JP3997828B2 - Core flow measuring device and core flow measuring method - Google Patents

Core flow measuring device and core flow measuring method Download PDF

Info

Publication number
JP3997828B2
JP3997828B2 JP2002133438A JP2002133438A JP3997828B2 JP 3997828 B2 JP3997828 B2 JP 3997828B2 JP 2002133438 A JP2002133438 A JP 2002133438A JP 2002133438 A JP2002133438 A JP 2002133438A JP 3997828 B2 JP3997828 B2 JP 3997828B2
Authority
JP
Japan
Prior art keywords
flow rate
ultrasonic
coolant
pressure vessel
core flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002133438A
Other languages
Japanese (ja)
Other versions
JP2003329792A (en
Inventor
泉 山田
節男 有田
雅哉 大塚
真 長谷川
秀夫 曽根田
和良 橋本
啓嗣 鈴木
俊介 臺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002133438A priority Critical patent/JP3997828B2/en
Publication of JP2003329792A publication Critical patent/JP2003329792A/en
Application granted granted Critical
Publication of JP3997828B2 publication Critical patent/JP3997828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子炉圧力容器(以下、単に圧力容器という)内の炉心部周囲に複数のポンプ手段を配し、炉心部に対して冷却材を循環させる従来型沸騰水型原子炉(以下、BWRという)および改良型BWR(以下、ABWRという)において、圧力容器内の炉心流量を計測する炉心流量測定装置に関する。
【0002】
【従来の技術】
この種の原子炉では、圧力容器内に装備した炉心部の冷却手段として、炉心部下部側の周囲に複数台のジェットポンプを配し、これら各ジェットポンプを用いて炉心部に冷却材を循環させるようにした従来型のBWRと、上記ジェットポンプに代えて、冷却材を再循環させるインターナルポンプを用いるようにしたABWRとがあり、通常の場合、これらの従来方式による各冷却手段には、炉心内部での冷却材の流量を計測して作動状態を常時監視する炉心流量測定装置を用いた監視システムが設けられている。
【0003】
従来型のBWRにおいては、個々のジェットポンプ流量を測定し、その総和として炉心流量を算出している。また、ABWRの場合は、個々のインターナルポンプの流量を測定し、その総和として炉心流量を算出している。BWR,ABWRともにポンプ差圧を測定して、差圧から流量を算出する方式である。
【0004】
BWRの場合、ジェットポンプのポンプ差圧が、ポンプ吐出流量の自乗に比例するという特性を利用することで流量を算出する。改良型BWR(ABWR)においては、インターナルポンプの差圧を測定し、あらかじめ試験等により求めたポンプのQ−H特性と、インターナルポンプの運転条件である回転数と、炉水温度等を用いてポンプ流量を算出する。
【0005】
従来の代表例として、ABWRにおける炉心流量測定装置について説明する。図5において、炉心6で発生した熱は、炉心6の下から上に流れる冷却材に伝えられる。冷却材は、上部プレナム7,気水分離器8を通り、乾いた蒸気がタービンを回すために主蒸気ノズル(図示していない、気水分離器のやや上の圧力容器3の壁にある)を通って、圧力容器3外に導かれる。ダウンカマ4には、気水分離器8で分離された冷却材が流れ落ちる。また、上部プレナム7と気水分離器の間の圧力容器3の間に設置されている給水ノズル(図示していない)から供給される冷却材も、ダウンカマ4を通って、気水分離器8で分離された冷却材と共に複数のインターナルポンプ5により、炉心6に送り込まれる。インターナルポンプ5の吸い込み側と、吐出側には、それぞれ圧力測定管551a,551b,552a,552bが設置されており、差圧測定器541a,541bに導かれている。差圧測定器541a,541bの出力である差圧信号は、流量変換器542a,542bにより、流量に変換される。差圧から流量への変換に際しては、インターナルポンプ5の回転数、および冷却材温度も用いている。炉心流量は、すべてのインターナルポンプ5の流量の和として得られる。
【0006】
一方、特開平11−231090号公報には、液中気泡からの散乱波のドップラーシフトを用いるドップラー式超音波流量計が記載されている。この場合、超音波の発信部と受信部を原子炉圧力容器の軸方向に所定距離を隔てて設置することにより構成した超音波流速計を、原子炉圧力容器の周方向に複数配置し、ダウンカマの各流速計設置位置での流速に基づいて炉心流量を算出している。
【0007】
【発明が解決しようとする課題】
原子炉の冷却材流量を高精度で測定することは、原子炉運転の余裕をより正確に把握するうえで重要なことである。従来の原子炉の冷却材流量測定方法は、工場などの試験で得られたインターナルポンプの回転数−流量−圧力差の関係を実際の原子炉に適用する場合、インターナルポンプ設置容器の形状の違いがあることから補正を行っている。この補正には誤差が含まれている。また回転数−流量−圧力差の関係は長期的なプラントの運転経過によって微妙に変化する可能性があり、結果的に流量指示値に影響を与えることも考えられる。
【0008】
また、超音波ドップラー法を適用した炉心流量計測法においては、ダウンカマ中の流速分布を測定するため、冷却材中の気泡等の反射粒子からの受信散乱波から散乱位置を同定する必要がある。前述の公知例では、この点の説明はない。理論的には、信号処理によりダウンカマ内の超音波伝播経路上の位置毎の散乱波を分離して、位置毎の散乱波のドップラーシフトを測定することで、流速分布を得ることができる。しかし、超音波伝播経路上の気泡等の粒子から散乱波は、粒子密度が低ければ、その振幅が小さい。また、粒子密度が高ければ伝播中の減衰が大きいため、超音波の送信位置から遠くなるほど散乱波の振幅が小さくなり、検出が難しくなる。このため、散乱位置の同定や、振幅の小さい散乱波の検出のために、複雑な装置構成が必要となる。
【0009】
本発明の目的は、簡単な装置構成で、プラント運転開始後長期間にわたって安定して沸騰水型原子炉の炉心流量を測定できる炉心流量測定装置及び炉心流量測定方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の炉心流量測定装置は、沸騰水型原子炉の圧力容器外壁の周方向に設置された複数の超音波送受信手段と、各超音波送受信手段で測定したダウンカマにおける超音波の伝播時間に基づいて、各超音波送受信手段の設置位置に対応するダウンカマでの冷却材の線平均流速をそれぞれ求め、求めた線平均流速を用いて冷却材の炉心流量を算出する炉心流量演算手段とを備え、超音波送受信手段は沸騰水型原子炉の定格運転時に気泡が実質的に存在しないダウンカマの下部領域(インターナルポンプの頂部から上側に3m以内の領域)に設置されている。
【0011】
上記炉心流量測定装置による炉心流量測定方法は、沸騰水型原子炉の定格運転時における冷却材の高温条件で使用可能な複数の高温用超音波送受信手段と、高温条件よりも低い低温条件で使用でき高温用超音波送受信手段よりも多数の低温用超音波送受信手段とを圧力容器外壁の周方向に設置して、低温条件において、低温用超音波送受信手段及び高温用超音波送受信手段の両方を用いて測定した冷却材の流量測定値と、高温用超音波送受信手段のみを用いて測定した冷却材の流量測定値との関係から補正係数を求め、高温条件では、高温用超音波送受信手段のみを用いて測定した冷却材の流量測定値及び補正係数に基づいて、冷却材の炉心流量を求める。
【0012】
また、他の本発明の炉心流量測定装置は、沸騰水型原子炉の圧力容器外壁の軸方向に所定距離を隔てて設置された一組の超音波トランスデューサを有する超音波送受信手段と、超音波送受信手段を圧力容器の周方向に走査する走査手段と、周方向における複数の位置で超音波送受信手段により測定したダウンカマにおける超音波の伝播時間に基づいて、各周方向位置に対応するダウンカマでの冷却材の線平均流速をそれぞれ求め、求めた線平均流速を用いて冷却材の炉心流量を算出する炉心流量演算手段とを備え、超音波送受信手段は沸騰水型原子炉の定格運転時に気泡が実質的に存在しないダウンカマの下部領域(インターナルポンプの頂部から上側に3m以内の領域)に設置されている。
【0013】
また、他の本発明の炉心流量測定方法は、沸騰水型原子炉の定格運転時に気泡が実質的に存在しないダウンカマの下部領域(インターナルポンプの頂部から上側に3m以内の領域)において圧力容器外壁の周方向に設置された複数の超音波送受信手段で測定したダウンカマにおける超音波の伝播時間に基づいて、各超音波送受信手段の設置位置に対応するダウンカマでの冷却材の線平均流速をそれぞれ求め、求めた線平均流速を用いて冷却材の炉心流量を算出する。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0015】
図1は本発明の第1の実施形態によるABWRプラントの超音波炉心流量測定装置の設置状態を示す概略説明図である。なお、圧力容器3内の炉内構造物のうち従来の構成と同一の部分には図5と同一の符号を付してその説明を省略する。
【0016】
図1において、ダウンカマ(圧力容器3とシュラウド2の間の円環状の空間領域)4の流速を測定するための超音波送受信ユニット10は、圧力容器3の外壁に設置してある。超音波送受信ユニット10の出力として得られるダウンカマ4の流速情報(流速データ)を、超音波流量計20で流量に変換する構成となっている。測定した流量は、超音波送受信ユニット10を設置した位置におけるダウンカマ4の流量であり、ダウンカマ4の全周を流れる総流量、すなわち炉心流量は、圧力容器3の外壁に設置した複数の超音波送受信ユニット10と超音波流量計20により得た流量を基に算出する。
【0017】
図2は、流速検出部分、すなわち、超音波送受信ユニット10と超音波流量計20を詳細に示したものである。この流速検出部分では、伝搬時間差法により流速を検出している。この超音波による流速検出方式では、超音波が伝播する領域の流速を測定する。図2に太い矢印で示す超音波の伝播経路からわかるように、超音波は炉心中心に向かって伝播している。つまり、本実施形態では、超音波トランスデューサ11a,11bの設置位置と炉心中心軸とを含む平面上の矢印方向の流速を測定していることになる。
【0018】
超音波送受信ユニット10は、超音波トランスデューサ11a,11bからなる。超音波トランスデューサ11a,11bは送受信兼用であり、矢印に示す方向に超音波を伝播させるため、超音波送受信用の振動子をくさび材を介して配置してある。超音波は、圧力容器3を通り、冷却材の流れに対し、角度θで伝播する。図2に示すように、θは、圧力容器3内面の法線と超音波の伝播経路とのなす角度である。流速測定に際しては、超音波を、流れの下流側,上流側に交互に伝播させ、下流側と上流側への到達時間差Δtを測定する。冷却材の流速Vは、次式で表わされる。
【0019】

Figure 0003997828
【0020】
ここで、Cは冷却材の音速、Lはダウンカマ4の幅、すなわち圧力容器3の内壁とシュラウド2の間の距離である。
【0021】
ダウンカマ4における冷却材の流速は、分布を有している。冷却材の流速vをダウンカマ4の位置xの関数として、v(x)とあらわす。超音波で測定した流速Vは、
【0022】
Figure 0003997828
【0023】
となる。すなわち、超音波の伝播経路上のv(x)の平均値、すなわち線平均流速となっている。このように、本発明で用いる流速検出方式では、ドップラー法で問題となる流速分布そのものを測定する必要がないため、測定系の構成が簡単になる点が有利である。ドップラー法でも、特定の点での流速を測定すれば、測定系の構成の簡単化が図れる。しかし、ダウンカマ4における流速の情報が、本実施形態の線平均流速で測る方法に比べて少ないため、流量測定精度が悪くなる。
【0024】
上記した流速から、炉心流量を演算する(求める)手順について、以下に示す。本実施形態においては、超音波送受信ユニット10a〜10h、および超音波流量計20a〜20hの8組を、図3のように配置している。個々の超音波送受信ユニット10a〜10hの流量測定値をQ1〜Q8とすると、次式が成り立つ。
【0025】
n=K1n・Vn・A …(数3)
ここで、nは超音波送受信ユニット10の識別番号(a〜hに相当し、1〜8)である。K1nは流量補正係数であり、流路が円管の場合ではゲイビルゲル係数に相当し、それぞれの測定位置における流速分布に依存する係数である。Aは流路断面積である。Vnは流速である。
【0026】
炉心流量Q0は、次式で表わされる。
【0027】
Figure 0003997828
ここで、k21〜k28の係数は、ダウンカマ4の流速分布を補正し、かつ超音波送受信ユニット10a〜10hがそれぞれ分担する領域の流路断面積を含んだ係数である。特に、k25〜k28は、圧力容器3の周方向に狭い間隔で配置された超音波送受信ユニット10a〜10dによる流量測定値Q1〜Q4の関数として設定している。これにより超音波送受信ユニット10e〜10hを、周方向において10a〜10dよりも広い間隔で配置でき、結果的にトランスデューサ数(超音波送受信ユニット数)を減らせている。
【0028】
次に、超音波送受信ユニット10の配置位置について説明する。冷却材が流れているダウンカマ4は、すべてが水でなくわずかに気泡(蒸気泡)が混入している。気泡は超音波を減衰させるため、その量によっては流速測定が困難になる可能性がある。この場合は、従来法で開示された超音波ドップラー法による測定が有利となる。
【0029】
ダウンカマ4における気泡の存在について発明者らが評価した結果の一例を図4に示す。横軸はダウンカマ4における高さ方向(軸方向)位置であり、縦軸は気泡の径を示す。縦軸の最下端は0であり、気泡が存在しないことを示す。図4は、標準的な電気出力135万kWのABWR(BWR)における定格運転条件(100%出力,100%炉心流量に相当)で解析的に評価した結果である。位置が高いほど気泡径が大きいのは、気泡の浮力による影響と考えられる。
【0030】
図4に示すように、高さが低くなると気泡径が小さくなり、高さ約4.2m で気泡径は0となる。即ち、高さ約4.2m 以下に、気泡が存在しない領域が存在する。インターナルポンプ5の頂部は高さ約1mに位置するので、インターナルポンプ5の頂部(上端)から3m以内の領域は、気泡が実質的に存在しないダウンカマの下部領域となる。即ち、超音波送受信ユニットは、原子炉の定格運転時に気泡が実質的に存在しないダウンカマの下部領域に設置されている。また、炉心6の頂部は高さ約9.5m に位置するので、インターナルポンプ5の頂部より上側の領域で、炉心6の頂部から5.5m 下方の位置より下側の領域は、上記気泡が実質的に存在しない領域となる。
【0031】
以上から、気泡が実質的に存在しないダウンカマの下部領域では、超音波の到達時間が冷却材の速度で変化することを利用して流速を検知する方式(伝搬時間差法)の適用が可能であることが判った。
【0032】
なお、超音波による流速測定において、経験的には、気泡の混入率が少ない場合は、気泡による音響減衰はほとんど無視できるので、上記の計算結果から「実質的に気泡が存在しない領域」をそのまま用いるのは、超音波流量計を適用する立場からは、安全側の評価であるといえる。また、定格に達するまでは、ダウンカマを流れる冷却材流速は、小さくなっているため、上記の定格時の評価に比べて、気泡存在領域は、より上部になると考えられるが、より広い運転範囲の炉心流量測定を行う場合は、定格における評価結果から、超音波流量計の設置位置を決めることになる。
【0033】
以上説明した第一の実施形態において、超音波送受信ユニット10は、通常の超音波流量計でも用いられる回路構成であり、実現上の問題はない。また、流速測定に際して、超音波トランスデューサ11a及び11bのそれぞれから超音波を送出して到達時間の差を求めているが、何れか一方から超音波を送出しても原理的には流速測定は可能である。また、上記の説明において、超音波トランスデューサ11a,11bと圧力容器3との音響的な結合について説明していないが、本実施形態では、水ガラスを使用している。このほかに金箔などの柔らかい金属をカップラントとして使用することも可能である。なお、上記実施例では、流速から流量に変換するための補正係数は計算値を用いているが、実験値を用いることも可能である。
【0034】
本実施形態によれば、流速を直接測定する方式の超音波流量計を炉心流量計に適用可能となる。流速測定の誤差要因として考えられるのは、例えば時間差演算器や超音波送信出力レベルの変化であるが、これらは、超音波流量計自体を取り外して検査することで調整可能である。しかし、従来法の差圧式流量計は、流量そのものを直接計測しておらず、流量指示値の変動も、わずかなインターナルポンプ5の特性変化に起因する場合や、その他の原因で生じることもあり得る。この場合、原因が圧力容器3内部にあることが多いため、超音波流量計のように、簡単に取り外して調整というわけには行かないことが多い。また、前述したように、本実施形態では、流速分布の平均値、すなわち線平均流速を簡単に測定できるので、装置構成も比較的簡単となる。
【0035】
次に、第2の実施形態について説明する。炉心流量がダウンカマ4を流れる冷却材の総流量であるとして超音波を用いて測定する場合、超音波伝播経路をダウンカマ4の全領域に隅無く設定するには、多数の超音波トランスデューサが必要となる。そこで、測定領域の一部の線平均流速を測定し、数3で示したような補正係数を用いて、流量換算する。しかし、真の補正係数は、流れの状態によりある程度変化することもある。この点で、極力、多くの測定領域の線平均流速を実測する方が、補正係数の寄与が少なくなり、精度の高い流量測定が可能になる。
【0036】
図6は、ダウンカマ4の(1/10)横断面図領域における流速分布(軸方向の流速分布)の推定結果の一例である。インターナルポンプ5が周方向に対称に10台設置されているABWRにおける流速分布の推定例である。色の濃淡で速度を表示しており、色が白いほど速い流速であることを示す。白い部分は、インターナルポンプが設置されている周方向位置に対応している。流速分布は、炉心中心方向(径方向)の変化に比べて、周方向の変化が大きいことがわかる。流速変化率の小さい領域の流速情報を得るよりも、流速変化率の大きい領域の流速情報を得る方が、より精度の高い流量測定に寄与できる。そこで、本実施形態においては、流速変化率の大きい周方向に超音波伝播経路を実現するようにして、流量測定の高精度化を計る。
【0037】
図7は、第2の実施形態における圧力容器3への超音波トランスデューサの配置説明図で、(a)が平面図、(b)が側面図である。ここで、圧力容器内の炉内構造物、炉心等は省略している。本実施例では、第1の実施形態と違い、超音波を周方向に伝播させるため、超音波トランスデューサ11a,11bは、圧力容器3の周方向における設置位置をずらしている。圧力容器3の高さ方向(軸方向)における設置位置を違えているのは、第1の実施形態と同じである。超音波トランスデューサ11aから斜め下方に向かって超音波を送信し、シュラウド2の外表面で反射させて、超音波トランスデューサ11bで受信する。超音波トランスデューサ11bから超音波を送信する場合は、送信の方向が全く逆で、超音波の伝播経路は同じとなる。超音波流量計20(図示せず)は第1の実施形態と同じであり、炉心流量算出方法も同様である。本実施例では、周方向の流速情報も用いて炉心流量を計測することにより、第1の実施形態よりも高精度化を図ることができる。
【0038】
既に述べたように、本実施形態においては、1組の超音波トランスデューサ11a,11bで、流速分布の変化が大きい周方向の流速情報も得られるようになっており、この点で、少ない超音波トランスデューサ数で精度の高い測定が可能となる。
【0039】
次に、第3の実施形態について説明する。通常の流量計は、流量基準を有する校正ループにて校正して使用する。この際、例えば差圧型流量計は、差圧計測ユニットを配管に取りつけた状態で、配管まで含めて校正することが多い。一方、炉心流量計は、ダウンカマ4を流れる流量を測定対象とするが、ダウンカマ4全体を、通常使用する校正ループに据えつけることは、その規模の大きさのため困難である。
【0040】
超音波流量計は、流速を直接測る方式であるため、本来は校正不要とすることも可能である。但し、校正不要となるのは、測定領域全体の面平均流速が測定できた場合である。ところが、運転中のABWRの冷却材温度は280℃程度と高く、面平均流速分布を測定するほど十分な数の超音波トランスデューサを設置することは実質的にできない。これは、運転状態で使用可能な高温用超音波トランスデューサが高価なためである。
【0041】
そこで、本実施形態では、原子炉が比較的低温状態(例えば、冷却材温度が室温〜100℃程度)で精度の高い面平均流速(圧力容器の軸に垂直な平面における平均流速)を測定して、高温用センサ(トランスデューサ)で測定する場合の補正係数を求め、原子炉定格運転時(高温時)には、この補正係数をもとに比較的少ない数の高温用超音波トランスデューサを用いて炉心流量を求めるようにする。
【0042】
図8は、ABWR低温時に流量計を校正するための(補正係数算出のための)超音波トランスデューサの配置を示す平面図であり、面平均流速分布算出に充分な数(本例では44組)の超音波トランスデューサを周方向に対称(等間隔)に配置している。超音波トランスデューサは、圧力容器の軸方向に所定距離を隔てて配置した上部トランスデューサ群及び下部トランスデューサ群とからなる。図8では、このうち上部トランスデューサ群を示している。この上部トランスデューサ群は、4個の高温用超音波トランスデューサ111aと、40個の常温用超音波トランスデューサ110aとからなる。下部トランスデューサ群では、4個の高温用超音波トランスデューサ111b及び40個の常温用超音波トランスデューサ110bが、4個の111a及び40個の110aに対応する下部位置に設置されている。高温用超音波トランスデューサ111a及び111bは、それぞれ周方向に対称に配置されている。図8では、下部トランスデューサ群のほかに、炉心部の構造物,超音波流量計,面平均流速を算出する装置(後述)なども、簡単のために表示を省略している。
【0043】
インターナルポンプ5の回転数を調整して流量を変化させ、その時の線平均流速(超音波の伝播経路における平均流速)の測定値を基に面平均流速を算出する。この場合、超音波トランスデューサは均等間隔配置なので、面平均流速は各線平均流速の平均値として求める。炉心流量は、この面平均流速に、ダウンカマ4の総断面積(圧力容器の軸に垂直な面における断面積,横断面積)を乗じて求めることができる。補正係数は、4組の高温用超音波トランスデューサ(111a,111b)で計測した線平均流速の平均値と、面平均流速の値との比率として算出する。原子炉の定格運転時は、4組の高温用超音波トランスデューサによる線平均流速の平均値に補正係数を乗じて面平均流速を算出する。炉心流量に換算する際は、ダウンカマ4の総断面積に温度の影響を加味した値を乗ずることで、定格運転時の炉心流量が算出可能である。また、他の温度条件でも、同様に、ダウンカマ4の総断面積に温度の影響を考慮して炉心流量を求めることが可能である。体積流量(m3/s)ではなく重量流量(kg/s)の算出の場合は、冷却材の温度を測定もしくは推定して、冷却材密度に温度の効果を反映することで炉心流量を求めることが可能である。
【0044】
第3の実施形態までは、超音波により、時々刻々変化する炉心流量を測定する場合に好適な炉心流量計測装置である。しかしながら、既設の差圧式流量計の校正が必要な場合には、必ずしも時々刻々の炉心流量測定値は必要としない。
【0045】
第4の実施形態では、既設の流量計の校正や、平均的な流量の監視に有用な炉心流量測定装置について説明する。図9は、超音波トランスデューサとして電磁超音波トランスデューサを用いている。超音波送受信ユニット15は、2つの電磁超音波トランスデューサを備える。電磁超音波トランスデューサは、永久磁石と磁力線発生用のコイルで主に構成されている。送信用電磁超音波トランスデューサのコイルに流した電流により発生する磁力線が圧力容器3表面に渦電流を発生させ、永久磁石による直流磁界と渦電流との相互作用によりローレンツ力が生じる。このローレンツ力の発生部位を音源として、圧力容器3の壁に超音波が伝播する。受信用の電磁超音波トランスデューサでは、圧力容器3壁の弾性波と直流磁界の相互作用によりコイルに電圧が誘起され、これを検出する。圧電型の超音波トランスデューサと同様に、超音波送受信ユニット15内の2つの電磁超音波トランスデューサは、超音波の送信にも受信にも用いることができる。
【0046】
電磁超音波トランスデューサの特徴は、トランスデューサと圧力容器3の間に空隙があっても超音波の送受信が行える点にある。圧電型の超音波トランスデューサは、圧力容器3との間に空隙があると超音波が伝わらないため、トランスデューサの位置を動かしながら使用するような用途では、空隙を作らないためのカップラントの使用や、圧力容器3への適切な押しつけ圧力の確保など、トランスデューサの位置制御が難しい。特に、高温中では、高温の状態で超音波トランスデューサを動かしてもその効果が持続できる適切なカップラントを得ることが難しい。一方、電磁超音波トランスデューサは、位置制御が容易でカップラントも不要であるため、超音波送受信ユニットを高温中で走査して使用するのに適した特性を備えている。
【0047】
図9では、電磁超音波送受信ユニット15を圧力容器の周方向に走査するための走査用レール30を圧力容器3の表面に設け、送受信ユニット位置制御装置40により電磁超音波送受信ユニット15の周方向位置を制御可能な構成となっている。電磁超音波流量計25は、電磁超音波の送受信部分は他の実施形態と異なるが、到達時間の測定部分以降の信号処理部は、同じである。電磁超音波トランスデューサは、斜角超音波の発生も可能であるためくさび材も不要である。電磁超音波送受信ユニット15は、上下に2つのトランスデューサが配置されている点も他の実施形態と同じである。
【0048】
電磁超音波送受信ユニット15は、周方向の各位置で伝搬時間差法によりダウンカマ4内の線平均流速を測定し、ダウンカマ4の全角度(全ての周方向位置)における線平均流速を測定することにより1回の炉心流量測定を終える。各角度での線平均流速を平均して面平均流速を算出し、これにダウンカマ横断面積を乗ずることで炉心流量を得ることができる。この場合、ダウンカマ4内の線平均流速を隅無く測定することになるので、流速分布の補正は必要ない。また、原理的に、実際の流れによる校正も不要である。
【0049】
【発明の効果】
本発明によれば、簡単な装置構成で、プラント運転開始後長期間にわたって安定して沸騰水型原子炉の炉心流量を測定することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態によるABWRプラントの超音波炉心流量測定装置の設置状態を示す概略説明図。
【図2】図1の超音波炉心流量測定装置の超音波送受信部と信号処理部の構成説明図。
【図3】図1の超音波炉心流量測定装置の周方向における配置図。
【図4】ダウンカマにおける高さ方向位置と気泡径の関係を求めた解析結果を示す図。
【図5】従来型のABWRにおける炉心流量測定装置の概要説明図。
【図6】ダウンカマ内流速分布の解析結果の一例を示す図。
【図7】本発明の第2の実施形態における超音波トランスデューサの配置説明図で、(a)は平面図、(b)は側面図。
【図8】本発明の第3の実施形態における超音波トランスデューサの周方向における配置説明図。
【図9】本発明の第4の実施形態によるABWRプラントの超音波炉心流量測定装置の設置状態を示す概略説明図。
【符号の説明】
2…シュラウド、3…圧力容器、4…ダウンカマ、5…インターナルポンプ、6…炉心、7…上部プレナム、8…気水分離器、9…給水スパージャ、10,15…超音波送受信ユニット、11a,11b…超音波トランスデューサ、20…超音波流量計、21…超音波送受信回路、22…時間差計測回路、23…流量演算器、25…電磁超音波流量計、30…走査用レール、40…送受信ユニット位置制御装置。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a conventional boiling water reactor (hereinafter, referred to as a pressure reactor) in which a plurality of pump means are arranged around a core portion in a reactor pressure vessel (hereinafter simply referred to as a pressure vessel), and a coolant is circulated through the core portion. BWR) and improved BWR (hereinafter referred to as ABWR), the present invention relates to a core flow rate measuring device for measuring a core flow rate in a pressure vessel.
[0002]
[Prior art]
In this type of nuclear reactor, multiple jet pumps are arranged around the lower part of the core as cooling means for the core installed in the pressure vessel, and coolant is circulated through the core using these jet pumps. There are conventional BWRs and ABWRs that use an internal pump that recirculates the coolant instead of the jet pump. Normally, each cooling means according to these conventional methods includes: A monitoring system using a core flow rate measuring device that measures the flow rate of the coolant inside the core and constantly monitors the operating state is provided.
[0003]
In the conventional BWR, individual jet pump flow rates are measured, and the core flow rate is calculated as the sum of the flow rates. In the case of ABWR, the flow rate of each internal pump is measured, and the core flow rate is calculated as the sum. Both BWR and ABWR measure the pump differential pressure and calculate the flow rate from the differential pressure.
[0004]
In the case of BWR, the flow rate is calculated by utilizing the characteristic that the pump differential pressure of the jet pump is proportional to the square of the pump discharge flow rate. In the improved BWR (ABWR), the differential pressure of the internal pump is measured, and the Q-H characteristics of the pump determined in advance by tests, the rotational speed that is the operating condition of the internal pump, the reactor water temperature, etc. To calculate the pump flow rate.
[0005]
As a conventional representative example, a core flow rate measuring apparatus in ABWR will be described. In FIG. 5, the heat generated in the core 6 is transferred to the coolant flowing from the bottom to the top of the core 6. The coolant passes through the upper plenum 7 and the steam separator 8, and the main steam nozzle (not shown, located on the wall of the pressure vessel 3 slightly above the steam separator) for the dry steam to turn the turbine. It is led out of the pressure vessel 3 through. The coolant separated by the steam separator 8 flows down to the downcomer 4. In addition, coolant supplied from a water supply nozzle (not shown) installed between the pressure vessel 3 between the upper plenum 7 and the steam separator also passes through the downcomer 4 to the steam separator 8. Are sent to the core 6 by a plurality of internal pumps 5 together with the coolant separated in (1). Pressure measuring tubes 551a, 551b, 552a, and 552b are installed on the suction side and the discharge side of the internal pump 5, respectively, and are led to the differential pressure measuring devices 541a and 541b. The differential pressure signals that are the outputs of the differential pressure measuring devices 541a and 541b are converted into flow rates by the flow rate converters 542a and 542b. In the conversion from the differential pressure to the flow rate, the rotational speed of the internal pump 5 and the coolant temperature are also used. The core flow rate is obtained as the sum of the flow rates of all internal pumps 5.
[0006]
On the other hand, Japanese Patent Application Laid-Open No. 11-2331090 describes a Doppler type ultrasonic flowmeter that uses a Doppler shift of scattered waves from bubbles in liquid. In this case, a plurality of ultrasonic velocimeters configured by arranging ultrasonic transmitters and receivers at a predetermined distance in the axial direction of the reactor pressure vessel are arranged in the circumferential direction of the reactor pressure vessel, and the downcomer The core flow rate is calculated based on the flow velocity at each of the current meter installation positions.
[0007]
[Problems to be solved by the invention]
Measuring the reactor coolant flow rate with high accuracy is important in order to more accurately grasp the margin for reactor operation. The conventional method for measuring the coolant flow rate of a nuclear reactor is that the internal pump installation vessel shape is used when the relationship between the rotational speed of the internal pump, the flow rate, and the pressure difference obtained in a factory test is applied to an actual reactor. The correction is made because of the difference. This correction includes an error. Further, the relationship between the rotational speed, the flow rate, and the pressure difference may slightly change with the long-term operation of the plant, and as a result, the flow rate instruction value may be affected.
[0008]
Moreover, in the core flow measurement method to which the ultrasonic Doppler method is applied, in order to measure the flow velocity distribution in the downcomer, it is necessary to identify the scattering position from the received scattered waves from the reflective particles such as bubbles in the coolant. In the above known example, this point is not explained. Theoretically, the flow velocity distribution can be obtained by separating scattered waves at each position on the ultrasonic propagation path in the downcomer by signal processing and measuring the Doppler shift of the scattered waves at each position. However, the amplitude of the scattered wave from particles such as bubbles on the ultrasonic propagation path is small if the particle density is low. In addition, since the attenuation during propagation is large when the particle density is high, the amplitude of the scattered wave becomes smaller as the distance from the ultrasonic wave transmission position becomes smaller, and detection becomes difficult. For this reason, a complicated apparatus configuration is required for identifying the scattering position and detecting a scattered wave having a small amplitude.
[0009]
An object of the present invention is to provide a core flow rate measuring device and a core flow rate measuring method capable of measuring the core flow rate of a boiling water reactor stably with a simple device configuration over a long period of time after the start of plant operation.
[0010]
[Means for Solving the Problems]
The core flow rate measuring device of the present invention is based on a plurality of ultrasonic transmission / reception means installed in the circumferential direction of the outer wall of a pressure vessel of a boiling water reactor, and ultrasonic propagation time in a downcomer measured by each ultrasonic transmission / reception means. A core flow rate calculating means for calculating the core flow rate of the coolant using the calculated line average flow velocity, respectively, by obtaining the linear average flow rate of the coolant in the downcoma corresponding to the installation position of each ultrasonic transmission / reception means, The ultrasonic transmission / reception means is installed in a lower region of the downcomer (region within 3 m above the top of the internal pump) where bubbles are not substantially present during rated operation of the boiling water reactor.
[0011]
The core flow rate measurement method using the above core flow rate measuring device is used in multiple high-temperature ultrasonic transmission / reception means that can be used under the high temperature condition of the coolant during rated operation of the boiling water reactor, and under low temperature conditions lower than the high temperature conditions. A number of low temperature ultrasonic transmission / reception means are installed in the circumferential direction of the outer wall of the pressure vessel, and both the low temperature ultrasonic transmission / reception means and the high temperature ultrasonic transmission / reception means are installed in the circumferential direction of the pressure vessel. The correction coefficient is obtained from the relationship between the measured coolant flow rate measured using the coolant flow rate measured using only the high-temperature ultrasonic transmission / reception means, and only the high-temperature ultrasonic transmission / reception means under high-temperature conditions. The core flow rate of the coolant is obtained based on the measured coolant flow rate and the correction coefficient measured using the above.
[0012]
Further, another core flow rate measuring device according to the present invention includes an ultrasonic transmission / reception unit including a pair of ultrasonic transducers installed at a predetermined distance in the axial direction of the outer wall of a pressure vessel of a boiling water reactor, Based on the ultrasonic propagation time in the downcomer measured by the ultrasonic transmission / reception means at a plurality of positions in the circumferential direction, the scanning means for scanning the transmission / reception means in the circumferential direction of the pressure vessel A core flow rate calculation means is provided for calculating the linear average flow velocity of the coolant and calculating the core flow rate of the coolant using the calculated linear average flow velocity, and the ultrasonic transmission / reception means generates bubbles during rated operation of the boiling water reactor. It is installed in the lower area of the downcomer that does not substantially exist (area within 3 m above the top of the internal pump).
[0013]
Further, another core flow rate measuring method according to the present invention is a pressure vessel in the lower region of the downcomer (region within 3 m above the top of the internal pump) in which bubbles are not substantially present during rated operation of the boiling water reactor. Based on the propagation time of ultrasonic waves in the downcomer measured by a plurality of ultrasonic transmission / reception means installed in the circumferential direction of the outer wall, the line average flow velocity of the coolant in the downcoma corresponding to the installation position of each ultrasonic transmission / reception means, respectively The core flow rate of the coolant is calculated using the obtained linear average flow velocity.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a schematic explanatory view showing an installation state of an ultrasonic core flow rate measuring apparatus of an ABWR plant according to a first embodiment of the present invention. Of the in-furnace structure in the pressure vessel 3, the same parts as those in the conventional structure are designated by the same reference numerals as those in FIG.
[0016]
In FIG. 1, an ultrasonic transmission / reception unit 10 for measuring the flow velocity of a downcomer (annular space region between the pressure vessel 3 and the shroud 2) 4 is installed on the outer wall of the pressure vessel 3. The flow rate information (flow rate data) of the downcomer 4 obtained as the output of the ultrasonic transmission / reception unit 10 is converted into a flow rate by the ultrasonic flow meter 20. The measured flow rate is the flow rate of the downcomer 4 at the position where the ultrasonic transmission / reception unit 10 is installed, and the total flow rate flowing through the entire circumference of the downcomer 4, that is, the core flow rate, is a plurality of ultrasonic transmission / reception units installed on the outer wall of the pressure vessel 3. Calculation is based on the flow rate obtained by the unit 10 and the ultrasonic flowmeter 20.
[0017]
FIG. 2 shows the flow rate detection portion, that is, the ultrasonic transmission / reception unit 10 and the ultrasonic flowmeter 20 in detail. In this flow velocity detection portion, the flow velocity is detected by the propagation time difference method. With this ultrasonic flow velocity detection method, the flow velocity in the region where the ultrasonic waves propagate is measured. As can be seen from the propagation path of the ultrasonic wave indicated by the thick arrow in FIG. 2, the ultrasonic wave propagates toward the core center. That is, in this embodiment, the flow velocity in the arrow direction on the plane including the installation positions of the ultrasonic transducers 11a and 11b and the core center axis is measured.
[0018]
The ultrasonic transmission / reception unit 10 includes ultrasonic transducers 11a and 11b. The ultrasonic transducers 11a and 11b are used for both transmission and reception, and an ultrasonic transmission / reception transducer is disposed via a wedge material in order to propagate ultrasonic waves in the direction indicated by the arrow. The ultrasonic wave propagates through the pressure vessel 3 at an angle θ with respect to the coolant flow. As shown in FIG. 2, θ is an angle formed by the normal line of the inner surface of the pressure vessel 3 and the ultrasonic wave propagation path. In measuring the flow velocity, ultrasonic waves are alternately propagated to the downstream side and the upstream side of the flow, and the arrival time difference Δt between the downstream side and the upstream side is measured. The coolant flow velocity V is expressed by the following equation.
[0019]
Figure 0003997828
[0020]
Here, C is the speed of sound of the coolant, and L is the width of the downcomer 4, that is, the distance between the inner wall of the pressure vessel 3 and the shroud 2.
[0021]
The flow rate of the coolant in the downcomer 4 has a distribution. The flow velocity v of the coolant is expressed as v (x) as a function of the position x of the downcomer 4. The flow velocity V measured by ultrasound is
[0022]
Figure 0003997828
[0023]
It becomes. That is, the average value of v (x) on the ultrasonic wave propagation path, that is, the linear average flow velocity. As described above, the flow velocity detection method used in the present invention is advantageous in that it is not necessary to measure the flow velocity distribution itself, which is a problem in the Doppler method, and the configuration of the measurement system is simplified. Even in the Doppler method, if the flow velocity at a specific point is measured, the configuration of the measurement system can be simplified. However, since the information on the flow velocity in the downcomer 4 is less than that measured by the linear average flow velocity of the present embodiment, the flow measurement accuracy is deteriorated.
[0024]
The procedure for calculating (determining) the core flow rate from the flow velocity described above will be described below. In the present embodiment, eight sets of ultrasonic transmission / reception units 10a to 10h and ultrasonic flow meters 20a to 20h are arranged as shown in FIG. When the flow rate measurement values of the individual ultrasonic transmission / reception units 10a to 10h are Q1 to Q8, the following equation is established.
[0025]
Q n = K 1n ・ V n ・ A (Equation 3)
Here, n is an identification number (corresponding to ah, 1-8) of the ultrasonic transmission / reception unit 10. K 1n Is a flow rate correction coefficient, which corresponds to the Gayville gel coefficient when the flow path is a circular pipe, and is a coefficient depending on the flow velocity distribution at each measurement position. A is a flow path cross-sectional area. V n Is the flow rate.
[0026]
Core flow rate Q 0 Is represented by the following equation.
[0027]
Figure 0003997828
Where k twenty one ~ K 28 The coefficient is a coefficient that corrects the flow velocity distribution of the downcomer 4 and includes the flow path cross-sectional area of the region shared by the ultrasonic transmission / reception units 10a to 10h. In particular, k twenty five ~ K 28 Is the flow rate measurement value Q by the ultrasonic transmission / reception units 10a to 10d arranged at narrow intervals in the circumferential direction of the pressure vessel 3. 1 ~ Q Four It is set as a function. Thereby, the ultrasonic transmission / reception units 10e to 10h can be arranged at intervals wider than 10a to 10d in the circumferential direction, and as a result, the number of transducers (the number of ultrasonic transmission / reception units) can be reduced.
[0028]
Next, the arrangement position of the ultrasonic transmission / reception unit 10 will be described. The downcomer 4 in which the coolant is flowing is not all water but is slightly mixed with bubbles (vapor bubbles). Since bubbles attenuate ultrasonic waves, depending on the amount of bubbles, it may be difficult to measure the flow velocity. In this case, measurement by the ultrasonic Doppler method disclosed in the conventional method is advantageous.
[0029]
FIG. 4 shows an example of the results of the inventors' evaluation of the presence of bubbles in the downcomer 4. The horizontal axis represents the height direction (axial direction) position of the downcomer 4, and the vertical axis represents the bubble diameter. The lowest end of the vertical axis is 0, indicating that no bubbles are present. FIG. 4 shows the results of analytical evaluation under rated operating conditions (corresponding to 100% output, 100% core flow rate) in a standard ABWR (BWR) with an electric output of 1.35 million kW. The higher the position, the larger the bubble diameter is considered to be due to the buoyancy of the bubbles.
[0030]
As shown in FIG. 4, the bubble diameter decreases as the height decreases, and the bubble diameter becomes zero at a height of approximately 4.2 m 2. That is, there is an area where no bubbles exist at a height of about 4.2 m or less. Since the top of the internal pump 5 is located at a height of about 1 m, the region within 3 m from the top (upper end) of the internal pump 5 is the lower region of the downcomer in which bubbles are not substantially present. That is, the ultrasonic transmission / reception unit is installed in the lower region of the downcomer where bubbles are not substantially present during the rated operation of the nuclear reactor. Moreover, since the top of the core 6 is located at a height of about 9.5 m, the region above the top of the internal pump 5 and the region below the top of the core 6 by 5.5 m is located above the bubble. Is a region that does not substantially exist.
[0031]
From the above, it is possible to apply a method of detecting the flow velocity (propagation time difference method) using the fact that the arrival time of the ultrasonic wave changes with the speed of the coolant in the lower region of the downcomer where bubbles are not substantially present. I found out.
[0032]
In the measurement of flow velocity using ultrasonic waves, empirically, if the mixing rate of bubbles is small, the acoustic attenuation due to bubbles can be almost ignored. From the standpoint of applying an ultrasonic flowmeter, it can be said that the evaluation is on the safe side. In addition, since the coolant flow velocity flowing through the downcomer is small until the rating is reached, the bubble existence region is considered to be higher than the evaluation at the time of the rating described above, but in a wider operating range. When measuring the core flow rate, the installation position of the ultrasonic flowmeter is determined from the evaluation result of the rating.
[0033]
In the first embodiment described above, the ultrasonic transmission / reception unit 10 has a circuit configuration that is also used in a normal ultrasonic flowmeter, and there is no problem in realization. Further, when measuring the flow velocity, the ultrasonic wave is sent from each of the ultrasonic transducers 11a and 11b and the difference in arrival time is obtained. However, even if the ultrasonic wave is sent from either one, the flow velocity can be measured in principle. It is. In the above description, acoustic coupling between the ultrasonic transducers 11a and 11b and the pressure vessel 3 is not described, but in this embodiment, water glass is used. In addition to this, it is also possible to use a soft metal such as a gold leaf as a coupling agent. In the above embodiment, a calculated value is used as a correction coefficient for converting from a flow velocity to a flow rate, but an experimental value can also be used.
[0034]
According to the present embodiment, an ultrasonic flow meter that directly measures the flow velocity can be applied to the core flow meter. Possible causes of error in the flow velocity measurement include, for example, a time difference calculator and a change in the ultrasonic transmission output level, which can be adjusted by removing the ultrasonic flowmeter itself and inspecting it. However, the differential pressure type flow meter of the conventional method does not directly measure the flow rate itself, and the fluctuation of the flow rate instruction value may be caused by slight changes in the characteristics of the internal pump 5 or for other reasons. possible. In this case, since the cause is often in the pressure vessel 3, it is often not easy to remove and adjust as in an ultrasonic flowmeter. Further, as described above, in this embodiment, the average value of the flow velocity distribution, that is, the linear average flow velocity can be easily measured, so that the apparatus configuration is relatively simple.
[0035]
Next, a second embodiment will be described. In the case where measurement is performed using ultrasonic waves assuming that the core flow rate is the total flow rate of the coolant flowing through the downcomer 4, a large number of ultrasonic transducers are required in order to set the ultrasonic propagation path in all areas of the downcomer 4. Become. Therefore, the linear average flow velocity in a part of the measurement region is measured, and the flow rate is converted using the correction coefficient as shown in Equation 3. However, the true correction factor may vary to some extent depending on the flow conditions. In this regard, the actual measurement of the linear average flow velocity in many measurement regions minimizes the contribution of the correction coefficient, and enables highly accurate flow rate measurement.
[0036]
FIG. 6 is an example of the estimation result of the flow velocity distribution (axial flow velocity distribution) in the (1/10) cross-sectional area of the downcomer 4. This is an example of estimating the flow velocity distribution in ABWR in which ten internal pumps 5 are installed symmetrically in the circumferential direction. The speed is indicated by the shading of the color, and the whiter the color, the faster the flow rate. The white part corresponds to the circumferential position where the internal pump is installed. It can be seen that the flow velocity distribution has a greater change in the circumferential direction than a change in the core center direction (radial direction). Rather than obtaining flow velocity information in a region with a low flow rate change rate, obtaining flow rate information in a region with a large flow rate change rate can contribute to more accurate flow rate measurement. Therefore, in the present embodiment, the accuracy of flow rate measurement is improved by realizing an ultrasonic wave propagation path in the circumferential direction where the flow rate change rate is large.
[0037]
FIGS. 7A and 7B are explanatory views of arrangement of ultrasonic transducers on the pressure vessel 3 according to the second embodiment, where FIG. 7A is a plan view and FIG. 7B is a side view. Here, the in-furnace structure, the core, etc. in the pressure vessel are omitted. In this example, unlike the first embodiment, the ultrasonic transducers 11 a and 11 b are shifted in the circumferential position of the pressure vessel 3 in order to propagate ultrasonic waves in the circumferential direction. The installation position in the height direction (axial direction) of the pressure vessel 3 is the same as in the first embodiment. Ultrasonic waves are transmitted obliquely downward from the ultrasonic transducer 11a, reflected by the outer surface of the shroud 2, and received by the ultrasonic transducer 11b. When transmitting ultrasonic waves from the ultrasonic transducer 11b, the transmission direction is completely opposite, and the ultrasonic propagation path is the same. The ultrasonic flow meter 20 (not shown) is the same as that of the first embodiment, and the core flow rate calculation method is also the same. In the present embodiment, the core flow rate is also measured using the flow velocity information in the circumferential direction, so that higher accuracy can be achieved than in the first embodiment.
[0038]
As already described, in the present embodiment, a pair of ultrasonic transducers 11a and 11b can also obtain circumferential flow velocity information with a large change in flow velocity distribution. Highly accurate measurement is possible with the number of transducers.
[0039]
Next, a third embodiment will be described. A normal flow meter is used after being calibrated in a calibration loop having a flow rate reference. At this time, for example, a differential pressure type flow meter is often calibrated including the pipe in a state where the differential pressure measuring unit is attached to the pipe. On the other hand, the core flow meter is intended to measure the flow rate flowing through the downcomer 4, but it is difficult to install the entire downcomer 4 in a calibration loop that is normally used due to its large size.
[0040]
Since the ultrasonic flowmeter directly measures the flow velocity, it can originally be made unnecessary to calibrate. However, calibration is not required when the surface average flow velocity of the entire measurement region can be measured. However, the ABWR coolant temperature during operation is as high as about 280 ° C., and it is practically impossible to install a sufficient number of ultrasonic transducers to measure the surface average flow velocity distribution. This is because a high-temperature ultrasonic transducer that can be used in an operating state is expensive.
[0041]
Therefore, in this embodiment, the surface average flow velocity (average flow velocity in a plane perpendicular to the axis of the pressure vessel) is measured with high accuracy when the nuclear reactor is in a relatively low temperature state (for example, the coolant temperature is about room temperature to 100 ° C.). Then, the correction coefficient when measuring with a high-temperature sensor (transducer) is obtained, and a relatively small number of high-temperature ultrasonic transducers are used based on this correction coefficient during rated reactor operation (at high temperatures). Find the core flow rate.
[0042]
FIG. 8 is a plan view showing the arrangement of ultrasonic transducers for calibrating the flow meter at the time of ABWR low temperature (for calculating the correction coefficient), a number sufficient for calculating the surface average flow velocity distribution (44 pairs in this example). Are arranged symmetrically (equally spaced) in the circumferential direction. The ultrasonic transducer includes an upper transducer group and a lower transducer group that are arranged at a predetermined distance in the axial direction of the pressure vessel. FIG. 8 shows the upper transducer group. The upper transducer group includes four high-temperature ultrasonic transducers 111a and 40 normal-temperature ultrasonic transducers 110a. In the lower transducer group, four high-temperature ultrasonic transducers 111b and 40 normal-temperature ultrasonic transducers 110b are installed at lower positions corresponding to four 111a and 40 110a. The high-temperature ultrasonic transducers 111a and 111b are arranged symmetrically in the circumferential direction. In FIG. 8, in addition to the lower transducer group, the structure of the core, the ultrasonic flowmeter, the device for calculating the surface average flow velocity (described later), and the like are not shown for the sake of simplicity.
[0043]
The rotational speed of the internal pump 5 is adjusted to change the flow rate, and the surface average flow velocity is calculated based on the measured value of the linear average flow velocity (average flow velocity in the ultrasonic propagation path) at that time. In this case, since the ultrasonic transducers are arranged at equal intervals, the surface average flow velocity is obtained as an average value of each line average flow velocity. The core flow rate can be obtained by multiplying the surface average flow velocity by the total cross-sectional area of the downcomer 4 (cross-sectional area and cross-sectional area in a plane perpendicular to the axis of the pressure vessel). The correction coefficient is calculated as a ratio between the average value of the linear average flow velocity measured by the four sets of high-temperature ultrasonic transducers (111a, 111b) and the value of the surface average flow velocity. During the rated operation of the reactor, the surface average flow velocity is calculated by multiplying the average value of the linear average flow velocity by the four sets of high-temperature ultrasonic transducers with the correction coefficient. When converting into the core flow rate, the core flow rate during rated operation can be calculated by multiplying the total cross-sectional area of the downcomer 4 by the value that takes into account the effect of temperature. Similarly, under other temperature conditions, the core flow rate can be obtained in consideration of the influence of temperature on the total cross-sectional area of the downcomer 4. Volume flow (m Three In the case of calculating the weight flow rate (kg / s) instead of / s), it is possible to obtain the core flow rate by measuring or estimating the temperature of the coolant and reflecting the effect of the temperature on the coolant density. .
[0044]
Up to the third embodiment, the core flow rate measuring device is suitable for measuring a core flow rate that changes every moment by ultrasonic waves. However, when calibration of an existing differential pressure type flow meter is required, the core flow rate measurement value is not always required.
[0045]
In the fourth embodiment, a core flow rate measuring apparatus useful for calibration of an existing flow meter and monitoring of an average flow rate will be described. In FIG. 9, an electromagnetic ultrasonic transducer is used as the ultrasonic transducer. The ultrasonic transmission / reception unit 15 includes two electromagnetic ultrasonic transducers. An electromagnetic ultrasonic transducer is mainly composed of a permanent magnet and a coil for generating lines of magnetic force. Magnetic field lines generated by the current flowing in the coil of the transmitting electromagnetic ultrasonic transducer generate an eddy current on the surface of the pressure vessel 3, and a Lorentz force is generated by the interaction between the DC magnetic field and the eddy current generated by the permanent magnet. The ultrasonic wave propagates to the wall of the pressure vessel 3 using the Lorentz force generation site as a sound source. In the electromagnetic ultrasonic transducer for reception, a voltage is induced in the coil by the interaction between the elastic wave of the wall of the pressure vessel 3 and the DC magnetic field, and this is detected. Similar to the piezoelectric ultrasonic transducer, the two electromagnetic ultrasonic transducers in the ultrasonic transmission / reception unit 15 can be used for both transmission and reception of ultrasonic waves.
[0046]
A feature of the electromagnetic ultrasonic transducer is that ultrasonic waves can be transmitted and received even if there is a gap between the transducer and the pressure vessel 3. Piezoelectric ultrasonic transducers do not transmit ultrasonic waves if there is a gap between them and the pressure vessel 3. Therefore, in applications where the position of the transducer is moved, use of a coupling to prevent the formation of gaps, It is difficult to control the position of the transducer such as securing an appropriate pressing pressure against the pressure vessel 3. In particular, at a high temperature, it is difficult to obtain an appropriate coupling that can maintain its effect even if the ultrasonic transducer is moved at a high temperature. On the other hand, the electromagnetic ultrasonic transducer is easy to control the position and does not require a coupling. Therefore, the electromagnetic ultrasonic transducer has characteristics suitable for scanning and using the ultrasonic transmission / reception unit at a high temperature.
[0047]
In FIG. 9, a scanning rail 30 for scanning the electromagnetic ultrasonic transmission / reception unit 15 in the circumferential direction of the pressure vessel is provided on the surface of the pressure vessel 3, and the circumferential direction of the electromagnetic ultrasonic transmission / reception unit 15 is transmitted by the transmission / reception unit position controller 40. The position can be controlled. The electromagnetic ultrasonic flowmeter 25 is different from the other embodiments in the electromagnetic ultrasonic transmission / reception part, but the signal processing part after the arrival time measurement part is the same. Since the electromagnetic ultrasonic transducer can generate oblique ultrasonic waves, a wedge material is unnecessary. The electromagnetic ultrasonic transmission / reception unit 15 is the same as the other embodiments in that two transducers are arranged on the upper and lower sides.
[0048]
The electromagnetic ultrasonic transmission / reception unit 15 measures the line average flow velocity in the downcomer 4 by the propagation time difference method at each position in the circumferential direction, and measures the line average flow velocity at all angles (all circumferential positions) of the downcomer 4. One core flow measurement is completed. The average flow velocity at each angle is averaged to calculate the surface average flow velocity, and the core flow rate can be obtained by multiplying this by the downcomer cross-sectional area. In this case, since the linear average flow velocity in the downcomer 4 is measured without corners, correction of the flow velocity distribution is not necessary. Also, in principle, calibration based on the actual flow is not necessary.
[0049]
【The invention's effect】
According to the present invention, the core flow rate of a boiling water reactor can be measured with a simple apparatus configuration stably over a long period of time after starting plant operation.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an installation state of an ultrasonic core flow rate measuring apparatus of an ABWR plant according to a first embodiment of the present invention.
2 is a configuration explanatory diagram of an ultrasonic transmission / reception unit and a signal processing unit of the ultrasonic core flow rate measuring apparatus of FIG. 1. FIG.
3 is a layout diagram in the circumferential direction of the ultrasonic core flow rate measuring device of FIG. 1. FIG.
FIG. 4 is a diagram showing an analysis result obtained by obtaining a relationship between a height direction position and a bubble diameter in a downcomer.
FIG. 5 is a schematic explanatory diagram of a core flow rate measuring device in a conventional ABWR.
FIG. 6 is a diagram showing an example of the analysis result of the flow velocity distribution in the downcomer.
7A and 7B are explanatory views of arrangement of ultrasonic transducers according to a second embodiment of the present invention, where FIG. 7A is a plan view and FIG. 7B is a side view.
FIG. 8 is a diagram illustrating the arrangement of ultrasonic transducers in the circumferential direction according to the third embodiment of the present invention.
FIG. 9 is a schematic explanatory view showing an installation state of an ultrasonic core flow rate measuring apparatus of an ABWR plant according to a fourth embodiment of the present invention.
[Explanation of symbols]
2 ... shroud, 3 ... pressure vessel, 4 ... downcomer, 5 ... internal pump, 6 ... core, 7 ... upper plenum, 8 ... steam separator, 9 ... water supply sparger, 10, 15 ... ultrasonic transmission / reception unit, 11a , 11b ... ultrasonic transducer, 20 ... ultrasonic flow meter, 21 ... ultrasonic transmission / reception circuit, 22 ... time difference measurement circuit, 23 ... flow rate calculator, 25 ... electromagnetic ultrasonic flow meter, 30 ... scanning rail, 40 ... transmission / reception Unit position control device.

Claims (12)

沸騰水型原子炉の圧力容器外壁の周方向に設置された複数の超音波送受信手段と、各超音波送受信手段で測定したダウンカマにおける超音波の伝播時間に基づいて、各超音波送受信手段の設置位置に対応するダウンカマでの冷却材の線平均流速をそれぞれ求め、求めた線平均流速を用いて冷却材の炉心流量を算出する炉心流量演算手段とを備え、前記超音波送受信手段は、沸騰水型原子炉の定格運転時に気泡が実質的に存在しないダウンカマの下部領域に設置され、圧力容器の軸方向に所定距離を隔てて設置され且つ圧力容器の周方向位置をずらして設置された一組の超音波トランスデューサを有することを特徴とする炉心流量測定装置。  Installation of each ultrasonic transmission / reception means based on the ultrasonic wave propagation time in the downcomer measured by each ultrasonic transmission / reception means and a plurality of ultrasonic transmission / reception means installed in the circumferential direction of the outer wall of the pressure vessel of the boiling water reactor A core flow rate calculation means for calculating a linear flow rate of the coolant in the downcoma corresponding to the position and calculating a core flow rate of the coolant using the obtained linear average flow rate, and the ultrasonic transmission / reception means includes boiling water A set installed in the lower region of the downcomer where bubbles are not substantially present during rated operation of the reactor, installed at a predetermined distance in the axial direction of the pressure vessel, and shifted in the circumferential direction of the pressure vessel A core flow rate measuring apparatus comprising: an ultrasonic transducer. 沸騰水型原子炉の圧力容器外壁の周方向に設置された複数の超音波送受信手段と、各超音波送受信手段で測定したダウンカマにおける超音波の伝播時間に基づいて、各超音波送受信手段の設置位置に対応するダウンカマでの冷却材の線平均流速をそれぞれ求め、求めた線平均流速を用いて冷却材の炉心流量を算出する炉心流量演算手段とを備え、前記超音波送受信手段は、インターナルポンプの頂部から上側に3m以内の領域に設置され、圧力容器の軸方向に所定距離を隔てて設置され且つ圧力容器の周方向位置をずらして設置された一組の超音波トランスデューサを有することを特徴とする炉心流量測定装置。  Installation of each ultrasonic transmission / reception means based on the ultrasonic wave propagation time in the downcomer measured by each ultrasonic transmission / reception means and a plurality of ultrasonic transmission / reception means installed in the circumferential direction of the outer wall of the pressure vessel of the boiling water reactor A core flow rate calculating means for calculating a linear flow velocity of the coolant at the downcoma corresponding to the position and calculating a core flow rate of the coolant using the obtained linear average flow velocity; It has a set of ultrasonic transducers installed in an area within 3 m above the top of the pump, installed at a predetermined distance in the axial direction of the pressure vessel, and installed in a displaced position in the circumferential direction of the pressure vessel. A core flow rate measuring device. 請求項1又は2において、前記超音波送受信手段は、圧力容器の軸方向に所定距離を隔てて設置された一組の超音波トランスデューサを有することを特徴とする炉心流量測定装置。  3. The core flow rate measuring device according to claim 1, wherein the ultrasonic transmission / reception means includes a set of ultrasonic transducers installed at a predetermined distance in the axial direction of the pressure vessel. 請求項1から3のいずれかにおいて、前記炉心流量演算手段は、前記一組の超音波トランスデューサの一方から超音波を送信した場合の超音波の伝播時間と、前記一組の超音波トランスデューサの他方から超音波を送信した場合の超音波の伝播時間との差を用いて冷却材の線平均流速を求めることを特徴とする炉心流量測定装置。  4. The core flow rate calculation means according to claim 1, wherein the core flow rate calculating means transmits an ultrasonic wave propagation time when ultrasonic waves are transmitted from one of the set of ultrasonic transducers, and the other of the set of ultrasonic transducers. A core flow rate measuring apparatus for obtaining a linear average flow velocity of a coolant using a difference from an ultrasonic wave propagation time when ultrasonic waves are transmitted from the core. 沸騰水型原子炉の圧力容器外壁の周方向に設置された複数の超音波送受信手段と、各超音波送受信手段で測定したダウンカマにおける超音波の伝播時間に基づいて、各超音波送受信手段の設置位置に対応するダウンカマでの冷却材の線平均流速をそれぞれ求め、求めた線平均流速に補正係数を掛けて冷却材の炉心流量を算出する炉心流量演算手段とを備え、前記超音波送受信手段は、沸騰水型原子炉の定格運転時に気泡が実質的に存在しないダウンカマの下部領域に設置され、沸騰水型原子炉の定格運転時における冷却材の高温条件で使用可能な複数の高温用超音波送受信手段と、前記高温条件よりも低い低温条件で使用でき前記高温用超音波送受信手段よりも多数の低温用超音波送受信手段とを圧力容器外壁の周方向に設置して、前記低温条件において、前記低温用超音波送受信手段及び前記高温用超音波送受信手段の両方を用いて測定した冷却材の流量測定値と、前記高温用超音波送受信手段のみを用いて測定した冷却材の流量測定値との関係から補正係数を求め、前記高温条件では、前記高温用超音波送受信手段のみを用いて測定した冷却材の流量測定値及び前記補正係数に基づいて、冷却材の炉心流量を求めることを特徴とする炉心流量測定方法。  Installation of each ultrasonic transmission / reception means based on the ultrasonic wave propagation time in the downcomer measured by each ultrasonic transmission / reception means and a plurality of ultrasonic transmission / reception means installed in the circumferential direction of the outer wall of the pressure vessel of the boiling water reactor A core flow rate calculating means for calculating a core flow rate of the coolant by respectively obtaining a linear average flow rate of the coolant at the downcoma corresponding to the position, and multiplying the calculated linear average flow rate by a correction coefficient, the ultrasonic transmitting and receiving means, Multiple high-temperature ultrasonic waves that are installed in the lower region of the downcomer where bubbles are not substantially present during rated operation of boiling water reactors and can be used under the high temperature conditions of coolant during rated operation of boiling water reactors The transmitter / receiver and a plurality of low-temperature ultrasonic transmitter / receivers that can be used under low-temperature conditions lower than the high-temperature condition are installed in the circumferential direction of the outer wall of the pressure vessel, and the low temperature In this case, the coolant flow rate measured using both the low temperature ultrasonic transmission / reception means and the high temperature ultrasonic transmission / reception means, and the coolant flow rate measured using only the high temperature ultrasonic transmission / reception means. A correction coefficient is obtained from the relationship with the measured value. Under the high temperature condition, the core flow rate of the coolant is obtained based on the measured coolant flow rate measured using only the high-temperature ultrasonic transmission / reception means and the correction coefficient. A core flow rate measuring method characterized by the above. 沸騰水型原子炉の圧力容器外壁の周方向に設置された複数の超音波送受信手段と、各超音波送受信手段で測定したダウンカマにおける超音波の伝播時間に基づいて、各超音波送受信手段の設置位置に対応するダウンカマでの冷却材の線平均流速をそれぞれ求め、求めた線平均流速に補正係数を掛けて冷却材の炉心流量を算出する炉心流量演算手段とを備え、前記超音波送受信手段は、インターナルポンプの頂部から上側に3m以内の領域に設置され、沸騰水型原子炉の定格運転時における冷却材の高温条件で使用可能な複数の高温用超音波送受信手段と、前記高温条件よりも低い低温条件で使用でき前記高温用超音波送受信手段よりも多数の低温用超音波送受信手段とを圧力容器外壁の周方向に設置して、前記低温条件において、前記低温用超音波送受信手段及び前記高温用超音波送受信手段の両方を用いて測定した冷却材の流量測定値と、前記高温用超音波送受信手段のみを用いて測定した冷却材の流量測定値との関係から補正係数を求め、前記高温条件では、前記高温用超音波送受信手段のみを用いて測定した冷却材の流量測定値及び前記補正係数に基づいて、冷却材の炉心流量を求めることを特徴とする炉心流量測定方法。  Installation of each ultrasonic transmission / reception means based on the ultrasonic wave propagation time in the downcomer measured by each ultrasonic transmission / reception means and a plurality of ultrasonic transmission / reception means installed in the circumferential direction of the outer wall of the pressure vessel of the boiling water reactor A core flow rate calculating means for calculating a core flow rate of the coolant by respectively obtaining a linear average flow rate of the coolant at the downcoma corresponding to the position, and multiplying the calculated linear average flow rate by a correction coefficient, the ultrasonic transmitting and receiving means, A plurality of high-temperature ultrasonic transmission / reception means installed in a region within 3 m above the top of the internal pump and usable under the high-temperature condition of the coolant at the rated operation of the boiling water reactor, Can be used under low temperature conditions, and more ultrasonic transmission / reception means for low temperature than the high temperature ultrasonic transmission / reception means are installed in the circumferential direction of the outer wall of the pressure vessel. Correction from the relationship between the measured flow rate of the coolant measured using both the ultrasonic transmitting / receiving means and the high temperature ultrasonic transmitting / receiving means and the measured flow rate of the coolant measured using only the high temperature ultrasonic transmitting / receiving means A core flow rate is obtained by obtaining a coefficient, and in the high temperature condition, a core flow rate of the coolant is obtained based on a measured value of the flow rate of the coolant measured using only the high-temperature ultrasonic transmission / reception means and the correction coefficient. Measuring method. 請求項5又は6において、前記超音波送受信手段は、圧力容器の軸方向に所定距離を隔てて設置された一組の超音波トランスデューサを有することを特徴とする炉心流量測定方法。  7. The core flow rate measuring method according to claim 5, wherein the ultrasonic transmission / reception means includes a set of ultrasonic transducers installed at a predetermined distance in the axial direction of the pressure vessel. 請求項5から7のいずれかにおいて、前記炉心流量演算手段は、前記一組の超音波トランスデューサの一方から超音波を送信した場合の超音波の伝播時間と、前記一組の超音波トランスデューサの他方から超音波を送信した場合の超音波の伝播時間との差を用いて冷却材の線平均流速を求めることを特徴とする炉心流量測定方法。  The core flow rate calculation means according to any one of claims 5 to 7, wherein the core flow rate calculation means includes an ultrasonic propagation time when ultrasonic waves are transmitted from one of the set of ultrasonic transducers, and the other of the set of ultrasonic transducers. A core flow rate measuring method, characterized in that a linear average flow velocity of a coolant is obtained using a difference from an ultrasonic wave propagation time when ultrasonic waves are transmitted from the core. 圧力容器とシュラウドの間に形成される円環状の空間領域であるダウンカマを有する沸騰水型原子炉の圧力容器外壁であって、該沸騰水型原子炉の定格運転時に気泡が実質的に存在しない前記ダウンカマの下部領域に軸方向に所定距離を隔ててくさび材を介して又は金属のカップランを介して一組の超音波トランスデューサを前記圧力容器の周方向に設置、或いは一組の電磁超音波トランスデューサを相互に超音波が前記シュラウドで反射して送受信するように前記圧力容器の周方向に設置し、前記周方向における複数の位置で前記超音波トランスデューサにより測定したダウンカマにおける超音波の伝播時間に基づいて、各周方向位置に対応するダウンカマでの冷却材の線平均流速をそれぞれ求め、求めた線平均流速に流路が円管の場合のゲイビルゲル係数に相当する第1の補正係数及び周方向の流速分布を補正する第2の補正係数を用いて冷却材の炉心流量を算出する炉心流量演算手段を備えたことを特徴とする炉心流量測定装置。A pressure vessel outer wall of a boiling water reactor having a downcomer which is an annular space region formed between the pressure vessel and the shroud, and substantially no bubbles are present during rated operation of the boiling water reactor A set of ultrasonic transducers is installed in the circumferential direction of the pressure vessel via a wedge material or a metal cup run at a predetermined distance in the axial direction in the lower region of the downcomer, or a set of electromagnetic ultrasonic waves the transducer is reflected mutually ultrasonic wave in said shroud is installed in a circumferential direction of the pressure vessel so as to receive said ultrasonic in downcomer as measured by ultra sound Namito transducer at a plurality of positions in the circumferential direction based on the propagation times, respectively obtained the linear average flow velocity of the coolant in the corresponding downcomer in each circumferential position, the passage to the line average flow velocity required in the case of circular tubes Core flow rate measurement, characterized in that it comprises a core flow rate calculation means for calculating a core flow rate of the coolant using the second correction coefficient for correcting the flow velocity distribution of the first correction coefficient and circumferential direction corresponding to the Ibirugeru coefficient apparatus. 請求項9において、前記超音波送受信手段は、インターナルポンプの頂部から上側に3m以内の領域に設置されていることを特徴とする炉心流量測定装置。  10. The core flow rate measuring device according to claim 9, wherein the ultrasonic transmission / reception means is installed in a region within 3 m above the top of the internal pump. 圧力容器とシュラウドの間に形成される円環状の空間領域であるダウンカマを有する沸騰水型原子炉の圧力容器外壁に、該沸騰水型原子炉の定格運転時に気泡が実質的に存在しない前記ダウンカマの下部領域に軸方向に所定距離を隔ててくさび材を介して又は金属のカップランを介して一組の超音波トランスデューサを前記圧力容器の周方向に設置、或いは一組の電磁超音波トランスデューサを、相互に超音波が前記シュラウドで反射して送受信するように前記圧力容器の周方向に設置し、前記周方向における複数の位置で前記超音波トランスデューサにより超音波の伝播時間を測定して、炉心流量演算手段により各周方向位置に対応するダウンカマでの冷却材の線平均流速をそれぞれ求め、求めた線平均流速に流路が円管の場合のゲイビルゲル係数に相当する第1の補正係数及び周方向の流速分布を補正する第2の補正係数を用いて冷却材の炉心流量を算出することを特徴とする炉心流量測定方法。The downcomer that is substantially free of bubbles during rated operation of the boiling water reactor on the outer wall of the boiling water reactor having a downcomer that is an annular space region formed between the pressure vessel and the shroud. A set of ultrasonic transducers is installed in the circumferential direction of the pressure vessel through a wedge material or a metal cup run at a predetermined distance in the lower region of the pressure vessel , or a set of electromagnetic ultrasonic transducers. The ultrasonic vessel is installed in the circumferential direction of the pressure vessel so that ultrasonic waves are reflected and transmitted and received by the shroud, and ultrasonic propagation times are measured by the ultrasonic transducers at a plurality of positions in the circumferential direction. determined by the flow computing unit the linear average flow velocity of the coolant in the downcomer for each circumferential position respectively, when the flow path in the line average flow rate obtained is a circle pipe Geibiru The first correction coefficient and circumferential direction of the core flow rate measuring method, wherein a second using a correction coefficient for calculating the core flow rate of the coolant for correcting the flow velocity distribution corresponding to Le coefficient. 請求項11において、前記超音波送受信手段を、沸騰水型原子炉のインターナルポンプの頂部から上側に3m以内の領域に設けたことを特徴とする炉心流量測定方法。  12. The core flow rate measuring method according to claim 11, wherein the ultrasonic wave transmitting / receiving means is provided in a region within 3 m above the top of the internal pump of the boiling water reactor.
JP2002133438A 2002-05-09 2002-05-09 Core flow measuring device and core flow measuring method Expired - Fee Related JP3997828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133438A JP3997828B2 (en) 2002-05-09 2002-05-09 Core flow measuring device and core flow measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133438A JP3997828B2 (en) 2002-05-09 2002-05-09 Core flow measuring device and core flow measuring method

Publications (2)

Publication Number Publication Date
JP2003329792A JP2003329792A (en) 2003-11-19
JP3997828B2 true JP3997828B2 (en) 2007-10-24

Family

ID=29696421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133438A Expired - Fee Related JP3997828B2 (en) 2002-05-09 2002-05-09 Core flow measuring device and core flow measuring method

Country Status (1)

Country Link
JP (1) JP3997828B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656889B2 (en) * 2004-08-13 2011-03-23 日立Geニュークリア・エナジー株式会社 Core flow measurement device
JP4979524B2 (en) * 2007-09-20 2012-07-18 日立Geニュークリア・エナジー株式会社 Ultrasonic core flow measuring device and ultrasonic flow meter
JP4902478B2 (en) * 2007-09-27 2012-03-21 日立Geニュークリア・エナジー株式会社 Core flow measuring device and core flow measuring method
JP5268509B2 (en) * 2008-09-08 2013-08-21 森永乳業株式会社 Detection method of sterilization start position of direct steam heating

Also Published As

Publication number Publication date
JP2003329792A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
RU2446393C2 (en) Method of diagnosing pipe roughness and ultrasonic flowmeter
JP3110042B2 (en) Non-penetrating fluid detection system
JP2014021116A (en) Ultrasonic wedge and method for determining speed of sound in the same
US7523676B2 (en) Ultrasonic flow rate measurement method and system
JP2004271496A (en) Ultrasonic flow measuring method
JPWO2005083372A1 (en) Ultrasonic flowmeter compatible with both pulse Doppler method and propagation time difference method, method and program for automatically selecting measurement method in the flowmeter, and electronic device for the flowmeter
JPS6140512A (en) Measuring device for velocity of flow of fluid
CN114088151B (en) External clamping type multichannel ultrasonic flow detection device and detection method
Furuichi Fundamental uncertainty analysis of flowrate measurement using the ultrasonic Doppler velocity profile method
Tian et al. Energy peak fitting of echo based signal processing method for ultrasonic gas flow meter
CN111157065A (en) Acoustic time delay measuring method in ultrasonic signal transmission loop of gas ultrasonic flowmeter
Li et al. Experimental and numerical analysis of a novel flow conditioner for accuracy improvement of ultrasonic gas flowmeters
JP3997828B2 (en) Core flow measuring device and core flow measuring method
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
Johari et al. Direct measurement of circulation using ultrasound
CN116295149A (en) Pipeline bubble size measurement system based on time difference type ultrasonic flowmeter
RU2396518C2 (en) Method and device for acoustic measurement of gas flow rate
CN103471665A (en) Ultrasonic online detection device and method for liquid flow
Li et al. Research on transit-time ultrasonic flowmeter with signal characteristic analysis
JP3274101B2 (en) Method and apparatus for measuring flow velocity in open channel and calibration inspection method
JP4902478B2 (en) Core flow measuring device and core flow measuring method
Güngör Analyzing the Fluid Flow of Transit-Time Ultrasonic Flowmeter with Image Processing Technique and Developing a Quality Metric Depending on Pipe Profile
JPS6191509A (en) Method for measuring thickness of scale in pipe
Wada et al. Applicability evaluation of the ultrasonic pulse-train Doppler method on the disturbed flow in a pipe
Hamidullin et al. Statics and dynamics of ultrasonic flowmeters as sensing elements for power control systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees