JP3997456B2 - Thin film photoelectric conversion device manufacturing equipment - Google Patents

Thin film photoelectric conversion device manufacturing equipment Download PDF

Info

Publication number
JP3997456B2
JP3997456B2 JP22975099A JP22975099A JP3997456B2 JP 3997456 B2 JP3997456 B2 JP 3997456B2 JP 22975099 A JP22975099 A JP 22975099A JP 22975099 A JP22975099 A JP 22975099A JP 3997456 B2 JP3997456 B2 JP 3997456B2
Authority
JP
Japan
Prior art keywords
substrate
photoelectric conversion
thin film
back surface
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22975099A
Other languages
Japanese (ja)
Other versions
JP2001053313A (en
Inventor
均 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP22975099A priority Critical patent/JP3997456B2/en
Publication of JP2001053313A publication Critical patent/JP2001053313A/en
Application granted granted Critical
Publication of JP3997456B2 publication Critical patent/JP3997456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、薄膜太陽電池の製造装置の内、可撓性基板上にステッピングロール方式で薄膜を形成する薄膜光電変換素子の製造装置に関する。
【0002】
【従来の技術】
現在、環境保護の立場から、クリーンなエネルギーの研究開発が進められている。中でも、太陽電池はその資源(太陽光)が無限であること、無公害であることから注目を集めている。
【0003】
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられる。
【0004】
従来の薄膜太陽電池はガラス基板を用いていたが、軽量化、施工性、量産性においてプラスチックフィルムおよび金属フィルムを用いたフレキシブルタイプの太陽電池の研究開発がすすめられている。このフレキシブル性を生かし、ロールツーロール方式またはステッピングロール方式の製造方法により大量生産が可能となった。
【0005】
上記の薄膜太陽電池は、例えばフレキシブルな電気絶縁性フィルム基板上に金属電極層、薄膜半導体層からなる光電変換層および透明電極層が積層されてなる光電変換素子(またはセル)が複数形成されている。ある光電変換素子の金属電極と隣接する光電変換素子の透明電極を電気的に接続することを繰り返すことにより、最初の光電変換素子の金属電極と最後の光電変換素子の透明電極とに必要な電圧を出力させることができる。例えば、インバータにより交流化し商用電力源として交流100Vを得るためには、薄膜太陽電池の出力電圧は100V以上が望ましく、実際には数10個以上の素子が直列接続される。
【0006】
このような光電変換素子とその直列接続は、電極層と光電変換層の成膜と各層のパターニングおよびそれらの組み合わせ手順により形成される。上記太陽電池の構成および製造方法は、例えば特開平10−233517号公報や特願平11−19306号に記載されている。
【0007】
前記特願平11−19306号に記載された薄膜太陽電池の構成概念図を、図5に示す。図5は、プラスチックフィルムを基板とした可撓性薄膜太陽電池の斜視図を示す。基板61の表面に形成した単位光電変換素子62および基板61の裏面に形成した接続電極層63はそれぞれ複数の単位ユニットに完全に分離され、それぞれの分離位置をずらして形成されている。このため、素子62のアモルファス半導体部分である光電変換層65で発生した電流は、まず透明電極層66に集められ、次に該透明電極層領域に形成された集電孔67を介して背面の接続電極層63に通じ、さらに該接続電極層領域で素子の透明電極層領域の外側に形成された直列接続用の接続孔68を介して上記素子と隣り合う素子の透明電極層領域の外側に延びている下電極層64に達し、両素子の直列接続が行われている。
【0008】
前記薄膜太陽電池の薄膜の製造方法としては、前述のように、ロールツーロール方式またはステッピングロール方式がある。両方式共に、複数のロールによる基板搬送手段を備え、前者は各成膜室内を連続的に移動する基板上に連続的に成膜する方式であり、後者は各成膜室内で同時に停止させた基板上に成膜し,成膜の終わった基板部分を次の成膜室へ送り出す方式を採用している。
【0009】
ステッピングロール方式の成膜装置は、隣接する成膜室間のガス相互拡散を防止できることから各薄膜の特性が安定して得られることや装置がコンパクトとなるなどの点で優れており、その装置の構成は、例えば、特開平6-292349号公報,特開平7-6953号公報,特開平7-221025号公報,特開平8-250431号公報,特開平8-293491号公報などに記載されている。
【0010】
図4に、共通真空室内に成膜室を複数有するステッピングロール成膜方式の真空成膜装置の構成の一例の概念図を示す。図4に示す装置は、可撓性基板の巻出し用アンワインダー室290と、金属電極層(背面の接続電極層),光電変換層(a−Si層)および透明電極層(ITO層)などを形成するための複数個の独立した処理空間としてなる成膜室280と、巻取り用ワインダー室291とを備え、基板201はコア282から捲き出されコア283にまきとられる間に、複数の成膜室280で成膜されるように構成されている。共通室281は複数の成膜室280を内部に収めている。
【0011】
成膜室ではスパッタ成膜またはプラズマ化学気相成長法(以下プラズマCVD法と記す)などにより成膜が行われる。例えば、プラズマCVD法により成膜するステッピングロール方式では、成膜室開放−基板1フレーム移動−成膜室封止−原料ガス導入−圧力制御−放電開始−放電終了−原料ガス停止−ガス引き−成膜室開放からなる操作が繰り返される。
【0012】
また、量産性を高める観点から、並行して搬送される2列の可撓性基板に同時に光電変換層を成膜するプラズマCVD法ステッピングロール方式が、本件出願人により提案されている(特開平8-293491号公報参照)。
【0013】
図2および図3に上記特開平8-293491号公報に記載された装置を示す。図2は、前記装置の製膜時の状態を平面断面図として示し、図3は、製膜時の製膜室の状態を拡大図として示す。図2の薄膜光電変換素子の製造装置は、送り室11、予備真空室12、成膜用真空室13、巻き取り室14を備え、二つの可撓性基板1は、送り室11から巻き取り室14へ搬送される。成膜用真空室13内には、高電圧電極21とヒータ23を有する接地電極22が対向配置され、プラズマCVDによりその間に停止した基板1の面上にa−Si系の薄膜を形成する。
【0014】
図3に拡大して示すように、高電圧電極21は蓋状で、その端面にシールブロック8を介して基板1が密着することにより、気密に保つことのできる成膜室5が形成される。高電圧電極21は、各基板1に対して一つずつ備えられるが、その背面部で絶縁材料よりなる排気ブロック9を介して連結されている。排気ブロック9は高電圧電極21とシール材91を介することにより密着し、排気ブロック9に開けられた排気口72、高電圧電極71の背面部の開口25を介して図示しない圧力制御機能を備えた排気系により各成膜室5は一括して成膜圧力に保たれる。
【0015】
高電圧電極21、接地電極22の間への電圧の印加でプラズマ6が生じ、成膜が行われる。二つの成膜室5の間は、排気ブロック9により電気絶縁されているため、成膜室毎にプラズマ6の制御を行うことができる。成膜終了後、接地電極22を矢印41のように図2に示すアクチュエータ24により上下に数十mm移動すると、接地電極22に抑えられていた基板1も解放され、矢印41の方向に移動する。
【0016】
上記のように、接地電極22を可動とすることにより成膜室5の開閉が可能である。成膜室5は放電空間が全体の50%以上を占める非常にコンパクトな構造となっている。高電圧電極21の配置としては1個の電極を中央に置き、その両面で放電をさせる構成も可能であるが、この場合は両面の膜厚を均等にする制御が困難である。そこで、図2に示すように左右別々の電極でそれぞれ独立に制御する方式を採用している。
【0017】
ところで、高電圧電極21が成膜用真空室13の空間に露出するが、高電圧電極21に高周波電力を印加した場合でも成膜中の製膜用真空室13の圧力を0.1Pa以下に保つことにより成膜用真空室13の室内での放電は抑制される。しかしながら、排気ブロック9の中の圧力は成膜時で10〜100Paとなるため二つの高電圧電極間で容易に放電してしまう。電極間の位相を調整制御する方法もあるが、現実には問題があり、二つの高電圧電極間の放電を避けるため排気ブロック9を絶縁物とし、長さを100mm以上としている。
【0018】
【発明が解決しようとする課題】
ところで、上記従来の薄膜光電変換素子の製造装置においては、下記のような問題があった。
【0019】
1)薄膜光電変換素子の生産性を向上するためには、高速成膜を行う必要があるが、この場合特性低下を生じないようにするためには処理温度の上昇が必要となり、量産コスト低減の観点から、この要請が高まっている。この場合、必要とされる成膜中の接地電極22の温度は約350℃であり、基板からの輻射熱や加熱された成膜用ガスによる直接加熱により、例えばAl材製の高電圧電極21の温度は、従来の装置においては約200℃となる。ところで、2つの高電圧電極の背面部開口間を絶縁,シールする排気ブロックのシール材の材料としては主にフッ素樹脂が使用されるが、この場合、フッ素樹脂の使用可能温度の最高値近傍で常用することが避けられない。そのため、シール不良に伴い成膜不良が発生して量産コストが増大する問題やシール材のメンテナンス頻度と寿命の問題がある。
【0020】
2)また、上記処理温度の上昇とは別の問題であるが、排気ブロック内の放電を防止するために、高電圧電極間の排気ブロック長さを、前述のように従来装置においては、100mm以上とする必要がある。その分、成膜用真空室の幅が広くなり、真空室の容積が増し大型の排気系が必要となり、真空室製作のコストも含め装置の全体コストが増大する問題がある。排気ブロック内の放電は、多量のフレークを発生させ、排気系の故障・停止といったトラブルの要因となる。
【0021】
この発明は、上記のような問題点を解消するためになされたもので、本発明の課題は、排気ブロックのシール部の温度上昇を低減することにより、薄膜光電変換素子の製造装置のシールの安全性と装置寿命の向上を図り、また高温処理による生産性の向上を図る。さらに、排気ブロック内の放電の抑制により、装置寸法とコストの低減を図り、総合的に量産コストの低減を図ることにある。
【0022】
【課題を解決するための手段】
前述の課題を解決するため、請求項1の発明は、並行して搬送される2列の可撓性基板の間に,各基板にそれぞれ対応して設けられ,基板面に平行な背面部と基板に気密に接触可能な端面を備える側壁部とを有し,かつ前記背面部は開口を有してなる二つの高電圧電極と、この高電圧電極に対向して前記各基板の外側にそれぞれ設けられ,基板加熱用のヒータを有する二つの接地電極と、前記二つの高電圧電極の背面部間に設けられ,シール材により前記背面部の開口と気密に連通する貫通孔を有し,かつこの貫通孔に連通する真空排気口を有する電気絶縁体からなる排気ブロックとを備え、前記高電圧電極と各基板との間に形成される成膜空間に成膜用のガスを導入して,高電圧電極と接地電極間への高周波電圧の印加によって前記基板と高電圧電極間に放電を発生させ,各基板の一面上に薄膜を形成するように構成した薄膜光電変換素子の製造装置において、前記基板と高電圧電極の背面部との間に,この背面部と平行に,かつ前記成膜用のガスを通流させるための隙間を側面部との間に設けて背面部の略全幅にわたって,導電性材料からなる板状または箱状の前記シール材に対する熱の遮蔽体を配設し,この遮蔽体を前記高電圧電極と電気的に接続してなり、かつ前記成膜用のガスは、前記隙間から前記背面部の開口に流通可能に構成したものとする。
【0023】
上記構成により、高電圧電極と接地電極間の遮蔽体は、主に基板から高電圧電極に輻射により伝達する熱量を減少させることを可能とし、また、加熱された成膜用のガスが直接、高電圧電極の背面部開口に流入することを防止するので、従来装置に比較して、排気ブロックのシール部の温度が低く抑えられ、装置のシールの安全性が向上し、シール材料の選択範囲が広がる他寿命の向上が図られる。
【0024】
また、上記請求項1に記載の薄膜光電変換素子の製造装置において、前記排気ブロックは、その貫通孔内にガスの導通を遮断する隔壁を備え、かつ前記真空排気口は、前記隔壁により区分された各貫通孔にまたがって連通して設けたものとする(請求項2)、あるいは前記真空排気口は、前記隔壁により区分された各貫通孔にそれぞれ個々に連通して設けたものとする(請求項3)。
【0025】
上記構成により、ガス中で起こる排気ブロック内の二つの高電圧電極間の放電を抑制でき、放電に影響されない安定した薄膜形成ができる。上記構成において、請求項3の発明の方が、請求項2の発明と比較して部品点数が増大するが、放電の抑制効果は大きい。
【0026】
また、前記排気ブロックの構成材料としては、請求項4の発明のように、フッ素樹脂,ガラスまたはセラミックスの内の少なくともいずれか一つの材料が適用でき、例えば隔壁のみをセラミックスとし他をフッ素樹脂にするなど、複数の材料から構成することもできる。
【0027】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下に述べる。
【0028】
図1は本発明の実施例の概略構成を示し、成膜時の状態を拡大して示す。図1において、図2および図3に示す部材と同一の部材には同一の記号を付して説明を省略する。図1に示す装置においては、図示しないが、図2に示す装置と同様に、送り室11、予備室12、成膜用真空室13、巻き取り室14を備え、2つの可撓性基板1は、送り室11から巻き取り室14へ搬送される。
【0029】
成膜用真空室13内には、高電圧電極21とヒーター23を兼ねた接地電極22が対向配置され、プラズマCVDにより、その間に停止した基板1の面上にa−Si系の薄膜を形成する。図1に示すように高電圧電極21は蓋状で、その端面を、シールブロック8を介して基板1に密着することにより、気密を保つことができる成膜室5が形成される。
【0030】
高電圧電極21は、各基板1に対して一つずつ設けられるが、その背面部21aで例えばフッ素樹脂材料よりなる排気ブロック90を介して連結されている。高電圧電極21の背面部21aの各開口25を連通する排気ブロック90内の貫通孔に、各開口25と等距離の位置に隔壁92を設ける。また、真空排気口73が、各開口25にまたがって連通して設けられ、真空排気口73から各成膜室5を真空排気するように構成される。
【0031】
排気ブロック90は高電圧電極21と、シール材91を介して密着固定され、排気ブロック90に開けられた真空排気口73、高電圧電極21の背面部21aの開口25を介して、図示しない圧力制御機能を備えた排気系に接続される。これにより各成膜室5は一括して成膜圧力に保たれる。
【0032】
高電圧電極21と接地電極22との間の放電空間には、接続筒26を介して熱の遮蔽体27が、高電圧電極21面と密着させずに電気的に接続した状態で、接地電極22と放電可能な電極距離を保って固定される。また、遮蔽体27は、高電圧電極21の側面部との間に隙間80を設けるものとし、成膜用のガスが前記隙間80から前記背面部の開口25に流通可能に構成される。
【0033】
上記構成において、接地電極22と遮蔽体27との間への電圧の印加により、プラズマ6が生じ、成膜が行われる。2つの成膜室5の間は、排気ブロック90により電気絶縁されているため、成膜室毎にプラズマ6の制御を行うことができる。なお、上記実施例において真空排気口73は、前記隔壁92により区分された各貫通孔にまたがって連通して設けたが、前記隔壁により区分された各貫通孔にそれぞれ個々に連通して設けてもよい。
【0034】
【発明の効果】
この発明によれば前述のように、並行して搬送される2列の可撓性基板の間に,各基板にそれぞれ対応して設けられ,基板面に平行な背面部と基板に気密に接触可能な端面を備える側壁部とを有し,かつ前記背面部は開口を有してなる二つの高電圧電極と、この高電圧電極に対向して前記各基板の外側にそれぞれ設けられ,基板加熱用のヒータを有する二つの接地電極と、前記二つの高電圧電極の背面部間に設けられ,シール材により前記背面部の開口と気密に連通する貫通孔を有し,かつこの貫通孔に連通する真空排気口を有する電気絶縁体からなる排気ブロックとを備え、前記高電圧電極と各基板との間に形成される成膜空間に成膜用のガスを導入して,高電圧電極と接地電極間への高周波電圧の印加によって前記基板と高電圧電極間に放電を発生させ,各基板の一面上に薄膜を形成するように構成した薄膜光電変換素子の製造装置において、前記基板と高電圧電極の背面部との間に,この背面部と平行に,かつ前記成膜用のガスを通流させるための隙間を側面部との間に設けて背面部の略全幅にわたって,導電性材料からなる板状または箱状の前記シール材に対する熱の遮蔽体を配設し,この遮蔽体を前記高電圧電極と電気的に接続してなり、かつ前記成膜用のガスは、前記隙間から前記背面部の開口に流通可能に構成したことにより、従来装置に比較して、排気ブロックのシール部の温度が低く抑えられ、装置のシールの安全性が向上し装置寿命の向上が図られるとともに、高温処理による生産性の向上を図ることができる。
【0035】
また、前記排気ブロックは、その貫通孔内にガスの導通を遮断する隔壁を備え、かつ前記真空排気口は、前記隔壁により区分された各貫通孔にまたがって連通して設けたものとする、あるいは前記真空排気口は、前記隔壁により区分された各貫通孔にそれぞれ個々に連通して設けたものとすることにより、ガス中で起こる排気ブロック内の二つの高電圧電極間の放電を抑制でき、装置の幅寸法の低減とコスト低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施例の概略構成を示す部分拡大図
【図2】従来の薄膜光電変換素子の製造装置の平面断面図
【図3】従来の薄膜光電変換素子の製造装置の部分拡大図
【図4】ステッピングロール方式の成膜装置の一例の概略構成を示す図
【図5】薄膜太陽電池の概略構成を説明する斜視図
【符号の説明】
1:基板、5:成膜室、6:プラズマ、8:シールブロック、13:成膜用真空室、15:真空室壁体、21:高電圧電極、22:接地電極、23:ヒータ、25:開口、26:接続筒、27:遮蔽体、73:真空排気口、90:排気ブロック、91:シール材、92:隔壁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for manufacturing a thin film photoelectric conversion element that forms a thin film on a flexible substrate by a stepping roll method among the apparatuses for manufacturing a thin film solar cell.
[0002]
[Prior art]
Currently, clean energy research and development is underway from the standpoint of environmental protection. Among them, solar cells are attracting attention because their resources (sunlight) are infinite and pollution-free.
[0003]
Thin film solar cells are expected to become the mainstream of future solar cells because they are thin and lightweight, inexpensive to manufacture, and easy to increase in area.
[0004]
Conventional thin-film solar cells have used glass substrates, but research and development of flexible solar cells using plastic films and metal films has been promoted in terms of weight reduction, workability, and mass productivity. Taking advantage of this flexibility, mass production became possible by a roll-to-roll method or a stepping roll method.
[0005]
The thin film solar cell includes a plurality of photoelectric conversion elements (or cells) in which a metal electrode layer, a photoelectric conversion layer made of a thin film semiconductor layer, and a transparent electrode layer are laminated on a flexible electrically insulating film substrate, for example. Yes. The voltage required for the metal electrode of the first photoelectric conversion element and the transparent electrode of the last photoelectric conversion element by repeatedly connecting the metal electrode of one photoelectric conversion element and the transparent electrode of the adjacent photoelectric conversion element. Can be output. For example, in order to obtain an alternating current of 100 V as a commercial power source by alternating current with an inverter, the output voltage of the thin-film solar cell is desirably 100 V or higher, and actually several tens or more elements are connected in series.
[0006]
Such a photoelectric conversion element and its series connection are formed by forming an electrode layer and a photoelectric conversion layer, patterning each layer, and a combination procedure thereof. The configuration and manufacturing method of the solar cell are described in, for example, Japanese Patent Application Laid-Open No. 10-233517 and Japanese Patent Application No. 11-19306.
[0007]
FIG. 5 shows a conceptual diagram of the structure of the thin-film solar cell described in Japanese Patent Application No. 11-19306. FIG. 5 shows a perspective view of a flexible thin film solar cell using a plastic film as a substrate. The unit photoelectric conversion element 62 formed on the front surface of the substrate 61 and the connection electrode layer 63 formed on the back surface of the substrate 61 are each completely separated into a plurality of unit units, and are formed by shifting the separation positions. For this reason, the current generated in the photoelectric conversion layer 65, which is an amorphous semiconductor portion of the element 62, is first collected in the transparent electrode layer 66, and then on the back surface through the current collecting holes 67 formed in the transparent electrode layer region. It leads to the connection electrode layer 63, and further to the outside of the transparent electrode layer region of the element adjacent to the element through the connection hole 68 for series connection formed outside the transparent electrode layer region of the element in the connection electrode layer region. The extended lower electrode layer 64 is reached, and both elements are connected in series.
[0008]
As described above, a method for producing a thin film of the thin film solar cell includes a roll-to-roll method or a stepping roll method. Both types are equipped with a substrate transport means by a plurality of rolls, the former is a method of continuously forming a film on a substrate that moves continuously in each film forming chamber, and the latter is stopped simultaneously in each film forming chamber. A method is employed in which a film is formed on a substrate and the substrate portion after film formation is sent to the next film formation chamber.
[0009]
The stepping roll type film forming apparatus is superior in that the characteristics of each thin film can be stably obtained and the apparatus can be made compact because it can prevent gas mutual diffusion between adjacent film forming chambers. The configuration of this is described in, for example, JP-A-6-292349, JP-A-7-6953, JP-A-7-221025, JP-A-8-250431, JP-A-8-293491, etc. Yes.
[0010]
FIG. 4 is a conceptual diagram showing an example of the configuration of a stepping roll film forming type vacuum film forming apparatus having a plurality of film forming chambers in a common vacuum chamber. The apparatus shown in FIG. 4 includes an unwinder chamber 290 for unwinding a flexible substrate, a metal electrode layer (back connection electrode layer), a photoelectric conversion layer (a-Si layer), a transparent electrode layer (ITO layer), and the like. A film forming chamber 280 serving as a plurality of independent processing spaces for forming the substrate and a winder chamber 291 for winding, and the substrate 201 is rolled out from the core 282 and wound on the core 283. A film is formed in the film formation chamber 280. The common chamber 281 houses a plurality of film formation chambers 280 therein.
[0011]
In the film formation chamber, film formation is performed by sputtering film formation or plasma chemical vapor deposition (hereinafter referred to as plasma CVD method). For example, in the stepping roll method in which a film is formed by plasma CVD, the film formation chamber is opened-the substrate is moved by one frame-the film formation chamber is sealed-the raw material gas is introduced-the pressure is controlled-the discharge is started-the discharge is finished- The operation consisting of opening the film forming chamber is repeated.
[0012]
Further, from the viewpoint of improving mass productivity, the present applicant has proposed a plasma CVD method stepping roll method in which a photoelectric conversion layer is simultaneously formed on two rows of flexible substrates that are transported in parallel (Japanese Patent Laid-Open No. Hei. 8-293491).
[0013]
2 and 3 show an apparatus described in the above-mentioned Japanese Patent Application Laid-Open No. 8-293491. FIG. 2 shows the state of the apparatus during film formation as a plan sectional view, and FIG. 3 shows the state of the film formation chamber during film formation as an enlarged view. The thin film photoelectric conversion device manufacturing apparatus of FIG. 2 includes a feeding chamber 11, a preliminary vacuum chamber 12, a film forming vacuum chamber 13, and a winding chamber 14, and the two flexible substrates 1 are wound up from the feeding chamber 11. It is conveyed to the chamber 14. A high-voltage electrode 21 and a ground electrode 22 having a heater 23 are disposed opposite to each other in the film-forming vacuum chamber 13, and an a-Si-based thin film is formed on the surface of the substrate 1 stopped therebetween by plasma CVD.
[0014]
As shown in an enlarged view in FIG. 3, the high voltage electrode 21 has a lid shape, and the substrate 1 is in close contact with the end face via the seal block 8, thereby forming a film forming chamber 5 that can be kept airtight. . One high-voltage electrode 21 is provided for each substrate 1, but is connected to the back surface of the substrate 1 via an exhaust block 9 made of an insulating material. The exhaust block 9 is brought into close contact with the high voltage electrode 21 through the sealing material 91, and has a pressure control function (not shown) through the exhaust port 72 opened in the exhaust block 9 and the opening 25 on the back surface of the high voltage electrode 71. The film forming chambers 5 are collectively maintained at the film forming pressure by the exhaust system.
[0015]
Application of a voltage between the high voltage electrode 21 and the ground electrode 22 generates plasma 6 to form a film. Since the two film forming chambers 5 are electrically insulated by the exhaust block 9, the plasma 6 can be controlled for each film forming chamber. When the ground electrode 22 is moved up and down several tens of millimeters by the actuator 24 shown in FIG. 2 after the film formation, the substrate 1 held by the ground electrode 22 is also released and moved in the direction of the arrow 41. .
[0016]
As described above, the deposition chamber 5 can be opened and closed by making the ground electrode 22 movable. The film forming chamber 5 has a very compact structure in which the discharge space occupies 50% or more of the whole. As the arrangement of the high voltage electrode 21, a configuration in which one electrode is placed in the center and discharge is performed on both surfaces thereof is possible. However, in this case, it is difficult to control the film thickness on both surfaces. Therefore, as shown in FIG. 2, a method of independently controlling each of the left and right electrodes is adopted.
[0017]
By the way, although the high voltage electrode 21 is exposed in the space of the film forming vacuum chamber 13, even when high frequency power is applied to the high voltage electrode 21, the pressure of the film forming vacuum chamber 13 during film formation is reduced to 0.1 Pa or less. By keeping it, discharge in the vacuum chamber 13 for film formation is suppressed. However, since the pressure in the exhaust block 9 is 10 to 100 Pa at the time of film formation, it is easily discharged between the two high voltage electrodes. Although there is a method of adjusting and controlling the phase between the electrodes, there is a problem in reality, and in order to avoid discharge between the two high voltage electrodes, the exhaust block 9 is an insulator and the length is 100 mm or more.
[0018]
[Problems to be solved by the invention]
However, the conventional thin film photoelectric conversion device manufacturing apparatus has the following problems.
[0019]
1) In order to improve the productivity of the thin film photoelectric conversion element, it is necessary to perform high-speed film formation. In this case, in order to prevent the deterioration of the characteristics, it is necessary to increase the processing temperature and reduce the mass production cost. From this point of view, this demand is increasing. In this case, the required temperature of the ground electrode 22 during film formation is about 350 ° C., and the high voltage electrode 21 made of, for example, an Al material is directly heated by radiant heat from the substrate or heated film forming gas. The temperature is about 200 ° C. in a conventional apparatus. By the way, fluororesin is mainly used as the seal material for the exhaust block that insulates and seals between the back openings of the two high-voltage electrodes. In this case, the fluorocarbon resin is used near the maximum usable temperature. Regular use is inevitable. For this reason, there is a problem that a film formation defect occurs due to a seal defect and the mass production cost increases, and there is a problem of the maintenance frequency and life of the seal material.
[0020]
2) In addition, although it is a problem different from the increase in the processing temperature, the length of the exhaust block between the high voltage electrodes is set to 100 mm in the conventional apparatus as described above in order to prevent discharge in the exhaust block. It is necessary to do it above. Accordingly, the width of the vacuum chamber for film formation is widened, the volume of the vacuum chamber is increased, a large exhaust system is required, and there is a problem that the overall cost of the apparatus including the cost of manufacturing the vacuum chamber increases. Discharge in the exhaust block generates a large amount of flakes and causes troubles such as failure and stop of the exhaust system.
[0021]
The present invention has been made to solve the above problems, and an object of the present invention is to reduce the temperature rise of the seal portion of the exhaust block, thereby reducing the seal of the thin film photoelectric conversion device manufacturing apparatus. Improve safety and equipment life, and improve productivity through high-temperature processing. Furthermore, by suppressing the discharge in the exhaust block, the size and cost of the apparatus are reduced, and the mass production cost is reduced comprehensively.
[0022]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention of claim 1 is provided between the two rows of flexible substrates transported in parallel, corresponding to each substrate, and a back surface portion parallel to the substrate surface. Two high voltage electrodes each having an end face capable of being hermetically contacted with the substrate and having an opening on the back surface, and facing each of the high voltage electrodes on the outside of each substrate. Two ground electrodes provided with a heater for heating the substrate and a back surface portion of the two high voltage electrodes, and having a through hole communicating with the opening of the back surface airtightly by a sealing material, and An exhaust block made of an electrical insulator having a vacuum exhaust port communicating with the through hole, and introducing a film forming gas into a film forming space formed between the high voltage electrode and each substrate, By applying a high frequency voltage between the high voltage electrode and the ground electrode, In a thin film photoelectric conversion device manufacturing apparatus configured to generate a discharge between voltage electrodes and form a thin film on one surface of each substrate, the back surface portion and the back surface portion of the high voltage electrode A gap for allowing the gas for film formation to flow in parallel is provided between the side surface portion and the heat of the plate-like or box-like sealing material made of a conductive material over the entire width of the back surface portion. It is assumed that a shield is provided, the shield is electrically connected to the high-voltage electrode, and the film-forming gas is configured to be able to flow from the gap to the opening in the back surface. .
[0023]
With the above configuration, the shield between the high-voltage electrode and the ground electrode can mainly reduce the amount of heat transferred from the substrate to the high-voltage electrode by radiation, and the heated film-forming gas directly Since it prevents the flow into the back opening of the high-voltage electrode, the temperature of the seal part of the exhaust block is kept low compared to the conventional device, the safety of the device seal is improved, and the selection range of the seal material The life expectancy is improved.
[0024]
Further, in the thin film photoelectric conversion device manufacturing apparatus according to claim 1, the exhaust block includes a partition wall that blocks gas conduction in the through hole, and the vacuum exhaust port is divided by the partition wall. In addition, the vacuum exhaust port is provided to communicate with each through hole divided by the partition wall (Claim 2). Claim 3).
[0025]
With the above configuration, it is possible to suppress the discharge between the two high-voltage electrodes in the exhaust block that occurs in the gas, and it is possible to form a stable thin film that is not affected by the discharge. In the above configuration, the invention of claim 3 has a larger number of parts than the invention of claim 2, but has a greater effect of suppressing discharge.
[0026]
Further, as the constituent material of the exhaust block, at least one material of fluororesin, glass or ceramics can be applied as in the invention of claim 4, for example, only the partition walls are made of ceramics and others are made of fluororesin. For example, it can be composed of a plurality of materials.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Based on the drawings, embodiments of the present invention will be described below.
[0028]
FIG. 1 shows a schematic configuration of an embodiment of the present invention, and shows an enlarged state during film formation. 1, the same members as those shown in FIG. 2 and FIG. Although not shown, the apparatus shown in FIG. 1 includes a feeding chamber 11, a preliminary chamber 12, a film forming vacuum chamber 13, and a winding chamber 14, as in the apparatus shown in FIG. 2, and two flexible substrates 1. Is conveyed from the feeding chamber 11 to the winding chamber 14.
[0029]
In the vacuum chamber 13 for film formation, a ground electrode 22 that also serves as a high voltage electrode 21 and a heater 23 is arranged to face each other, and an a-Si-based thin film is formed on the surface of the substrate 1 stopped in the meantime by plasma CVD. To do. As shown in FIG. 1, the high voltage electrode 21 has a lid shape, and an end face thereof is brought into close contact with the substrate 1 through the seal block 8, thereby forming a film forming chamber 5 capable of maintaining airtightness.
[0030]
One high voltage electrode 21 is provided for each substrate 1, and is connected to the back surface portion 21 a via an exhaust block 90 made of, for example, a fluororesin material. A partition wall 92 is provided at a position equidistant from each opening 25 in a through hole in the exhaust block 90 communicating with each opening 25 of the back surface portion 21 a of the high voltage electrode 21. A vacuum exhaust port 73 is provided in communication with each opening 25 and is configured to evacuate each film forming chamber 5 from the vacuum exhaust port 73.
[0031]
The exhaust block 90 is tightly fixed to the high voltage electrode 21 via a sealing material 91, and a pressure (not shown) is provided through a vacuum exhaust port 73 opened in the exhaust block 90 and an opening 25 of the back surface portion 21 a of the high voltage electrode 21. Connected to exhaust system with control function. As a result, the film forming chambers 5 are collectively maintained at the film forming pressure.
[0032]
In the discharge space between the high voltage electrode 21 and the ground electrode 22, the ground shield electrode 27 is electrically connected via the connection tube 26 without being in close contact with the surface of the high voltage electrode 21. The electrode 22 is fixed while maintaining a distance from the dischargeable electrode. The shield 27 is provided with a gap 80 between the side surface portion of the high-voltage electrode 21 and is configured so that a film-forming gas can flow from the gap 80 to the opening 25 in the back surface portion.
[0033]
In the above configuration, plasma 6 is generated by applying a voltage between the ground electrode 22 and the shield 27, and film formation is performed. Since the two film forming chambers 5 are electrically insulated by the exhaust block 90, the plasma 6 can be controlled for each film forming chamber. In the above-described embodiment, the vacuum exhaust port 73 is provided to communicate with each through hole divided by the partition wall 92, but is provided to individually communicate with each through hole divided by the partition wall. Also good.
[0034]
【The invention's effect】
According to the present invention, as described above, between the two rows of flexible substrates transported in parallel, each of the substrates is provided corresponding to each substrate, and the back surface parallel to the substrate surface and the substrate are in airtight contact. Two high voltage electrodes each having a side wall portion having a possible end surface and an opening on the back surface portion, and provided on the outside of each of the substrates so as to face the high voltage electrodes, A through hole that is provided between the two ground electrodes having a heater for heating and the back portions of the two high voltage electrodes and communicates with the opening of the back portion in a gastight manner by a sealing material, and communicates with the through holes. And an exhaust block made of an electrical insulator having a vacuum exhaust port for introducing a film forming gas into a film forming space formed between the high voltage electrode and each substrate, By applying a high frequency voltage between the electrodes, the substrate and the high voltage electrode In the thin film photoelectric conversion device manufacturing apparatus configured to generate electricity and form a thin film on one surface of each substrate, between the substrate and the back surface portion of the high voltage electrode, in parallel with the back surface portion, and A gap for allowing the film forming gas to flow is provided between the side surface portion and a thermal shield for the plate-like or box-like sealing material made of a conductive material is disposed over substantially the entire width of the back surface portion. The shield is electrically connected to the high voltage electrode, and the film forming gas can be circulated from the gap to the opening of the back surface portion. Thus, the temperature of the seal portion of the exhaust block can be kept low, the safety of the seal of the device is improved, the life of the device is improved, and the productivity can be improved by the high temperature treatment.
[0035]
Further, the exhaust block includes a partition wall that cuts off gas conduction in the through hole, and the vacuum exhaust port is provided in communication with each through hole divided by the partition wall. Alternatively, the vacuum exhaust port can be individually connected to each through-hole divided by the partition wall, thereby suppressing discharge between two high-voltage electrodes in the exhaust block that occurs in the gas. Therefore, it is possible to reduce the width of the apparatus and reduce the cost.
[Brief description of the drawings]
FIG. 1 is a partially enlarged view showing a schematic configuration of an embodiment of the present invention. FIG. 2 is a plan sectional view of a conventional thin film photoelectric conversion element manufacturing apparatus. FIG. 3 is a partial enlarged view of a conventional thin film photoelectric conversion element manufacturing apparatus. FIG. 4 is a diagram showing a schematic configuration of an example of a stepping roll type film forming apparatus. FIG. 5 is a perspective view explaining a schematic configuration of a thin film solar cell.
1: substrate, 5: film formation chamber, 6: plasma, 8: seal block, 13: vacuum chamber for film formation, 15: vacuum chamber wall, 21: high voltage electrode, 22: ground electrode, 23: heater, 25 : Opening, 26: Connecting cylinder, 27: Shielding body, 73: Vacuum exhaust port, 90: Exhaust block, 91: Sealing material, 92: Septum.

Claims (4)

並行して搬送される2列の可撓性基板の間に,各基板にそれぞれ対応して設けられ,基板面に平行な背面部と基板に気密に接触可能な端面を備える側壁部とを有し,かつ前記背面部は開口を有してなる二つの高電圧電極と、この高電圧電極に対向して前記各基板の外側にそれぞれ設けられ,基板加熱用のヒータを有する二つの接地電極と、前記二つの高電圧電極の背面部間に設けられ,シール材により前記背面部の開口と気密に連通する貫通孔を有し,かつこの貫通孔に連通する真空排気口を有する電気絶縁体からなる排気ブロックとを備え、前記高電圧電極と各基板との間に形成される成膜空間に成膜用のガスを導入して,高電圧電極と接地電極間への高周波電圧の印加によって前記基板と高電圧電極間に放電を発生させ,各基板の一面上に薄膜を形成するように構成した薄膜光電変換素子の製造装置において、前記基板と高電圧電極の背面部との間に,この背面部と平行に,かつ前記成膜用のガスを通流させるための隙間を側面部との間に設けて背面部の略全幅にわたって,導電性材料からなる板状または箱状の前記シール材に対する熱の遮蔽体を配設し,この遮蔽体を前記高電圧電極と電気的に接続してなり、かつ前記成膜用のガスは、前記隙間から前記背面部の開口に流通可能に構成したことを特徴とする薄膜光電変換素子の製造装置。  Between the two rows of flexible substrates transported in parallel, each substrate has a back surface portion parallel to the substrate surface and a side wall portion having an end surface capable of airtight contact with the substrate. And two high-voltage electrodes each having an opening on the back surface, and two ground electrodes provided on the outside of each substrate so as to face the high-voltage electrodes and having a heater for heating the substrate, An electrical insulator provided between the back surfaces of the two high-voltage electrodes, having a through hole that is in airtight communication with the opening of the back surface by a sealing material, and a vacuum exhaust port that is in communication with the through hole; An exhaust block, and a film-forming gas is introduced into a film-forming space formed between the high-voltage electrode and each substrate, and the high-frequency voltage is applied between the high-voltage electrode and the ground electrode. A discharge is generated between the substrate and the high-voltage electrode, on one side of each substrate In a thin-film photoelectric conversion device manufacturing apparatus configured to form a thin film, the film-forming gas is allowed to flow between the substrate and the back surface of the high voltage electrode in parallel with the back surface. A heat shield for the plate-like or box-like sealing material made of a conductive material is disposed over the substantially entire width of the back surface portion with the gap between the side surface portion, and this shield body is disposed on the high voltage electrode. An apparatus for manufacturing a thin film photoelectric conversion element, wherein the film forming gas is configured to be able to flow from the gap to the opening of the back surface portion. 請求項1に記載の薄膜光電変換素子の製造装置において、前記排気ブロックは、その貫通孔内にガスの導通を遮断する隔壁を備え、かつ前記真空排気口は、前記隔壁により区分された各貫通孔にまたがって連通して設けたことを特徴とする薄膜光電変換素子の製造装置。2. The thin film photoelectric conversion device manufacturing apparatus according to claim 1, wherein the exhaust block includes a partition wall that cuts off gas conduction in the through hole, and the vacuum exhaust port is provided in each of the through holes separated by the partition wall. An apparatus for manufacturing a thin film photoelectric conversion element, wherein the apparatus is provided so as to extend across a hole. 請求項1に記載の薄膜光電変換素子の製造装置において、前記排気ブロックは、その貫通孔内にガスの導通を遮断する隔壁を備え、かつ前記真空排気口は、前記隔壁により区分された各貫通孔にそれぞれ個々に連通して設けたことを特徴とする薄膜光電変換素子の製造装置。2. The thin film photoelectric conversion device manufacturing apparatus according to claim 1, wherein the exhaust block includes a partition wall that cuts off gas conduction in the through-hole, and the vacuum exhaust port is formed in each of the through holes separated by the partition wall. An apparatus for manufacturing a thin film photoelectric conversion element, wherein the apparatus is provided in communication with each of the holes. 請求項1ないし3のいずれか1項に記載の薄膜光電変換素子の製造装置において、前記排気ブロックは、フッ素樹脂,ガラスまたはセラミックスの内の少なくともいずれか一つの材料からなることを特徴とする薄膜光電変換素子の製造装置。 Apparatus for manufacturing thin film photoelectric conversion device according to any one of claims 1 to 3, wherein the discharge block is a thin film of fluorine resin, in that it consists of at least one of the material of glass or ceramics, wherein Photoelectric conversion device manufacturing equipment.
JP22975099A 1999-08-16 1999-08-16 Thin film photoelectric conversion device manufacturing equipment Expired - Fee Related JP3997456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22975099A JP3997456B2 (en) 1999-08-16 1999-08-16 Thin film photoelectric conversion device manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22975099A JP3997456B2 (en) 1999-08-16 1999-08-16 Thin film photoelectric conversion device manufacturing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007155910A Division JP4051639B2 (en) 2007-06-13 2007-06-13 Thin film photoelectric conversion device manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2001053313A JP2001053313A (en) 2001-02-23
JP3997456B2 true JP3997456B2 (en) 2007-10-24

Family

ID=16897109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22975099A Expired - Fee Related JP3997456B2 (en) 1999-08-16 1999-08-16 Thin film photoelectric conversion device manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3997456B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217341B2 (en) * 2007-10-02 2013-06-19 富士電機株式会社 Thin film manufacturing equipment
JP5272956B2 (en) * 2009-08-04 2013-08-28 富士電機株式会社 Plasma processing apparatus and plasma processing method
CN102234759A (en) * 2010-04-29 2011-11-09 亚洲太阳科技有限公司 Coating method for manufacturing thin film solar cell

Also Published As

Publication number Publication date
JP2001053313A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
EP0002383B1 (en) Method and apparatus for depositing semiconductor and other films
JP2741638B2 (en) Manufacturing method of amorphous silicon solar cell
JP2714247B2 (en) Method and apparatus for continuously forming large-area functional deposited film by microwave plasma CVD
EP2200098B1 (en) Production system of thin film solar battery
JPS6243554B2 (en)
US6413794B1 (en) Method of forming photovoltaic element
CN114908326A (en) Semiconductor processing equipment and method for forming laminated film structure
JP2000307139A (en) Manufacture of thin film solar cell and thin film electrode layer forming device
JP4985209B2 (en) Thin film solar cell manufacturing equipment
JP3997456B2 (en) Thin film photoelectric conversion device manufacturing equipment
CN108574049B (en) Perovskite solar cell module and preparation method thereof
JP3659512B2 (en) Photovoltaic element, method for forming the same, and apparatus for forming the same
JPH11288890A (en) Thin-film manufacturing apparatus
JP2013531373A (en) Discharge electrode plate array for film solar cell deposition
JP4051639B2 (en) Thin film photoelectric conversion device manufacturing equipment
US5049523A (en) Method of forming semiconducting materials and barriers
JP2001007367A (en) Method and device for manufacturing film solar cell
JP3649898B2 (en) Multilayer thin film forming apparatus using plasma CVD apparatus
JPS5963775A (en) Capacity reduced electrode assembly
JP3089336B2 (en) Manufacturing equipment for thin-film photoelectric conversion elements
JP4257586B2 (en) Substrate processing method
JP2000299481A (en) Manufacture of thin-film solar battery and degassing processor for solar battery substrate
JP3617664B2 (en) Thin film photoelectric conversion device manufacturing equipment
CN110582131A (en) Electric heating element for preparing solar thin-film battery
JP3560109B2 (en) Method and apparatus for manufacturing thin film photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees