JP3998792B2 - Hydrous silicic acid and method for producing the same - Google Patents

Hydrous silicic acid and method for producing the same Download PDF

Info

Publication number
JP3998792B2
JP3998792B2 JP3528698A JP3528698A JP3998792B2 JP 3998792 B2 JP3998792 B2 JP 3998792B2 JP 3528698 A JP3528698 A JP 3528698A JP 3528698 A JP3528698 A JP 3528698A JP 3998792 B2 JP3998792 B2 JP 3998792B2
Authority
JP
Japan
Prior art keywords
reaction
temperature
silicic acid
hydrous silicic
ctab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3528698A
Other languages
Japanese (ja)
Other versions
JPH11228125A (en
Inventor
良樹 福山
浩克 林
実 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP3528698A priority Critical patent/JP3998792B2/en
Publication of JPH11228125A publication Critical patent/JPH11228125A/en
Application granted granted Critical
Publication of JP3998792B2 publication Critical patent/JP3998792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エラストマー補強材、特に合成ゴム(以下、単に「ゴム」と略す)に適した新規な含水ケイ酸及びその製造方法に関する。
【0002】
【従来の技術】
ケイ酸アルカリを酸で中和し、生成した反応スラリー中の固形成分を回収、乾燥して得られる含水ケイ酸は、各種エラストマー、特に合成ゴムの補強充填材、農薬の担体、新聞用紙の填料、合成樹脂の配合剤、塗料・接着剤・印刷インキの増粘剤、練り歯みがきの配合剤等、幅広い用途に使用されている。中でも、エラストマー、特にタイヤゴムの補強用充填材には古くから使用されれているが、近年、低燃費化ニーズの高まりと、湿潤路面での走行性能確保との観点から、その使用が増大している。
【0003】
一般に、含水ケイ酸によるゴムの補強は、該含水ケイ酸の微細な一次凝集体が均一にゴム中へ分散し、かつ一次凝集体構造内にゴムが強固に包含されることで達成されると考えられている。したがって、大きい補強性を得るためには、該含水ケイ酸粉末をゴムへ混合する際に二次凝集体が容易に解砕されること(粉末の分散)、及び一次凝集体の凝集力が強いこと(強固な一次構造)が要求される。
【0004】
ここで、一次凝集体とは一次粒子の化学結合により形成された凝集体を意味し、また二次凝集体とは一次凝集体間の物理的相互作用によって形成される凝集体を表す。これまでも、ゴム充填剤用含水ケイ酸に関する報告は数多くなされているが、それらは、「粉体の分散性」を意図した含水ケイ酸がほとんどであった。
【0005】
分散性の指標としては、窒素の吸着量を指標とした、窒素吸着法により測定した比表面積(以下、「BET比表面積」または「SBET」と略す)とセチルトリメチルアンモニウムブロマイドの吸着量を指標とした、セチルトリメチルアンモニウムブロマイド吸着法により測定した比表面積(以下、「CTAB比表面積」または「SCTAB」と略す)との比(SBET/SCTAB)が良く用いられている。つまり、 SBET/SCTABが1に近いほど粒子が均一であり、その結果、分散性が良くなるのである。これまでの報告の多くは、 SBET/SCTABが1.2以下の含水ケイ酸であった。
【0006】
しかしながら、含水ケイ酸がゴム中へ微細に分散すると補強性は増大するが、含水ケイ酸粒子とゴム分子との界面が多くなり、その界面での摩擦によるエネルギー損失が大きくなるので、低燃費化ニーズの方向に逆行するという問題も他方では存在していた。
【0007】
一方、SBET/SCTABが1.2を超える含水ケイ酸としては、特表平8−502716号公報に、SBET/SCTABが1.2以上、CTAB比表面積が140〜240m2/gの沈降シリカが開示されている。しかしながら、該公報において、SBET/SCTABが1.4以上の沈降シリカは具体的に示されていない。そして、かかるシリカはゴム中への過度の分散を十分に抑えることができずに、シリカとゴム分子界面での摩擦が大きく、エネルギー損失を抑える点において、改良の余地があった。
【0008】
【発明が解決しようとする課題】
従来の知見から、含水ケイ酸の比表面積を小さくするとエネルギー損失が小さくなることが判っていたが、この場合、含水ケイ酸とゴム分子との相互作用が小さくなるためにタイヤ用ゴムとして重要な特性である貯蔵弾性率が低下してしまう問題があった。つまり、低エネルギー損失と大きな貯蔵弾性率は二律背反する特性であった。
【0009】
そこで本発明は、エラストマー、特に合成ゴム補強材として用いられたときエネルギー損失を低く抑えるとともに貯蔵弾性率を大きくする含水ケイ酸及びその製造方法を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明者らは、上記の課題に鑑み、含水ケイ酸凝集体の凝集力と一次粒子外部表面の比表面積(CTAB比表面積)に着目し、鋭意研究を重ねてきた。その結果、含水ケイ酸凝集体の凝集力を適度に大きくすることでゴム中での分散を過度に進行させず、また含水ケイ酸のCTAB比表面積を大きくすることでゴム中での含水ケイ酸粒子とゴム分子との間、あるいは含水ケイ酸粒子間の相互作用を増すという考え方から、ゴムと混合されたとき低エネルギー損失と高貯蔵弾性率を両立した含水ケイ酸を見い出し、本発明を提案するに到った。
【0011】
即ち、本発明の含水ケイ酸は、窒素吸着により測定した比表面積(SBET)とセチルトリメチルアンモニウムブロマイド吸着により測定した比表面積(SCTAB)との比(SBET/SCTAB)が1.4〜2.0で、かつSCTABが170〜250m2/g、さらに水銀圧入法により測定した細孔半径37〜1000オングストロームの範囲の細孔の容積が1.0〜1.4cc/gであることを特徴とする。
【0012】
【発明の実施の形態】
本発明において、含水ケイ酸のSBET/SCTABは1.4〜2.0である。これは、含水ケイ酸がゴム中に練り込まれるとき過度に分散し過ぎないように含水ケイ酸凝集体の凝集力を適度に調節する条件として重要であり、本発明最大の特徴である。ここで、含水ケイ酸凝集体の凝集力はその比表面積で判断できる。一般に、ゴム補強用含水ケイ酸の比表面積は、BET比表面積とCTAB比表面積との二種で表される。前者は直径約0.4nmの窒素分子を吸着種として使用するので微粒子の表面をも測定し、これに対して後者はCTAB分子が大きいため該微粒子の表面までは含まない一次粒子の表面を測定する。ここで、微粒子とは1nm前後の粒子径を有する析出したばかりの粒子の意味で、また一次粒子とは10nm前後の粒子径まで成長した粒子の意味で使用している。このように、測定できる下限の粒子径が異なるので、両者の比をとったとき、SBET/SCTABが1に近い程、微粒子が少ない均一な粒子を有する含水ケイ酸となり、一方、SBET/SCTABが1より大きければ大きい程、微粒子が多い不均一な含水ケイ酸であると言える。この微粒子の量が分散に影響し、SBET/SCTABが1.4未満では、微粒子の量がまだ不十分なのでゴム中へ練り込まれるとき凝集構造が細かく破壊され分散が過度に進行してしまうため、ゴム物性のエネルギー損失が大きくなり、本発明の目的を達成することが出来ない。一方、SBET/SCTABが2.0を超えると微粒子量が相対的に多くなり、微粒子によって形成された強固な凝集体がゴム中へ練り込まれるとき大きい凝集粒子径のまま残存してゴムが凝集体構造中に内部まで入り込めないのでゴム物性の補強性が大きく低下する。さらに好ましいSBET/SCTABの範囲は、1.4〜1.8である。
【0013】
上記の微粒子の凝集体凝集力に対する作用について、本発明者らは、微粒子は一次粒子間あるいは一次凝集体間に介在し、その表面活性のため接着剤的な作用をして凝集体凝集力を強化すると推定している。
【0014】
また、本発明の含水ケイ酸は、SCTABが170〜250m2/gであることも特徴である。SCTABは一次粒子外部表面の比表面積でありゴム分子と有効に相互作用できる面積を示している。したがって、SCTABが170m2/g未満であるとゴム物性の貯蔵弾性率が小さくなるため好ましくない。一方、SCTABが250m2/gを超えると、ゴム中に練り込まれるとき粘度が非常に高くなり作業性が著しく低下し、実用的でない。さらに好ましいSCTABの範囲は180〜230m2/gである。
【0015】
更に、本発明の含水ケイ酸は、水銀圧入法により測定した細孔半径37〜1000オングストロームの範囲の細孔の容積が1.0〜1.4cc/gであることにも特徴を有する。該細孔の容積が1.0cc/gより小さいと、ゴム分子が入り込むべき細孔の容積が小さすぎて、含水ケイ酸のゴム中での分散が進まずに、ゴムが十分に補強されないため好ましくない。一方、1.4cc/gを超えると凝集が粗となり、ゴム中での含水ケイ酸の分散が過度に進んで、ゴム物性のエネルギー損失が大きくなるために好ましくない。さらに好ましい範囲は1.0〜1.3cc/gである。
【0016】
本発明の含水ケイ酸において他の特性は特に制限されないが、以下にはゴム補強材としての好ましい特性を列挙する。
【0017】
即ち、本発明の含水ケイ酸において、好ましいBET比表面積SBETの範囲は240〜400m2/gである。 SBETがこの範囲にある含水ケイ酸をゴム中に混練すると、適度な粘度となり、良好な作業性が得られるからである。
【0018】
また、見掛け比重は0.2〜0.4g/cm2が好ましい。見掛け比重がこの範囲にあると、ゴム中への混練時に含水ケイ酸の良好な噛み込み性が期待できる。
【0019】
更に、ジブチルフタレート吸油量(以下、「DBP吸油量」と略す)は150〜300ml/100gであることが好ましい。この範囲にあると、混練時の良好な作業性が得られる。
【0020】
更にまた、吸着した水分量は3〜10重量%であることが好ましい。ゴム配合の際に使用されるシランカップリング剤との反応性がこの範囲の吸着水分量で良好になることと、混練時の作業性が容易になることが理由である。尚、この場合の水分量は、105℃で2時間保持したときの重量減少から計算した値をいう。
【0021】
本発明の含水ケイ酸をエラストマーに充填するに際し、全凝集粒子に対する凝集粒子径1μm以下からなる凝集粒子群の占める割合(以下、「F<1」と略す)が10〜30重量%となるように練り込みの条件を調節することが望ましい。F<1が10重量%より小さいと混練時の作業性が悪くなり、ゴムの補強性が低下する傾向にあるし、またF<1が30重量%を超えるとゴム物性のエネルギー損失が大きくなる場合があるからである。より好適なF<1の範囲は12〜28重量%である。
【0022】
また、本発明の含水ケイ酸をエラストマーに充填するに際し、凝集粒子径1μm以下からなる凝集粒子群の平均凝集粒子径(以下「D<1」と略す)は0.58μm以上となるように練り込みの条件を調節することが望ましい。該平均凝集粒子径が0.58μmより小さいとゴム分子と含水ケイ酸粒子表面との界面での摩擦が増加し、ゴム物性のエネルギー損失が大きくなる傾向にあるからである。さらに好ましいD<1は0.60μm以上である。
【0023】
本発明の含水ケイ酸を使用した場合には、通常の混合機を使用しても、上記好適な混練状態が再現性良く実現可能である。
【0024】
本発明の含水ケイ酸の製造方法は特に制限されるものではない。一般に、含水ケイ酸は、湿式法によって得られ、ケイ酸アルカリを出発原料として、これに鉱酸を加えて中和沈澱させる方法により製造できる。
【0025】
発明の含水ケイ酸の代表的な製造方法は、ケイ酸アルカリと鉱酸との中和反応において、予め所定の濃度に調製されたケイ酸アルカリ溶液に液中のアルカリ濃度が一定となるように攪拌しながらケイ酸アルカリ溶液及び鉱酸を同時に添加する方法(反応I)、あるいは所定の濃度に調製されたケイ酸アルカリ溶液に鉱酸を添加する方法(反応II)のいずれかの方法、あるいは反応Iと反応IIを組み合わせた方法が好適に採用できる。
【0026】
使用するケイ酸アルカリとしては、ケイ酸ナトリウムまたはケイ酸カリウムが挙げられるが、そのうち、ケイ酸ナトリウムが一般的であり、SiO2/Na2Oのモル比は2.0〜3.5の範囲とすることが適当である。通常の市販のケイ酸ナトリウム溶液を用いることができ、反応に使用するときの濃度はSiO2濃度で表示した場合、5〜200g−SiO2/Lまで水で希釈することが望ましい。また、SiO2に対してAl23が0.1〜1.0重量%−Al23/SiO2の濃度で含まれているケイ酸ナトリウム溶液を用いることもできる。
【0027】
また、上記鉱酸としては、硫酸または塩酸が好適に使用できる。中でも、一般的に用いられるのは硫酸であり、200〜250g−H2SO4/Lの濃度に水で希釈して用いるのが好ましい。
【0028】
更に、ケイ酸アルカリ溶液と鉱酸の供液方法は、それらを反応液或いは反応スラリー上部から滴下する方法でも良いし、供液口を直接反応液或いは反応スラリー中へ入れて供液する方法も採用できる。
【0029】
更にまた、反応液或いは反応スラリーは反応槽中で撹拌された方が望ましい。撹拌方法は、撹拌羽根による剪断を利用する方法を用いても良いし、別の混合槽を設けて反応液あるいは反応スラリーを反応槽と混合槽との間で循環させながら混合する方法でも良い。
【0030】
本発明は、窒素吸着により測定した比表面積(SBET)とセチルトリメチルアンモニウムブロマイド吸着により測定した比表面積(SCTAB)との比(SBET/SCTAB)が1.4〜2.0で、かつSCTABが170〜250m2/g、さらに水銀圧入法により測定した細孔半径37〜1000オングストロームの範囲の細孔容積が1.0〜1.4cc/gであることに特徴を有するが、該含水ケイ酸を製造するためには、反応温度の制御が必要となる。即ち、ケイ酸アルカリ溶液と鉱酸との中和反応において、含水ケイ酸の核析出を確認した後に、反応系の温度を85〜100℃の高温に維持し、次いで、40〜75℃へ降下して中和反応を行わなければならない。
【0031】
本発明の含水ケイ酸の製造方法において、反応系の温度を85〜100℃の高温に維持する理由は、強固な凝集力の凝集体を形成し、ゴム中での過度の分散を防ぐためである。即ち、かかる高温で反応を行うことにより、粒子の析出限界径が大きく、微粒子をほとんど析出させずに一次粒子の粒子径を均一とすることができ、次の降温後の反応で析出する微粒子の接着作用がより有効となり強固な凝集力の凝集体が形成されて、過度の分散に対して抵抗となり得るのである。
【0032】
従って、反応系の温度が85℃より低いと、均一反応を十分に進行できないので過度の分散に対する抵抗として作用できないため好ましくない。また、高温での反応系の温度を100℃より高くすることは、設備上煩雑になりコスト的に好ましくない。さらに好ましい高温での反応系の温度範囲は90〜95℃である。また、上記高温に維持する時間は、10分〜5時間の範囲とすることが好適である。
【0033】
本発明の製造方法は、上記高温での反応に次いで、反応途中に温度を降下させて更に中和反応を行うことに特徴を有するが、降温後の反応系の温度は40〜75℃とすることが必要である。
【0034】
かかる降温後の中和反応は、微粒子を析出させて、それが一次粒子間を接着し凝集構造を強固にする反応である。従って、降温後の反応系の温度が40℃未満であると反応の制御が困難となって微粒子析出を制御できないし、加えて反応速度が遅くなるので好ましくない。また、降温後の反応系の温度が75℃を超えると微粒子の溶解反応が無視できなくなり、有効に微粒子が析出されないので好ましくない。
【0035】
本発明では反応系の温度を降下する前に必ず生成した含水ケイ酸の核析出を確認しなければならない。一般に、ケイ酸アルカリ溶液と鉱酸との中和反応においては、反応系の温度、pHに応じた一定のシリカ濃度に到達するとシリカ粒子の核が析出する。この核の析出は反応液が青白い色を帯びることによって確認することができる。核析出前に反応系の温度を降下した場合、低温で核析出が起こり一次粒子が不均一となって、強固な凝集構造が形成されないので好ましくない。
【0036】
反応系の降温は、核析出を確認した後であれば任意の時点で実施することができるが、微粒子の量をSBET/SCTABが1.4以上になるまで効率良く析出させる点で、全反応の内の10%以上が降温後になされるように降温のタイミングを調整するのが好ましい。ここで、全反応の内の10%とは、反応に供した全ケイ酸アルカリの内の中和されるケイ酸アルカリ溶液の量が10%という意味である。
【0037】
前記反応液あるいは反応スラリーを加熱するための方法は、特に制限されず、公知の方法を採用することができる。例えば、スチームを反応液あるいは反応スラリーに吹き込んで加熱する方法、反応溶液内に発熱体を入れて加熱する方法、反応槽の外部からスチームまたは発熱体で加熱する方法などが挙げられる。
【0038】
一方、前記反応温度を降下するための方法も、特に制限されず、公知の方法を採用することができる。例示すると、投げ込み式または外部冷却式の冷却装置の使用、ドライアイス、氷、水などの投入、あるいは別の混合槽を設けて反応液あるいは反応スラリーを反応槽と混合槽との間で循環させながら冷却する方法が挙げられる。
【0039】
以下には、中和沈殿反応に関して、本発明の含水ケイ酸を製造するために採用される望ましいその他の実施形態を挙げる。前述したように本発明において中和沈澱反応は、予め所定の濃度に調製されたケイ酸アルカリ溶液に液中のアルカリ濃度が一定となるように攪拌しながらケイ酸アルカリ溶液及び鉱酸を同時に添加する方法(反応I)、あるいは所定の濃度に調製されたケイ酸アルカリ溶液に鉱酸を添加する方法(反応II)あるいは反応Iと反応IIを組み合わせた方法の三通りの方法が採用され、以下にはその内の反応Iと反応IIについて別々に好適な実施形態を挙げるが、本発明の製造方法はそれらに制限されるものではない。
【0040】
まず、反応Iは、反応槽に予め所定の濃度に調製されたケイ酸アルカリ溶液の一定量を入れ、反応系を目的の温度まで昇温した後、液中のアルカリ濃度が一定となるように攪拌しながらケイ酸アルカリ溶液及び鉱酸を同時に添加、核の析出を確認した後、任意の時点でケイ酸アルカリ溶液及び鉱酸の添加を停止してから反応系を降温、そしてケイ酸アルカリ溶液及び鉱酸の同時添加を再開する反応である。予め反応槽に調整されたケイ酸アルカリ溶液の濃度は5〜20g−SiO2/Lとすることが好ましく、またその量は使用する全ケイ酸アルカリ溶液の内の5〜15重量%とすることが好ましい。一定とする反応液中のアルカリ濃度は、反応液のpHで表したとき、pH9〜11となるようにケイ酸アルカリ溶液及び鉱酸の添加濃度、添加速度のバランスを取ることが望ましい。添加するケイ酸アルカリ溶液の濃度は50〜200g−SiO2/Lが好適である。さらに、添加速度は、中和反応に使用する全ケイ酸アルカリ溶液を100%としたとき0.5〜5%/分が良い。同様に、鉱酸の添加速度も中和反応に使用する全鉱酸を100%としたとき0.5〜5%/分が好ましい。また、沈殿した含水ケイ酸を安定にする目的で、ケイ酸アルカリ溶液及び鉱酸の同時添加(以下、単に「同時添加」と略す)終了後、反応液のpHが2〜6になるまで鉱酸のみを再度添加することが好ましい。同じ目的で、同時添加終了後、同じ降温後の温度で熟成しても良い。
【0041】
一方、反応IIは、反応に供する全ケイ酸アルカリ溶液を所定の濃度に調製して反応槽に溜め、反応系の温度は3段階で昇降温させ、撹拌しながら鉱酸を添加して中和反応を進行させる方法である。この時、初期の第1段階は低温での中和反応、続く第2段階は高温での熟成、最後の第3段階は低温での中和反応である。鉱酸は第1段階と第3段階で添加し、第2段階は鉱酸の添加を停止して、高温での熟成によって均一な一次粒子を形成させる段階である。第1段階の反応系の温度範囲は30〜50℃とすることが好ましい。第2段階及び第3段階の温度制御が本発明の特徴であり、それぞれ85〜100℃及び40〜75℃に調整しなければならない。加えて、第2段階と第3段階の間の降温の前に核析出を確認する必要がある。その理由は前述した通りであり、核析出は反応液が青白く着色することで確認できる。また、最初反応槽に溜めたケイ酸アルカリ溶液の濃度は、20〜100g−SiO2/Lが好ましく、凝集剤として硫酸ナトリウム等の電解質2〜46g/Lを予めケイ酸アルカリ溶液と共に反応槽中に添加しておいても良い。さらに、初めに反応槽へ溜めたケイ酸アルカリ溶液中に含まれるアルカリの全量をちょうど中和するのに要する鉱酸の量を100%とした場合の第一段階で添加した鉱酸量の割合を一次中和率とすると、一次中和率は40〜60%が望ましい。第1段階での鉱酸の添加速度は、反応に使用する全鉱酸の量を100%としたとき、1〜10%/分とすることが好適である。第2段階の高温熟成は10分以上の時間実施することが一次粒子をより均一にできる点で好ましいし、第3段階での鉱酸添加速度は、反応に使用する全鉱酸の量を100%としたとき、0.5〜5%/分とすることが好適であり、また鉱酸の添加の終了は、沈殿した含水ケイ酸を安定にする目的で、反応液のpHが2〜6になるところが好ましい。
【0042】
本発明の製造方法では、反応I、反応IIまたはその組み合わせのいずれの反応形態においても、中和反応を完結させ鉱酸の添加を終了して全てのシリカを析出させた時点での反応スラリー中のシリカ濃度は、CTAB比表面積が目的の範囲に入り易い理由で、30〜80g/Lとすることが望ましい。
【0043】
本発明において、以上のようにして得られた含水ケイ酸は、洗浄、ろ過、乾燥等、後処理されることによって目的の比重やDBP吸油量を有するものとなる。それらの後処理方法は、特に制限されず、公知の方法を採用することができる。例えば、反応液をフィルタープレスでろ過、洗浄して得られたケークを静置乾燥する方法や、反応液をフィルタープレスでろ過、洗浄した後、適度な濃度にしたスラリーを噴霧乾燥する方法等が挙げられる。また、嵩比重をゴム補強用充填材に適合する大きさまで調整する目的で、公知の方法を用いて粉砕処理あるいは造粒処理を施すことができる。
【0044】
【発明の効果】
本発明の新規含水ケイ酸は、これをゴム補強材として用いられた場合、該含水ケイ酸の凝集体凝集力が適度に大きいためにゴム中での分散を過度に進行させずエネルギー損失を低く抑えることができるし、加えてCTAB比表面積が大きいので高い貯蔵弾性率を得ることができる。
【0045】
勿論、前記本発明の含水ケイ酸の特徴的な物性を活用できる他の用途への使用も特に制限されるものではない。
【0046】
【実施例】
以下、実施例および比較例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。尚、実施例および比較例における測定値は次に示す方法により測定した。
【0047】
(1)BET比表面積
J.Am.Chem.Soc.、60巻、309〜319頁に記載されているブルナウアー・エメット・テーラーによって提唱された理論にしたがったが、簡便法である一点法を採用して測定した。具体的には、柴田科学器械工業(株)製、迅速表面積測定装置SA−1100型を用いて測定した。
【0048】
(2)CTAB比表面積
シリカをCTAB水溶液に分散させ、シリカ粒子表面に吸着せずに溶液中に残ったCTAB分子の量を、Sodium Di−2−etylhexyl−sulfosuccinate(以下、「OT」と略す)で滴定することによって測定した。滴定法は、J.Soc.Chem.Ind.、67巻、45頁に記載のある方法に従った。OT滴定量Vから次式によりCTAB比表面積(m2/g)を求めた。
【0049】
CTAB=5*(V0−V)*COT*S*NA/m
ここで、V0はブランク測定におけるOT水溶液の滴下量(ml)、Vがサンプル測定におけるOT水溶液の滴下量(ml)、COTは滴下したOT水溶液の濃度(mol/ml)、SはCTAB分子一個当たりの占有面積、NAはアボガドロ数、mは分散したシリカの重量(g)をそれぞれ表す。ここで、CTAB分子一個当たりの占有面積Sの値として、35平方オングストロームを採用した。尚、上式中の数字5は、滴定のために分取したCTAB溶液量が初期量の5分の1であったために5倍したものであり、またブランク測定とはシリカを分散させないCTAB溶液のみの測定を意味する。
【0050】
(3)平均凝集粒子径
凝集粒子径1μm以下からなる凝集粒子群の平均凝集粒子径(D<1)を後述する計算で求めるため、加硫ゴムを熱分解することによってその中のシリカ粒子を取り出し、水に分散後、遠心機で大粒子を沈降分離して、上澄み中に残留したシリカ粒子を粒度分布測定する方法を取った。
【0051】
加硫ゴムの熱分解は、窒素気流中、400℃で14時間、続いて空気雰囲気中、500℃で10時間の条件で実施した。次に水への分散過程であるが、加硫ゴム中から取り出したシリカの内0.4gを蒸留水20mlに添加し、バス型超音波分散機にて80W、3分の条件で超音波を照射することによって、シリカ粒子を水中に分散させた。大粒子の分離は遠心機を利用して、1000rpm、2分の条件とした。上澄み中に残留したシリカ粒子の粒度分布測定は粒子沈降光透過式粒度分布計(堀場製作所製CAPA−500)を用いて、3000rpmの遠心力が作用した条件下で実施した。一方、分離した大粒子は乾燥してその重量(WL)を秤量した。
【0052】
全凝集粒子に対する凝集粒子径1μm以下からなる凝集粒子群の占める割合(F<1)及びD<1は、上澄み中の粒度分布測定データと遠心分離に供したシリカ量0.4g、そしてWLとから計算した。上澄み中に残留したシリカ粒子の粒度分布測定データから凝集粒子径1μmを超える粒子の割合(F/重量%)を読み取った。 F<1は、
<1= (0.4−WL−(0.4− WL)*F/100)*100/0.4
の式で重量%として計算した。また、 D<1は、同じ粒度測定データの
F+(100−F)/2
の式で計算される累積頻度(%)の凝集粒子径を平均凝集粒子径D<1とした。
【0053】
(4)細孔半径37〜1000オングストロームの範囲の細孔の容積
カルロエルバ社製ポロシメーター2000型を用いて水銀圧入法により細孔径分布を測定し、そのデータから細孔の容積を算出した。
【0054】
(5)見掛け比重
JIS K6220 に準拠して測定した。
【0055】
(6)DBP吸油量
JIS K6220 に準拠して測定した。
【0056】
実施例1
8リットルの反応槽に予め蒸留水2677mlと市販のケイ酸ナトリウム溶液100ml(SiO2/Na2Oのモル比3.36、濃度364g/L)を仕込み、攪拌しながら溶液の温度を95℃まで昇温した。ケイ酸ナトリウム溶液の液温を95℃に保ち、攪拌しながら濃度224.3g/Lの硫酸を7.6ml/分の速度で、同時に同じケイ酸ナトリウム溶液1155mlを蒸留水2423mlで希釈したケイ酸ナトリウム溶液を44.7ml/分で添加した。
【0057】
同時添加開始30分後反応液が透明から青白く変色したのを確認した。同時添加開始45分後、同時添加を停止し、投げ込み式冷凍機により反応液の温度を65℃に降下した。この間20分を要した。その後、温度が65℃であること以外は停止前と同じ条件で同時添加を再開、反応を35分間継続して、同時添加を終了した。それから、65℃で5分間熟成した後、硫酸のみの添加を再開し、反応液のpHが2まで低下したところで硫酸の添加を終了した。この時、反応スラリー中のSiO2濃度は49.2g− SiO2/Lであった。
【0058】
この反応スラリーをろ過するためブフナー漏斗に通した。水洗後、ろ別したケークを150℃で乾燥し、最後に、剪断ミルにて解砕した。得られた含水ケイ酸の粉体物性を表1に示した。
【0059】
実施例2
実施例1において、降温後の反応温度を55℃にした以外は実施例1と全く同様にして含水ケイ酸を得た。この反応の途中で同時添加開始30分後、つまり降温前に反応液が青白く変色するのを確認した。また、反応終了後の反応スラリー中のSiO2濃度は49.2g− SiO2/Lであった。得られた含水ケイ酸の粉体物性を表1に示した。
【0060】
実施例3
8リットルの反応槽に予め蒸留水6460mlと市販のケイ酸ナトリウム溶液1040ml(SiO2/Na2Oのモル比3.06、濃度386g/L)及び無水硫酸ナトリウム155gを仕込み、攪拌しながら溶液の温度を40℃まで昇温した。ケイ酸ナトリウム溶液の液温を40℃に保ち、攪拌しながら濃度224g/Lの硫酸を17.8ml/分の速度で20分間添加した。この時、一次中和率は50%であった。
【0061】
次いで、硫酸の添加を停止して、反応液を昇温した。この際、昇温途中で反応液が青白く着色するのを確認した。液温が50分間で95℃に達した後、同温度で硫酸の添加を停止したまま2時間熟成した。それから、投げ込み式冷凍機により反応液の温度を20分で75℃に降下した後、温度を75℃に保持して前と同濃度の硫酸を7.9ml/分の速度で再度添加した。
【0062】
反応液のpHが5まで低下したところで硫酸の添加を止め、実施例1と同様にろ過、水洗、乾燥、解砕の各処理を施した。反応終了後の反応スラリー中のSiO2濃度は36.5g− SiO2/Lであった。得られた含水ケイ酸の粉体物性を表1に示した。
【0063】
実施例4
実施例3において、液温40℃での硫酸の添加時間を21分50秒と長くすることによって一次中和率は52%とした以外は実施例3と全く同様にして含水ケイ酸を得た。この反応の一次中和後、昇温途中、つまり降温前に反応液が青白く変色するのを確認した。
【0064】
また、反応終了後の反応スラリー中のSiO2濃度は36.5g− SiO2/Lであった。得られた含水ケイ酸の粉体物性を表1に示した。
【0065】
実施例5
降温後の反応温度を65℃にした以外は実施例3と全く同様にして含水ケイ酸を得た。この反応の一次中和後、昇温途中、つまり降温前に反応液が青白く変色するのを確認した。また、反応終了後の反応スラリー中のSiO2濃度は36.5g− SiO2/Lであった。得られた含水ケイ酸の粉体物性を表1に示した。
【0066】
比較例1
8リットルの反応槽に予め蒸留水2021mlと市販のケイ酸ナトリウム溶液81ml(SiO2/Na2Oのモル比3.38、濃度344g/L)を仕込み、攪拌しながら溶液の温度を80℃まで昇温した。ケイ酸ナトリウム溶液の液温を80℃に保ち、攪拌しながら濃度224g/Lの硫酸を5.7ml/分の速度で、同時に同じケイ酸ナトリウム溶液1386mlを蒸留水2677mlで希釈したケイ酸ナトリウム溶液を33.9ml/分で添加した。同時添加開始120分後、同時添加を終了した。それから、80℃で10分間熟成した後、硫酸のみの添加を再開し、反応液のpHが2まで低下したところで硫酸の添加を終了した。
【0067】
この時、反応スラリー中のSiO2濃度は55.3g− SiO2/Lであった。その後、実施例1と同様にろ過、水洗、乾燥、解砕の各処理を施した。得られた含水ケイ酸の粉体物性を表1に示した。
【0068】
比較例2
降温後の反応温度を77℃にした以外は実施例1と全く同様にして含水ケイ酸を得た。この反応の途中で同時添加開始30分後、つまり降温前に反応液が青白く変色するのを確認した。
【0069】
また、反応終了後の反応スラリー中のSiO2濃度は49.2g− SiO2/Lであった。得られた含水ケイ酸の粉体物性を表1に示した。
【0070】
比較例3
8リットルの反応槽に予め蒸留水6460mlと実施例と同様の市販のケイ酸ナトリウム溶液1040ml及び無水硫酸ナトリウム155gを仕込み、攪拌しながら溶液の温度を40℃まで昇温した。ケイ酸ナトリウム溶液の液温を40℃に保ち、攪拌しながら濃度224g/Lの硫酸を17.8ml/分の速度で12分間添加した。この時、一次中和率は30%であった。次いで、硫酸の添加を停止して、反応液を90℃まで昇温した。反応スラリーの温度が90℃に達したところで、前と同濃度の硫酸を11.1ml/分の速度で再度添加した。
【0071】
反応液のpHが5まで低下したところで硫酸の添加を止め、実施例1と同様にろ過、水洗、乾燥、解砕の各処理を施した。反応終了後の反応スラリー中のSiO2濃度は36.5g− SiO2/Lであった。得られた含水ケイ酸の粉体物性を表1に示した。
【0072】
【表1】

Figure 0003998792
【0073】
用途例1〜5、比較用途例1〜3
次に、本発明の含水ケイ酸の用途として、実施例1〜5及び比較例1〜3の含水ケイ酸を以下の配合で混練し、加硫したゴムの加硫ゴム物性を評価した。言うまでもなく、本発明の含水ケイ酸の用途はこれらの用途例によってなんら制限されるものではない。
【0074】
SBR1712 96.25重量部
BR01 30.0 重量部
含水ケイ酸 70.0 重量部
シランカップリング剤Si69 7.0 重量部
ステアリン酸 2.0 重量部
パラフィンワックス 1.0 重量部
芳香族系プロセスオイル 7.0 重量部
老化防止剤6C 1.0 重量部
亜鉛華 4.0 重量部
加硫促進剤CZ 1.5 重量部
硫黄 2.0 重量部
尚、加硫条件は、160℃、15分間とした。加硫ゴム物性としては、動的特性のうち貯蔵弾性率と損失正接(tanδ)を評価した。動的特性は次のように測定した。レオメトリックス社製動的粘弾性測定装置ARESにより、25℃、周波数15Hzの条件で歪み分散を測定し、歪み1%のときの貯蔵弾性率E'、及びエネルギー損失の指標として同じく歪み1%のときの損失正接tanδを評価ゴム物性に採用した。
【0075】
【表2】
Figure 0003998792
【0076】
表2から明らかように、本発明の含水ケイ酸がゴム補強材として用いられたとき、強固な凝集構造を有しているのでゴム練りの際過度に分散せずエネルギー損失を小さく抑えることができているし、さらにCTAB比表面積が大きいので貯蔵弾性率を大きくすることができている。その結果、二律背反する特性であった低エネルギー損失と高貯蔵弾性率とを両立することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel hydrous silicic acid suitable for elastomer reinforcing materials, particularly synthetic rubber (hereinafter simply referred to as “rubber”), and a method for producing the same.
[0002]
[Prior art]
Hydrous silicic acid obtained by neutralizing alkali silicate with acid and recovering and drying the solid components in the resulting reaction slurry is a variety of elastomers, especially synthetic rubber reinforcing fillers, agrochemical carriers, news paper fillers It is used in a wide range of applications such as compounding agents for synthetic resins, thickeners for paints / adhesives / printing inks, and compounding agents for toothpaste. Among them, it has been used for a long time as a filler for reinforcement of elastomers, especially tire rubber, but in recent years, its use has increased from the viewpoint of increasing needs for low fuel consumption and ensuring running performance on wet road surfaces. Yes.
[0003]
In general, reinforcement of rubber with hydrous silicic acid is achieved when fine primary aggregates of the hydrous silicic acid are uniformly dispersed in the rubber and the rubber is firmly included in the primary aggregate structure. It is considered. Therefore, in order to obtain a large reinforcing property, the secondary agglomerates are easily crushed when the hydrous silicate powder is mixed with rubber (dispersion of powder), and the agglomeration power of the primary agglomerates is strong. (Strong primary structure) is required.
[0004]
Here, the primary aggregate means an aggregate formed by chemical bonding of primary particles, and the secondary aggregate represents an aggregate formed by physical interaction between the primary aggregates. Until now, there have been many reports on hydrous silicic acid for rubber fillers, but most of them were hydrous silicic acid intended for “dispersibility of powder”.
[0005]
As the dispersibility index, the specific surface area (hereinafter referred to as “BET specific surface area” or “S” measured by the nitrogen adsorption method using the nitrogen adsorption amount as an index).BET”And the specific surface area measured by the cetyltrimethylammonium bromide adsorption method using the adsorption amount of cetyltrimethylammonium bromide as an index (hereinafter referred to as“ CTAB specific surface area ”or“ S ”).CTAB”) (S)BET/ SCTAB) Is often used. That is, SBET/ SCTABThe closer to 1, the more uniform the particles and, as a result, the better the dispersibility. Many of the reports so far have beenBET/ SCTABWas hydrous silicic acid of 1.2 or less.
[0006]
However, when hydrous silicic acid is finely dispersed in the rubber, the reinforcing property is increased, but the interface between the hydrous silicic acid particles and the rubber molecules increases, and energy loss due to friction at the interface increases, resulting in lower fuel consumption. On the other hand, the problem of going backwards in the direction of needs also existed.
[0007]
On the other hand, SBET/ SCTABAs a hydrous silicic acid having a ratio exceeding 1.2, JP-A-8-502716, SBET/ SCTABIs 1.2 or more, CTAB specific surface area is 140-240m2/ G precipitated silica is disclosed. However, in the publication, SBET/ SCTABHowever, a precipitated silica having a value of 1.4 or more is not specifically shown. Further, such silica cannot sufficiently suppress excessive dispersion in the rubber, has a large friction at the interface between the silica and the rubber molecule, and has room for improvement in terms of suppressing energy loss.
[0008]
[Problems to be solved by the invention]
Previous knowledge has shown that reducing the specific surface area of hydrous silicic acid reduces energy loss, but in this case, the interaction between hydrous silicic acid and rubber molecules is reduced, which is important as a rubber for tires. There has been a problem that the storage elastic modulus, which is a characteristic, is lowered. In other words, low energy loss and large storage elastic modulus were contradictory characteristics.
[0009]
Accordingly, an object of the present invention is to provide hydrous silicic acid and a method for producing the same, which can reduce energy loss and increase storage elastic modulus when used as an elastomer, particularly a synthetic rubber reinforcing material.
[0010]
[Means for Solving the Problems]
In view of the above-mentioned problems, the present inventors have made extensive studies by paying attention to the cohesive force of the hydrous silicate aggregate and the specific surface area (CTAB specific surface area) of the outer surface of the primary particles. As a result, the dispersion force in the rubber is not excessively increased by appropriately increasing the cohesive strength of the hydrous silicate aggregate, and the hydrous silicate in the rubber is increased by increasing the CTAB specific surface area of the hydrous silicate. From the idea of increasing the interaction between particles and rubber molecules or between hydrous silicic acid particles, we found hydrous silicic acid that has both low energy loss and high storage modulus when mixed with rubber, and proposed the present invention. I arrived.
[0011]
That is, the hydrous silicic acid of the present invention has a specific surface area (SBET) And specific surface area (S) measured by cetyltrimethylammonium bromide adsorptionCTAB) (S)BET/ SCTAB) Is 1.4 to 2.0, and SCTABIs 170-250m2/ G, and the volume of pores in the range of pore radius 37 to 1000 angstroms measured by mercury porosimetry is 1.0 to 1.4 cc / g.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, hydrous silicic acid SBET/ SCTABIs 1.4 to 2.0. This is important as a condition for appropriately adjusting the cohesive strength of the hydrous silicic acid aggregate so that the hydrous silicic acid is not excessively dispersed when kneaded into the rubber, and is the greatest feature of the present invention. Here, the cohesive strength of the hydrous silicate aggregate can be determined from its specific surface area. In general, the specific surface area of hydrous silicic acid for rubber reinforcement is represented by two types, a BET specific surface area and a CTAB specific surface area. The former uses nitrogen molecules with a diameter of about 0.4 nm as adsorbing species, so the surface of fine particles is also measured, while the latter measures the surface of primary particles that do not include the surface of the fine particles because the CTAB molecules are large. To do. Here, fine particles are used to mean particles that have just been deposited having a particle diameter of about 1 nm, and primary particles are used to mean particles that have grown to a particle diameter of about 10 nm. Thus, since the lower limit particle size that can be measured is different, when the ratio between the two is taken, SBET/ SCTABIs closer to 1, hydrous silicic acid having uniform particles with fewer fine particles, while SBET/ SCTABIt can be said that it is a non-uniform hydrous silicic acid with many fine particles, so that is larger than one. The amount of the fine particles affects the dispersion, and SBET/ SCTABIs less than 1.4, the amount of fine particles is still insufficient, and when kneaded into rubber, the agglomerated structure is finely broken and dispersion proceeds excessively. The goal cannot be achieved. On the other hand, SBET/ SCTABWhen the particle size exceeds 2.0, the amount of fine particles is relatively large, and when the strong aggregate formed by the fine particles is kneaded into the rubber, the large aggregate particle diameter remains and the rubber is contained in the aggregate structure. Since it cannot enter, the reinforcement of rubber properties is greatly reduced. Further preferred SBET/ SCTABIs in the range of 1.4 to 1.8.
[0013]
Regarding the action of the fine particles on the aggregate cohesive force, the present inventors have found that the fine particles are interposed between the primary particles or between the primary aggregates, and act as an adhesive due to the surface activity to reduce the aggregate cohesive force. Estimated to strengthen.
[0014]
The hydrous silicic acid of the present invention is SCTABIs 170-250m2It is also a feature that it is / g. SCTABIs the specific surface area of the outer surface of the primary particles, and indicates the area that can interact effectively with the rubber molecules. Therefore, SCTABIs 170m2If it is less than / g, the storage elastic modulus of rubber properties becomes small, which is not preferable. On the other hand, SCTABIs 250m2When exceeding / g, the viscosity becomes very high when kneaded into rubber, and the workability is remarkably lowered, which is not practical. Further preferred SCTABThe range is 180-230m2/ G.
[0015]
Furthermore, the hydrous silicic acid of the present invention is also characterized in that the volume of pores in the pore radius range of 37 to 1000 angstroms measured by mercury porosimetry is 1.0 to 1.4 cc / g. If the pore volume is smaller than 1.0 cc / g, the volume of the pores into which the rubber molecules should enter is too small, and the dispersion of the hydrous silicate in the rubber does not proceed and the rubber is not sufficiently reinforced. It is not preferable. On the other hand, if it exceeds 1.4 cc / g, the agglomeration becomes coarse, the dispersion of the hydrous silicic acid in the rubber proceeds excessively, and the energy loss of the rubber properties increases, which is not preferable. A more preferable range is 1.0 to 1.3 cc / g.
[0016]
Although the other characteristics in the hydrous silicic acid of the present invention are not particularly limited, preferable characteristics as a rubber reinforcing material are listed below.
[0017]
That is, in the hydrous silicic acid of the present invention, a preferred BET specific surface area SBETThe range is 240-400m2/ G. SBETThis is because, when hydrous silicic acid in this range is kneaded into rubber, it has an appropriate viscosity and good workability can be obtained.
[0018]
The apparent specific gravity is 0.2 to 0.4 g / cm.2Is preferred. When the apparent specific gravity is within this range, good biting property of the hydrous silicic acid can be expected during kneading into rubber.
[0019]
Furthermore, the dibutyl phthalate oil absorption (hereinafter abbreviated as “DBP oil absorption”) is preferably 150 to 300 ml / 100 g. When in this range, good workability during kneading can be obtained.
[0020]
Furthermore, the amount of moisture adsorbed is preferably 3 to 10% by weight. This is because the reactivity with the silane coupling agent used in the rubber compounding is good at the adsorbed moisture amount within this range, and the workability at the time of kneading becomes easy. The water content in this case is a value calculated from the weight loss when held at 105 ° C. for 2 hours.
[0021]
When the elastomer is filled with the hydrous silicic acid of the present invention, the ratio of the aggregated particle group having an aggregated particle diameter of 1 μm or less to the total aggregated particles (hereinafter referred to as “F<1It is desirable to adjust the kneading conditions so that the amount of the kneading is abbreviated as “10-30%”. F<1If it is less than 10% by weight, workability during kneading tends to be poor, and the rubber reinforceability tends to decrease. If F <1 exceeds 30% by weight, energy loss of rubber properties may increase. Because. More suitable F<1Is in the range of 12 to 28% by weight.
[0022]
In addition, when filling the elastomer with the hydrous silicic acid of the present invention, the average aggregated particle size (hereinafter referred to as “D”) of the aggregated particle group having an aggregated particle size of 1 μm or less.<1It is desirable to adjust the kneading conditions so that it becomes 0.58 μm or more. This is because if the average aggregated particle diameter is smaller than 0.58 μm, friction at the interface between the rubber molecules and the surface of the hydrous silicate particles increases, and the energy loss of rubber properties tends to increase. Further preferred D<1Is 0.60 μm or more.
[0023]
When the hydrous silicic acid of the present invention is used, the preferred kneading state can be realized with good reproducibility even if a normal mixer is used.
[0024]
The method for producing the hydrous silicic acid of the present invention is not particularly limited. In general, hydrous silicic acid is obtained by a wet method, and can be produced by a method in which an alkali silicate is used as a starting material and a mineral acid is added thereto to neutralize and precipitate.
[0025]
A typical method for producing hydrous silicic acid according to the invention is such that, in the neutralization reaction between alkali silicate and mineral acid, the alkali concentration in the liquid is constant in the alkali silicate solution prepared in advance to a predetermined concentration. Either a method of simultaneously adding an alkali silicate solution and a mineral acid with stirring (reaction I), or a method of adding a mineral acid to an alkali silicate solution prepared to a predetermined concentration (reaction II), or A method combining reaction I and reaction II can be suitably employed.
[0026]
Examples of the alkali silicate used include sodium silicate and potassium silicate. Of these, sodium silicate is common, and SiO2/ Na2The molar ratio of O is suitably in the range of 2.0 to 3.5. Usual commercially available sodium silicate solution can be used, and the concentration when used in the reaction is SiO2When expressed in concentration, 5 to 200 g-SiO2It is desirable to dilute to / L with water. In addition, SiO2Against Al2OThree0.1 to 1.0% by weight-Al2OThree/ SiO2It is also possible to use a sodium silicate solution contained at a concentration of
[0027]
Moreover, as said mineral acid, a sulfuric acid or hydrochloric acid can be used conveniently. Of these, sulfuric acid is generally used, and is 200 to 250 g-H.2SOFourIt is preferable to dilute with water to a concentration of / L.
[0028]
Furthermore, the supplying method of the alkali silicate solution and the mineral acid may be a method of dropping them from the upper part of the reaction solution or the reaction slurry, or a method of supplying the solution by directly putting the supply port into the reaction solution or the reaction slurry. Can be adopted.
[0029]
Furthermore, it is desirable that the reaction solution or the slurry is stirred in the reaction vessel. As a stirring method, a method using shearing by a stirring blade may be used, or another mixing tank may be provided and mixed while circulating a reaction liquid or a reaction slurry between the reaction tank and the mixing tank.
[0030]
The present invention provides a specific surface area (S) measured by nitrogen adsorption.BET) And specific surface area (S) measured by cetyltrimethylammonium bromide adsorptionCTAB) (S)BET/ SCTAB) Is 1.4 to 2.0, and SCTABIs 170-250m2In order to produce the hydrous silicic acid, the pore volume within a pore radius of 37 to 1000 angstroms measured by mercury intrusion method is 1.0 to 1.4 cc / g. For this, it is necessary to control the reaction temperature. That is, in the neutralization reaction between the alkali silicate solution and the mineral acid, after confirming the nucleation of hydrous silicic acid, the temperature of the reaction system is maintained at a high temperature of 85 to 100 ° C., and then lowered to 40 to 75 ° C. Thus, a neutralization reaction must be performed.
[0031]
In the method for producing hydrous silicic acid of the present invention, the reason for maintaining the temperature of the reaction system at a high temperature of 85 to 100 ° C. is to form an agglomerate with strong cohesive force and prevent excessive dispersion in the rubber. is there. In other words, by carrying out the reaction at such a high temperature, the particle precipitation limit diameter is large, the particle diameter of the primary particles can be made uniform with almost no fine particles precipitated, and the fine particles precipitated in the reaction after the next temperature drop Adhesive action becomes more effective and aggregates with strong cohesive strength are formed, which can be resistant to excessive dispersion.
[0032]
Therefore, if the temperature of the reaction system is lower than 85 ° C., it is not preferable because the homogeneous reaction cannot sufficiently proceed and cannot act as a resistance against excessive dispersion. In addition, it is not preferable in view of cost to make the temperature of the reaction system at a high temperature higher than 100 ° C. because it becomes complicated in terms of equipment. A more preferable temperature range of the reaction system at a high temperature is 90 to 95 ° C. Moreover, it is suitable for the time to maintain the said high temperature to be the range of 10 minutes-5 hours.
[0033]
The production method of the present invention is characterized in that after the reaction at the high temperature, the temperature is lowered during the reaction to further carry out a neutralization reaction, but the temperature of the reaction system after the temperature reduction is 40 to 75 ° C. It is necessary.
[0034]
The neutralization reaction after the temperature lowering is a reaction in which fine particles are deposited, which bonds the primary particles and strengthens the aggregate structure. Therefore, if the temperature of the reaction system after the temperature drop is less than 40 ° C., it is difficult to control the reaction, the fine particle precipitation cannot be controlled, and in addition, the reaction rate becomes slow, which is not preferable. Further, if the temperature of the reaction system after the temperature drop exceeds 75 ° C., the dissolution reaction of the fine particles cannot be ignored, and the fine particles are not effectively precipitated, which is not preferable.
[0035]
In the present invention, it is necessary to confirm the nucleation of hydrous silicic acid produced before the temperature of the reaction system is lowered. In general, in a neutralization reaction between an alkali silicate solution and a mineral acid, the core of silica particles precipitates when a certain silica concentration is reached according to the temperature and pH of the reaction system. This precipitation of nuclei can be confirmed by the reaction solution having a pale color. When the temperature of the reaction system is lowered before the nucleation, the nucleation occurs at a low temperature, the primary particles become non-uniform, and a strong aggregate structure is not formed.
[0036]
The temperature of the reaction system can be lowered at any point after confirming the nucleation, but the amount of fine particles is reduced to S.BET/ SCTABIt is preferable to adjust the temperature lowering timing so that 10% or more of the total reaction is performed after the temperature is lowered, in order to precipitate efficiently until 1.4 becomes 1.4 or more. Here, 10% of the total reaction means that the amount of the alkali silicate solution to be neutralized out of the total alkali silicate subjected to the reaction is 10%.
[0037]
The method for heating the reaction liquid or the reaction slurry is not particularly limited, and a known method can be adopted. For example, a method in which steam is blown into a reaction liquid or reaction slurry and heated, a method in which a heating element is placed in the reaction solution and heating, a method in which steam or a heating element is heated from the outside of the reaction tank, and the like can be mentioned.
[0038]
On the other hand, the method for lowering the reaction temperature is not particularly limited, and a known method can be adopted. For example, use of a cooling device of a throwing type or an external cooling type, charging of dry ice, ice, water or the like, or providing another mixing tank to circulate the reaction liquid or the reaction slurry between the reaction tank and the mixing tank. The method of cooling is mentioned.
[0039]
In the following, regarding the neutralization precipitation reaction, other desirable embodiments adopted for producing the hydrous silicic acid of the present invention are listed. As described above, in the present invention, the neutralization precipitation reaction is performed by simultaneously adding an alkali silicate solution and a mineral acid to an alkali silicate solution prepared in advance at a predetermined concentration while stirring so that the alkali concentration in the solution is constant. The following three methods are employed: the method of reacting (Reaction I), the method of adding mineral acid to an alkali silicate solution prepared at a predetermined concentration (Reaction II), or the method of combining Reaction I and Reaction II. However, the production method of the present invention is not limited to them.
[0040]
First, in the reaction I, a certain amount of an alkali silicate solution prepared in advance to a predetermined concentration is put in a reaction tank, and after raising the temperature of the reaction system to a target temperature, the alkali concentration in the solution becomes constant. While stirring, the alkali silicate solution and the mineral acid were added at the same time. After confirming the precipitation of the nuclei, the addition of the alkali silicate solution and the mineral acid was stopped at an arbitrary time, the reaction system was cooled, and the alkali silicate solution. And the reaction to resume the simultaneous addition of mineral acid. The concentration of the alkali silicate solution previously adjusted in the reaction vessel is 5 to 20 g-SiO 2.2/ L, and the amount is preferably 5 to 15% by weight of the total alkali silicate solution used. It is desirable to balance the addition concentration and the addition rate of the alkali silicate solution and the mineral acid so that the alkali concentration in the reaction solution to be constant is pH 9 to 11 when expressed by the pH of the reaction solution. The concentration of the alkali silicate solution to be added is 50 to 200 g-SiO.2/ L is preferred. Furthermore, the addition rate is preferably 0.5 to 5% / min when the total alkali silicate solution used for the neutralization reaction is 100%. Similarly, the addition rate of the mineral acid is preferably 0.5 to 5% / min when the total mineral acid used in the neutralization reaction is 100%. Further, for the purpose of stabilizing the precipitated hydrous silicic acid, after the simultaneous addition of the alkali silicate solution and the mineral acid (hereinafter, simply referred to as “simultaneous addition”) is completed, the mineral until the pH of the reaction solution becomes 2-6. Preferably only the acid is added again. For the same purpose, after completion of the simultaneous addition, aging may be performed at the same temperature after cooling.
[0041]
On the other hand, in Reaction II, the total alkali silicate solution to be used for the reaction is prepared to a predetermined concentration and stored in the reaction tank. The temperature of the reaction system is raised and lowered in three stages, and neutralized by adding mineral acid while stirring. This is a method of proceeding the reaction. At this time, the initial first stage is a neutralization reaction at a low temperature, the subsequent second stage is an aging at a high temperature, and the final third stage is a neutralization reaction at a low temperature. The mineral acid is added in the first stage and the third stage, and the second stage is a stage in which the addition of the mineral acid is stopped and uniform primary particles are formed by aging at a high temperature. The temperature range of the first stage reaction system is preferably 30 to 50 ° C. Second and third stage temperature control is a feature of the present invention and must be adjusted to 85-100 ° C and 40-75 ° C, respectively. In addition, it is necessary to confirm nucleation before the temperature is lowered between the second stage and the third stage. The reason is as described above, and the nucleation can be confirmed by coloring the reaction solution pale blue. The concentration of the alkali silicate solution initially stored in the reaction vessel is 20 to 100 g-SiO 2.2/ L is preferable, and 2-46 g / L of an electrolyte such as sodium sulfate as a flocculant may be previously added to the reaction tank together with the alkali silicate solution. Furthermore, the ratio of the amount of mineral acid added in the first stage when the amount of mineral acid required to neutralize the total amount of alkali contained in the alkali silicate solution initially stored in the reaction vessel is 100%. Is the primary neutralization rate, the primary neutralization rate is preferably 40 to 60%. The addition rate of the mineral acid in the first stage is preferably 1 to 10% / min when the amount of the total mineral acid used in the reaction is 100%. The high temperature aging in the second stage is preferably carried out for a period of 10 minutes or more in that the primary particles can be made more uniform, and the mineral acid addition rate in the third stage is 100% of the total mineral acid used in the reaction. %, It is preferably 0.5 to 5% / min, and the completion of the addition of the mineral acid is performed for the purpose of stabilizing the precipitated hydrous silicic acid at a pH of 2 to 6 Is preferred.
[0042]
In the production method of the present invention, in any reaction form of Reaction I, Reaction II, or a combination thereof, in the reaction slurry at the time when the neutralization reaction is completed and the addition of the mineral acid is completed and all silica is precipitated. The silica concentration is preferably 30 to 80 g / L because the CTAB specific surface area easily falls within the target range.
[0043]
In the present invention, the hydrous silicic acid obtained as described above has the target specific gravity and DBP oil absorption by post-treatment such as washing, filtration, and drying. The post-treatment method is not particularly limited, and a known method can be adopted. For example, there are a method of standing and drying a cake obtained by filtering and washing a reaction solution with a filter press, a method of spray drying a slurry having an appropriate concentration after filtering and washing the reaction solution with a filter press, etc. Can be mentioned. Further, for the purpose of adjusting the bulk specific gravity to a size suitable for the rubber reinforcing filler, pulverization or granulation can be performed using a known method.
[0044]
【The invention's effect】
When the novel hydrous silicic acid of the present invention is used as a rubber reinforcing material, the hydrous silicic acid has a moderately large aggregate cohesive force, so that the dispersion in the rubber does not proceed excessively and energy loss is reduced. In addition, since the CTAB specific surface area is large, a high storage elastic modulus can be obtained.
[0045]
Of course, the use for the other use which can utilize the characteristic physical property of the hydrated silicic acid of the present invention is not particularly limited.
[0046]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited to these Examples. In addition, the measured value in an Example and a comparative example was measured by the method shown next.
[0047]
(1) BET specific surface area
J. et al. Am. Chem. Soc. 60, pp. 309-319, but according to the theory proposed by Brunauer Emmett Taylor, the measurement was carried out using a simple one-point method. Specifically, it measured using the rapid surface area measuring device SA-1100 type | mold made by Shibata Scientific Instrument Industry Co., Ltd.
[0048]
(2) CTAB specific surface area
Measured by dispersing silica in an aqueous solution of CTAB and titrating the amount of CTAB molecules remaining in the solution without adsorbing on the surface of the silica particles with sodium Di-2-ethylhexylsulfoxide (hereinafter abbreviated as “OT”). did. The titration method is described in J. Org. Soc. Chem. Ind. 67, p. 45. From the OT titration V, the CTAB specific surface area (m2/ G).
[0049]
SCTAB= 5 * (V0-V) * COT* S * NA/ M
Where V0Is the dripping amount (ml) of the OT aqueous solution in the blank measurement, V is the dripping amount (ml) of the OT aqueous solution in the sample measurement, COTIs the concentration (mol / ml) of the dropped OT aqueous solution, S is the occupied area per CTAB molecule, NARepresents Avogadro's number, and m represents the weight (g) of dispersed silica. Here, 35 square angstroms was adopted as the value of the occupied area S per CTAB molecule. The number 5 in the above formula is a CTAB solution that does not disperse silica because the amount of CTAB solution taken for titration is 1/5 of the initial amount and is multiplied by 5 Means only measurement.
[0050]
(3) Average aggregate particle size
Average aggregated particle diameter of aggregated particle group consisting of aggregated particle diameter of 1 μm or less (D<1) Is obtained by calculation described later, the vulcanized rubber is pyrolyzed to remove the silica particles therein, dispersed in water, the large particles are settled and separated by a centrifuge, and the silica particles remaining in the supernatant are removed. The method of measuring the particle size distribution was taken.
[0051]
The thermal decomposition of the vulcanized rubber was carried out in a nitrogen stream at 400 ° C. for 14 hours, and then in an air atmosphere at 500 ° C. for 10 hours. Next, in the process of dispersion in water, 0.4 g of silica taken out from the vulcanized rubber is added to 20 ml of distilled water, and ultrasonic waves are applied with a bath type ultrasonic disperser at 80 W for 3 minutes. The silica particles were dispersed in water by irradiation. Large particles were separated using a centrifuge at 1000 rpm for 2 minutes. The particle size distribution measurement of the silica particles remaining in the supernatant was carried out using a particle sedimentation light transmission type particle size distribution meter (CAPA-500 manufactured by Horiba, Ltd.) under conditions where a centrifugal force of 3000 rpm was applied. On the other hand, the separated large particles are dried and their weight (WL) Was weighed.
[0052]
Ratio of aggregated particle group consisting of aggregated particle diameter of 1 μm or less to all aggregated particles (F<1) And D<1Shows the particle size distribution measurement data in the supernatant, the amount of silica 0.4 g subjected to centrifugation, and WLAnd calculated from From the particle size distribution measurement data of the silica particles remaining in the supernatant, the ratio (F / wt%) of the particles having an aggregate particle diameter exceeding 1 μm was read. F<1Is
F<1= (0.4-WL-(0.4-WL) * F / 100) * 100 / 0.4
The weight percentage was calculated by the following formula. D<1Of the same particle size measurement data
F + (100-F) / 2
The agglomerated particle diameter of the cumulative frequency (%) calculated by the formula is defined as the average agglomerated particle diameter D <1.
[0053]
(4) Pore volume in the pore radius range of 37 to 1000 angstroms
The pore size distribution was measured by a mercury intrusion method using a porosimeter model 2000 manufactured by Carlo Elba Co., and the pore volume was calculated from the data.
[0054]
(5) Apparent specific gravity
The measurement was performed according to JIS K6220.
[0055]
(6) DBP oil absorption
The measurement was performed according to JIS K6220.
[0056]
Example 1
In an 8 liter reaction vessel, 2677 ml of distilled water and 100 ml of commercially available sodium silicate solution (SiO2/ Na2The molar ratio of O (3.36, concentration 364 g / L) was charged, and the temperature of the solution was raised to 95 ° C. while stirring. Silicic acid obtained by diluting 1155 ml of the same sodium silicate solution with 2423 ml of distilled water at the same time while maintaining the liquid temperature of the sodium silicate solution at 95 ° C. with stirring at a rate of 7.6 ml / min. Sodium solution was added at 44.7 ml / min.
[0057]
After 30 minutes from the start of simultaneous addition, it was confirmed that the reaction liquid changed from transparent to pale. 45 minutes after the start of simultaneous addition, the simultaneous addition was stopped, and the temperature of the reaction solution was lowered to 65 ° C. by a throw-in type refrigerator. This took 20 minutes. Thereafter, the simultaneous addition was resumed under the same conditions as before the stop except that the temperature was 65 ° C., and the reaction was continued for 35 minutes to complete the simultaneous addition. Then, after aging at 65 ° C. for 5 minutes, the addition of sulfuric acid alone was resumed, and the addition of sulfuric acid was terminated when the pH of the reaction solution dropped to 2. At this time, SiO in the reaction slurry2Concentration is 49.2 g-SiO2/ L.
[0058]
The reaction slurry was passed through a Buchner funnel for filtration. After washing with water, the cake separated by filtration was dried at 150 ° C. and finally crushed by a shearing mill. Table 1 shows the powder physical properties of the obtained hydrous silicic acid.
[0059]
Example 2
In Example 1, hydrous silicic acid was obtained in exactly the same manner as in Example 1 except that the reaction temperature after temperature reduction was 55 ° C. In the course of this reaction, 30 minutes after the start of simultaneous addition, that is, before the temperature was lowered, it was confirmed that the reaction solution turned pale. In addition, SiO in the reaction slurry after completion of the reaction2Concentration is 49.2 g-SiO2/ L. Table 1 shows the powder properties of the obtained hydrous silicic acid.
[0060]
Example 3
In an 8-liter reaction tank, 6460 ml of distilled water and 1040 ml of commercially available sodium silicate solution (SiO2/ Na2The molar ratio of O (3.06, concentration 386 g / L) and anhydrous sodium sulfate 155 g were charged, and the temperature of the solution was raised to 40 ° C. while stirring. The liquid temperature of the sodium silicate solution was kept at 40 ° C., and sulfuric acid having a concentration of 224 g / L was added at a rate of 17.8 ml / min for 20 minutes while stirring. At this time, the primary neutralization rate was 50%.
[0061]
Subsequently, the addition of sulfuric acid was stopped, and the temperature of the reaction solution was raised. At this time, it was confirmed that the reaction solution colored pale in the middle of temperature increase. After the liquid temperature reached 95 ° C. in 50 minutes, the mixture was aged for 2 hours with the addition of sulfuric acid stopped at the same temperature. Then, the temperature of the reaction solution was lowered to 75 ° C. in 20 minutes with a throw-in type refrigerator, and the temperature was kept at 75 ° C., and sulfuric acid having the same concentration as before was added again at a rate of 7.9 ml / min.
[0062]
When the pH of the reaction solution decreased to 5, the addition of sulfuric acid was stopped, and each treatment of filtration, washing with water, drying and crushing was performed in the same manner as in Example 1. SiO in reaction slurry after completion of reaction2Concentration is 36.5 g-SiO2/ L. Table 1 shows the powder properties of the obtained hydrous silicic acid.
[0063]
Example 4
In Example 3, hydrous silicic acid was obtained in exactly the same manner as in Example 3 except that the primary neutralization rate was 52% by increasing the addition time of sulfuric acid at a liquid temperature of 40 ° C. to 21 minutes and 50 seconds. . After the primary neutralization of the reaction, it was confirmed that the reaction solution turned pale in the middle of the temperature increase, that is, before the temperature decrease.
[0064]
In addition, SiO in the reaction slurry after completion of the reaction2Concentration is 36.5 g-SiO2/ L. Table 1 shows the powder properties of the obtained hydrous silicic acid.
[0065]
Example 5
Hydrous silicic acid was obtained in the same manner as in Example 3 except that the reaction temperature after the temperature reduction was 65 ° C. After the primary neutralization of the reaction, it was confirmed that the reaction solution turned pale in the middle of the temperature increase, that is, before the temperature decrease. In addition, SiO in the reaction slurry after completion of the reaction2Concentration is 36.5 g-SiO2/ L. Table 1 shows the powder physical properties of the obtained hydrous silicic acid.
[0066]
Comparative Example 1
In an 8-liter reactor, 2021 ml of distilled water and 81 ml of commercially available sodium silicate solution (SiO2/ Na2The molar ratio of O was 3.38 and the concentration was 344 g / L), and the temperature of the solution was raised to 80 ° C. while stirring. The sodium silicate solution was prepared by diluting 1386 ml of the same sodium silicate solution with 2677 ml of distilled water at the same time while maintaining the liquid temperature of the sodium silicate solution at 80 ° C. with stirring at a speed of 5.7 ml / min. Was added at 33.9 ml / min. 120 minutes after the start of simultaneous addition, the simultaneous addition was terminated. Then, after aging at 80 ° C. for 10 minutes, the addition of sulfuric acid alone was resumed, and the addition of sulfuric acid was terminated when the pH of the reaction solution dropped to 2.
[0067]
At this time, SiO in the reaction slurry2Concentration is 55.3 g-SiO2/ L. Then, each process of filtration, washing with water, drying, and crushing was performed similarly to Example 1. Table 1 shows the powder physical properties of the obtained hydrous silicic acid.
[0068]
Comparative Example 2
Hydrous silicic acid was obtained in exactly the same manner as in Example 1 except that the reaction temperature after cooling was 77 ° C. In the course of this reaction, 30 minutes after the start of simultaneous addition, that is, before the temperature was lowered, it was confirmed that the reaction solution turned pale.
[0069]
In addition, SiO in the reaction slurry after completion of the reaction2Concentration is 49.2 g-SiO2/ L. Table 1 shows the powder physical properties of the obtained hydrous silicic acid.
[0070]
Comparative Example 3
An 8 liter reaction vessel was charged with 6460 ml of distilled water and 1040 ml of a commercially available sodium silicate solution similar to the examples and 155 g of anhydrous sodium sulfate, and the temperature of the solution was raised to 40 ° C. while stirring. The liquid temperature of the sodium silicate solution was kept at 40 ° C., and sulfuric acid having a concentration of 224 g / L was added at a rate of 17.8 ml / min for 12 minutes while stirring. At this time, the primary neutralization rate was 30%. Subsequently, the addition of sulfuric acid was stopped, and the reaction solution was heated to 90 ° C. When the temperature of the reaction slurry reached 90 ° C., sulfuric acid having the same concentration as before was added again at a rate of 11.1 ml / min.
[0071]
When the pH of the reaction solution decreased to 5, the addition of sulfuric acid was stopped, and each treatment of filtration, washing with water, drying and crushing was performed in the same manner as in Example 1. SiO in reaction slurry after completion of reaction2Concentration is 36.5 g-SiO2/ L. Table 1 shows the powder physical properties of the obtained hydrous silicic acid.
[0072]
[Table 1]
Figure 0003998792
[0073]
Application examples 1-5, comparative application examples 1-3
Next, as the use of the hydrous silicic acid of the present invention, the hydrous silicic acids of Examples 1 to 5 and Comparative Examples 1 to 3 were kneaded with the following composition, and the vulcanized rubber physical properties of the vulcanized rubber were evaluated. Needless to say, the application of the hydrous silicic acid of the present invention is not limited by these application examples.
[0074]
SBR1712 96.25 parts by weight
BR01 30.0 parts by weight
Hydrous silicate 70.0 parts by weight
Silane coupling agent Si69 7.0 parts by weight
Stearic acid 2.0 parts by weight
Paraffin wax 1.0 parts by weight
Aromatic process oil 7.0 parts by weight
Anti-aging agent 6C 1.0 part by weight
4.0 parts by weight of zinc white
Vulcanization accelerator CZ 1.5 parts by weight
2.0 parts by weight of sulfur
The vulcanization conditions were 160 ° C. and 15 minutes. As physical properties of vulcanized rubber, storage elastic modulus and loss tangent (tan δ) among dynamic properties were evaluated. The dynamic characteristics were measured as follows. Using a dynamic viscoelasticity measuring device ARES manufactured by Rheometrics, strain dispersion was measured under the conditions of 25 ° C. and a frequency of 15 Hz, and the storage elastic modulus E ′ when the strain was 1% and the strain of 1% as an index of energy loss The loss tangent tan δ at that time was adopted as an evaluation rubber physical property.
[0075]
[Table 2]
Figure 0003998792
[0076]
As can be seen from Table 2, when the hydrous silicic acid of the present invention is used as a rubber reinforcing material, it has a strong agglomerated structure, so that it does not disperse excessively during rubber kneading, and energy loss can be kept small. Furthermore, since the CTAB specific surface area is large, the storage elastic modulus can be increased. As a result, it has become possible to achieve both a low energy loss and a high storage elastic modulus, which are contradictory characteristics.

Claims (2)

窒素吸着法により測定した比表面積(SBET)とセチルトリメチルアンモニウムブロマイド吸着法により測定した比表面積(SCTAB)との比(SBET/SCTAB)が1.4〜2.0で、かつSCTABが170〜250m/g、さらに水銀圧入法により測定した細孔半径37〜1000オングストロームの範囲の細孔の容積が1.0〜1.4cc/gであることを特徴とする含水ケイ酸。The ratio (S BET / S CTAB ) of the specific surface area (S BET ) measured by the nitrogen adsorption method and the specific surface area (S CTAB ) measured by the cetyltrimethylammonium bromide adsorption method is 1.4 to 2.0, and S Hydrous silicic acid, wherein CTAB is 170 to 250 m 2 / g, and the pore volume in the range of pore radius 37 to 1000 angstrom measured by mercury porosimetry is 1.0 to 1.4 cc / g . ケイ酸アルカリ溶液と鉱酸との中和反応において、中和反応時或いは中和反応中断時の反応系の温度を85〜100℃の温度に維持した後、該反応系の温度を40〜75℃へ降温して中和反応を行うこと、上記降温する前に中和反応による核の生成を確認すること、及び、中和反応を完結した時点での反応スラリー中のシリカ濃度を、30〜80g/Lとすることを特徴とする含水ケイ酸の製造方法。In the neutralization reaction with alkali silicate solution with a mineral, after maintaining the temperature of the reaction system at the time of or during the neutralization reaction interrupted neutralization reaction at a temperature of 85 to 100 ° C., 40 to the temperature of the reaction system The temperature is lowered to 75 ° C. to conduct a neutralization reaction, the generation of nuclei by the neutralization reaction is confirmed before the temperature is lowered, and the silica concentration in the reaction slurry at the time when the neutralization reaction is completed is 30 be to 80 g / L, production method of precipitated silica characterized by.
JP3528698A 1998-02-18 1998-02-18 Hydrous silicic acid and method for producing the same Expired - Fee Related JP3998792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3528698A JP3998792B2 (en) 1998-02-18 1998-02-18 Hydrous silicic acid and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3528698A JP3998792B2 (en) 1998-02-18 1998-02-18 Hydrous silicic acid and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11228125A JPH11228125A (en) 1999-08-24
JP3998792B2 true JP3998792B2 (en) 2007-10-31

Family

ID=12437539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3528698A Expired - Fee Related JP3998792B2 (en) 1998-02-18 1998-02-18 Hydrous silicic acid and method for producing the same

Country Status (1)

Country Link
JP (1) JP3998792B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071343B2 (en) * 1998-02-18 2008-04-02 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
JPH11236208A (en) * 1998-02-25 1999-08-31 Nippon Silica Ind Co Ltd Hydrous silica for rubber reinforcement
JP5570150B2 (en) * 2009-07-21 2014-08-13 株式会社ブリヂストン tire
JP5607320B2 (en) * 2009-07-22 2014-10-15 株式会社ブリヂストン tire
JP5570152B2 (en) * 2009-07-22 2014-08-13 株式会社ブリヂストン tire
JP5570153B2 (en) * 2009-07-22 2014-08-13 株式会社ブリヂストン tire
JP5479147B2 (en) * 2010-02-19 2014-04-23 株式会社トクヤマデンタル Method for producing inorganic oxide
JP6781106B2 (en) * 2017-06-09 2020-11-04 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement filling and its manufacturing method
JP6811751B2 (en) * 2018-08-10 2021-01-13 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement filling
JP6811750B2 (en) * 2018-08-10 2021-01-13 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement filling

Also Published As

Publication number Publication date
JPH11228125A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
AU737043B2 (en) Silica-base rubber composition intended for the manufacture of road tires of improved resistance to rolling
TWI396660B (en) Precipitated silicas with a particular pore size distribution
RU2092435C1 (en) Precipitated silicon dioxide and method of preparation thereof
RU2129985C1 (en) Method of preparing precipitated silicon dioxide and precipitated silicon dioxide prepared by this method
KR910009572B1 (en) Process for producing a precipituted silica
RU2170212C2 (en) Precipitated silica used as reinforced material for elastomers, and method of preparing thereof
US4105757A (en) Amorphous precipitated siliceous pigments for cosmetic or dentifrice use and methods for their production
JP5144878B2 (en) High surface area precipitated silica
US20100221541A1 (en) Method of preparing silicas, silicas with specific pore-size and/or particle-size distributions, and the uses thereof, in particular for reinforcing polymers
JP5242588B2 (en) Treated alumina hydrate material and use thereof
EP1100752A1 (en) Dispersion of fine porous inorganic oxide particles and processes for preparing same
EP0166007B1 (en) Precipitated silica pigment for silicone rubber
RU2130425C1 (en) Precipitated silica production process and precipitated silica produced in that process
JP3998792B2 (en) Hydrous silicic acid and method for producing the same
JP2004523645A (en) Anionic stabilized aqueous dispersion of nanoparticulate zinc oxide, process for preparing the aqueous dispersion and use of the aqueous dispersion
TW200404741A (en) Highly dispersible precipitated silica
EP1525158A1 (en) Highly dispersible precipitated silica having a high surface area
US10981795B2 (en) Precipitated silica
JP3998793B2 (en) Precipitated silica and method for producing the same
DE10330222A1 (en) Highly disperse precipitated silica having high CTAB surface area, useful e.g. as filler in tires for commercial vehicles, motor cycles and high speed vehicles, and as antiblocking agents, and carriers for agrochemicals and foodstuffs
JP5860661B2 (en) Method for producing silica and rubber composition for tire
JP2011001265A (en) High-surface precipitation silicic acid
AU773624B2 (en) Dispersion of fine porous inorganic oxide particles and processes for preparing same
US11242260B2 (en) Process for preparing precipitated silica
WO1998050305A1 (en) Improved silicas for use in rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160817

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees