30 capable of controlling the mechanism 22 is provided.
[0025]
The output section monitoring and control device 30 includes an infrared CCD camera 24, an image processing section 27 that performs processing such as necessary processing, removal, synthesis, and collation on the image obtained by the CCD camera 24, and the processing section 27. A calculation unit 28 that performs a required calculation from the obtained data and a controller 29 that outputs a required control command from the calculation result, the flow rate control valve FIC-31, FIC according to the control command from the controller 29. -32, FIC-33, and the movable mechanism 22 are individually operated, and when oxygen or oxygen-enriched air and gaseous fuel are supplied to the oxygen lance 21, the vicinity of the heating unit 23 via the movable mechanism 22 When the supply is completed, the robot moves back to near the furnace wall through the movable mechanism 22.
[0026]
In monitoring the unloading condition of the molten slag 25a of the unloading portion 64, first, the molten slag falling from the slag unloading port 26 of the unloading portion 64 provided in the weir 63 shown in FIG. A reference value of the width y at a position a predetermined distance away from the outlet width Y with respect to the outlet width Y of 25a is set and related data is calculated, and the temperature of the molten slag 25a is detected by a color signal.
[0027]
The control procedure will be described below with reference to FIG.
As shown in FIG. 5 (1), the temperature of the molten slag 25a is obtained from the infrared CCD camera 24, and compared with the set value, when it is detected that the temperature has changed more than a certain value, oxygen or oxygen in the oxygen lance 21 is detected. Adjust the amount of enriched air or the intermittent supply of gaseous fuel to return the slag temperature to the set value.
[0028]
Also, as shown in FIG. 2 (2), the area of the molten slag 25a is obtained by integration processing, the amount of slag outflow is detected by the change over time, and compared with the set value area. The control (1) is performed to adjust the slag temperature. In this way, the slag outflow amount is maintained at a predetermined value.
[0029]
Further, as shown in FIG. 3 (3), the displacement L of the slag flow is detected with a scan time t, thereby obtaining the slag outflow velocity, and the slag outflow velocity has changed by a certain value or more compared to the set value. When this is detected, the slag outflow rate is maintained at a constant value by adjusting the supply amount of oxygen or oxygen-enriched air or the supply amount of gaseous fuel according to the above (1) and (2).
[0030]
【The invention's effect】
As described above, according to the first invention of the present invention, in the ash melting furnace provided with the molten slag taping portion on the other end side of the furnace body, the temperature detection value of the molten slag taping portion corresponds to. Since an oxygen lance with a nozzle that blows out pure oxygen or oxygen-enriched air is provided, the oxygen lance is actuated at any time according to the temperature of the tapping part to burn unburned components in the exhaust gas and heat the tapping part. And stable discharge of molten slag.
In addition, there is no need for a preheating device for high-temperature combustion air as equipment costs, and oxygen only has to be used as an oxygen generator for the main burner. It can be kept at a low cost.
Also, the problem of thermal NOx can be kept low by using pure oxygen or oxygen-enriched air.
[0031]
Further, according to the second aspect of the present invention, it is configured to include the brewing portion intermittent heating means and the brewing portion monitoring control means for controlling the brewing portion according to the brewing situation, on the other end side of the furnace body. In an ash melting furnace equipped with a molten slag outlet, the state of the molten slag discharged from the outlet is monitored, and in accordance with the situation, the fuel blowing oxygen lance is advanced to the vicinity of the heating unit, Efficient and stable molten slag is produced by intermittent blow-off combustion of oxygen-enriched air and gaseous fuel, and also burning unburned gas to heat the output part in response to the output condition accurately. Can be made possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of an ash melting furnace provided with a tapping part heating means according to the first invention of the present invention.
FIG. 2 is a schematic diagram showing a schematic configuration of an ash melting furnace provided with a tapping part heating means according to another embodiment in the ash melting furnace shown in FIG. 1;
FIG. 3 is a schematic diagram showing a schematic configuration of an ash melting furnace which is a second invention of the present invention and is provided with a tapping part intermittent heating means and a tapping part monitoring control means for controlling the tapping part intermittent heating means.
FIG. 4 is a diagram showing a molten slag taping state at the slag tap outlet of FIG. 2;
FIG. 5 is a diagram showing a control procedure of the output part monitoring control device of FIG. 2;
FIG. 6 is a schematic view showing a tapping part heating means in a conventional ash melting furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10, 20 Ash melting furnace 11, 21 Oxygen lance 12, 29 Controller 13 Oxygen generating device 14 Temperature sensor 15 Extraction part 17, 23 Heating part 16, 22 Movable mechanism 24 Infrared camera 25 Molten ash 25a Molten slag 26 Molten slag extraction Port 27 Image processing unit 28 Calculation unit 29 Controller 30 Spout monitoring and control device 31a Gaseous fuel supply source 32a High pressure air supply source 33a Oxygen supply source

Claims (2)

炉本体の一端側に灰供給口を設け、他端側に溶融スラグの排出口を形成し、前記灰供給口から供給された灰を傾斜した炉底に沿って前記排出口側へ移動させながら主バーナにより加熱溶融する灰溶融炉において、
前記排出口への溶融スラグ出滓部の溶融灰滴下位置に対面してコントローラにより制御された酸素ガス若しくは酸素富化空気の吹き出し手段を設けた出滓部間欠加熱手段を備え、
前記吹き出し手段は、出滓部より滴下している溶融スラグ表面側と対面する部位に位置する、2次燃焼室に排ガスを導く排ガス流路が形成されている炉壁側に設けられ、
該吹き出し手段は、前記炉壁側から、出滓部の温度を検出するセンサ信号を受けて自動的に炉内に挿入され、出滓部を加熱するとともに主バーナの燃焼排ガスの未燃分を燃焼させて排ガスとし、該排ガスを前記排ガス流路を介し2次燃焼室に導入されるようにし、そして前記加熱終了後は前記吹き出し手段を炉壁近傍まで引き戻され待機することを特徴とする灰溶融炉。
While providing an ash supply port on one end side of the furnace body, forming a discharge port for molten slag on the other end side, while moving the ash supplied from the ash supply port to the discharge port side along the inclined furnace bottom In an ash melting furnace heated and melted by a main burner,
A spout part intermittent heating means provided with a blowing means for oxygen gas or oxygen-enriched air controlled by a controller facing the molten ash dropping position of the molten slag spout part to the discharge port,
It said balloon means, located at a site facing the molten slag surface being dropped from tapping unit, the secondary combustion chamber provided in a furnace wall side of the exhaust gas flow path for guiding the exhaust gas is formed,
The blowing means is automatically inserted into the furnace in response to a sensor signal for detecting the temperature of the tapping part from the furnace wall side, and heats the tapping part and removes the unburned portion of the combustion exhaust gas from the main burner. The ash is characterized in that it is burned into exhaust gas, the exhaust gas is introduced into the secondary combustion chamber through the exhaust gas flow path, and after the heating is finished, the blowing means is pulled back to the vicinity of the furnace wall and waits. Melting furnace.
炉本体の一端側に灰供給口を設け、他端側に溶融スラグの排出口を形成し、前記灰供給口から供給された灰を傾斜した炉底に沿って前記排出口側へ移動させながらバーナにより加熱溶融する灰溶融炉において、
前記排出口への溶融スラグ出滓部の溶融灰滴下位置に対面してなる出滓部間欠加熱手段を具え、
該出滓部間欠加熱手段は酸素ガス若しくは酸素富化空気とLPGなどの気体燃料の間欠吹き出し手段を持つ出滓部間欠加熱手段であり、
前記間欠吹き出し手段は、前記溶融スラグ出滓部より滴下している溶融スラグ表面側と対面する部位に位置する、2次燃焼室に排ガスを導く排ガス流路が形成されている炉壁側に設けられ、
前記スラグ出滓部から出滓される溶融スラグの出滓状況を監視するコントローラに制御されて、前記間欠吹き出し手段が同出滓状況に対応して、前記炉壁側から、自動的に炉内に挿入され、出滓部を加熱するとともに、前記主バーナの燃焼排ガスの未燃分を燃焼させて排ガスとし、該排ガスを前記排ガス流路を介し2次燃焼室に導入されるようにし、そして前記加熱終了後は前記吹き出し手段を炉壁近傍まで引き戻され待機するように構成され、前記溶融スラグを安定的に出滓することを特徴とする灰溶融炉。
While providing an ash supply port on one end side of the furnace body, forming a discharge port for molten slag on the other end side, while moving the ash supplied from the ash supply port to the discharge port side along the inclined furnace bottom In an ash melting furnace heated and melted by a main burner,
Comprising an outgoing slag portion intermittent heating means ing facing the molten ash dropping position of the molten slag tapping portion to the outlet,
The tapping part intermittent heating means is tapping part intermittent heating means having intermittent blowing means for gaseous fuel such as oxygen gas or oxygen-enriched air and LPG,
The intermittent blowing means is provided on the furnace wall side where an exhaust gas flow path for guiding exhaust gas to the secondary combustion chamber is formed, located at a portion facing the molten slag surface side dripping from the molten slag tapping portion. And
Controlled by a controller that monitors the output status of the molten slag output from the slag output portion, the intermittent blow-out means automatically responds to the output status from the furnace wall side in the furnace. is inserted into, as well as heating the tapping unit, the main and the unburned combustion exhaust gas is burned in the burner and the exhaust gas, the exhaust gas to be introduced into the secondary combustion chamber through the exhaust gas flow channel, and An ash melting furnace characterized in that after completion of the heating, the blowing means is drawn back to the vicinity of the furnace wall and waits, and the molten slag is stably discharged.
JP10561098A 1998-04-01 1998-04-01 Ash melting furnace Expired - Lifetime JP3999343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10561098A JP3999343B2 (en) 1998-04-01 1998-04-01 Ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10561098A JP3999343B2 (en) 1998-04-01 1998-04-01 Ash melting furnace

Publications (2)

Publication Number Publication Date
JPH11287432A JPH11287432A (en) 1999-10-19
JP3999343B2 true JP3999343B2 (en) 2007-10-31

Family

ID=14412282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10561098A Expired - Lifetime JP3999343B2 (en) 1998-04-01 1998-04-01 Ash melting furnace

Country Status (1)

Country Link
JP (1) JP3999343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202524B2 (en) * 2013-11-08 2017-09-27 三菱日立パワーシステムズ株式会社 Solidification melting burner, coal gasification furnace

Also Published As

Publication number Publication date
JPH11287432A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
JP3284606B2 (en) Ash melting furnace
KR100634411B1 (en) Ash melting type u-firing combustion boiler and method of operating the boiler
JP5467442B2 (en) Auxiliary Phlox operating method and burner
EP0543480B1 (en) Apparatus for incinerating waste material
WO1996002793A1 (en) LOW NOx BURNER
JPH03156206A (en) Waste treatment method
USRE34298E (en) Method for waste disposal
CN104508373A (en) Method and apparatus for a dual mode burner yielding low NOx emission
JP2009250571A (en) Starting method of circulating fluidized bed furnace
JP5231865B2 (en) Combustion equipment for heating furnace
JPS62153624A (en) Method and device for operating pulse pilot burner
JP3999343B2 (en) Ash melting furnace
JP2007132544A (en) Secondary combustion method and device in incineration disposal system
JP3764634B2 (en) Oxygen burner type melting furnace
JP2000193224A (en) Combustion device for exhaust gas including dust
JP5044317B2 (en) Combustion chamber and combustion method for waste gasification and melting equipment
KR100368830B1 (en) Oxygen supply method for regenerative burner and device
JP2008224144A (en) Waste incinerating method
JPH09178152A (en) Structure of exhaust gas combustion section of electrical ash melting furnace
JP2005077081A (en) Fusion control method and device for burner type fusion furnace
JP2795957B2 (en) Combustion control method for waste incinerator
JPH09236226A (en) Exhaust gas recombustor for refuse incinerating furnace of furnace top gas cooling tower type
KR900002317B1 (en) Apparatus and operation of a pulse-fired burner
JP3817513B2 (en) Incinerator and incinerator auxiliary burner
JP2002005422A (en) Combustion method of combustion melting furnace and combustion melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term