JP3994608B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP3994608B2
JP3994608B2 JP37219999A JP37219999A JP3994608B2 JP 3994608 B2 JP3994608 B2 JP 3994608B2 JP 37219999 A JP37219999 A JP 37219999A JP 37219999 A JP37219999 A JP 37219999A JP 3994608 B2 JP3994608 B2 JP 3994608B2
Authority
JP
Japan
Prior art keywords
gas
processing
plasma
processing container
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37219999A
Other languages
Japanese (ja)
Other versions
JP2001153998A (en
Inventor
俊介 和泉
信 虎口
源一 片桐
康史 榊原
禎浩 柳沼
寿美 永友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP37219999A priority Critical patent/JP3994608B2/en
Publication of JP2001153998A publication Critical patent/JP2001153998A/en
Application granted granted Critical
Publication of JP3994608B2 publication Critical patent/JP3994608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、イオン交換樹脂等の廃棄物の減容処理装置に係わり、特に酸素含有
雰囲気中のプラズマにより生じる活性酸素原子を利用して灰化減容処理を行うプラズマ処理装置に関する。
【0002】
【従来の技術】
図8は、従来のこの種のプラズマ処理装置の基本構成例を模式的に示した断面図である。本処理装置は、特開平10−232300号公報に記載されているイオン交換樹脂を対象とした減容処理装置であり、廃棄物のイオン交換樹脂3を搭載した処理皿4を内蔵する円筒状の反応容器22の上部にドーム形状に形成された放電容器21が配され、このドーム形状の窓の外側にドーム形状の高周波誘導コイル7Aが巻装されている。反応容器22の円筒状側面の上端部には酸素あるいは酸素を含む複数のガスを導入するためのガス導入口5が備えられ、また、反応容器22の円筒状側面の下方には排気ポンプ23を連結した排気配管24が配されている。
【0003】
本構成においては、排気ポンプ23により減圧し、ガス導入口5より酸素あるいは酸素を含む複数のガスを導入して、反応容器22および放電容器21の内部を減圧酸素含有雰囲気とし、高周波電源6より高周波誘導コイル7Aへ高周波電流を供給して放電容器21の内部に高周波放電を形成することによって活性酸素が生成される。生成された活性酸素は、反応容器22内の処理皿4に搭載された廃棄物のイオン交換樹脂3へと作用し、これを灰化減容処理する。
【0004】
図9は、この種のプラズマ処理装置の他の基本構成例を模式的に示した断面図である。本処理装置は、特願平10−284064号公報に記載されているイオン交換樹脂を対象とした減容処理装置であり、廃棄物のイオン交換樹脂3を搭載した処理皿4を内蔵する円筒状の処理容器2の上面に電気絶縁物よりなる平板状の窓11が設けられ、この窓11の上部には高周波電源6に接続された高周波誘導コイル7が巻装されている。処理容器2の円筒状側面の下端部には酸素または酸素を含む複数のガスを導入するためのガス導入口5が備えられ、また、処理容器2の円筒状側面の上方には排気口8が配され、図示しない減圧ポンプに連結されている。処理皿4は、移動機構10によって鉛直方向に移動可能に組み込まれた移動ステージ9の上に置載されている。
【0005】
本構成では、移動ステージ9の高さ方向の位置を調整することによって、処理皿4に搭載された被処理物のイオン交換樹脂3を、その性状に合わせて減容処理することができる。すなわち、温度耐性が大きくプラズマによる加熱で熱分解しにくい樹脂の場合には、移動ステージ9を相対的に上方に配置してイオン交換樹脂3をプラズマ1の領域に近づけ、積極的に活性酸素に暴露して処理効率を上げる方法が採られ、これにより不活性酸化物の生成が抑えられる。また、キレート材を多量に含む場合や温度耐性の低い樹脂の場合には、移動ステージ9を相対的に下方に配置し、イオン交換樹脂3をプラズマ1の領域から遠ざけてプラズマ1による加熱を抑制することにより、熱分解ガスの多量発生を抑え、活性酸素粒子不足による不完全酸化物生成に起因するタール等の生成を効果的に低減させることができる。
【0006】
【発明が解決しようとする課題】
上記のごとく、この種のプラズマ処理装置においては、活性酸素を被処理物に作用させて灰化減容処理を行っている。したがって、ガス導入口5より導入された酸素がプラズマ生成領域に到達して活性酸素粒子が生成され、本活性酸素粒子が被処理物との反応領域へと到達する必要がある。このため、図8に示した従来例では、反応容器22の上端の一端に設けられたガス導入口5より酸素あるいは酸素を含むガスを導入し、反応容器22の下端の他端に設けられた排気配管24より排気する構成が採られ、また、図9に示した例では、処理容器2の下端に設けられたガス導入口5より酸素あるいは酸素を含むガスを導入し、処理容器2の上端に設けられた排気口8より排気する構成が採られている。
【0007】
しかしながら、前述のように、イオン交換樹脂3等の被処理物の場合には、加熱によって熱分解ガスを多量に発生するので、この熱分解ガスを完全に酸化させるためには、この熱分解ガスに見合った相当量の酸素をさらに供給する必要がある。被処理物のイオン交換樹脂3は、粒径が数mm以下、比重が1〜2程度であるので、上記の構成においては、多量に発生した熱分解ガスを酸化させるために酸素ガスの流量を増大させると、容器内部での流速が増大し、樹脂の限界摩擦速度を超えて樹脂の移動が生じ、ついには飛散してしまうという事態に至る可能性が大きくなる。
【0008】
本発明の目的は、プラズマによる活性酸素が樹脂等の被処理物との反応領域、
さらには被処理物の処理に伴って生じる熱分解ガスとの反応領域に効率的に導かれ、被処理物の飛散を生じることなく被処理物ならびに熱分解ガスが効果的に処理されるプラズマ処理装置を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明においては、
金属製の円筒型処理容器、処理容器の軸方向上端に配された電気絶縁性の窓、
処理容器の外の前記の窓の近傍に配された高周波電磁界発生用の高周波誘導コイル、処理容器内に前記の窓に対向して配された被処理物搭載用の処理皿、処理容器内を減圧状態とする減圧手段、処理容器内に酸素または酸素を含む複数のガスを導入するためのガス導入口、前記の高周波誘導コイルに高周波電流を供給する高周波電源を備え、処理皿に被処理物を搭載し、減圧手段による減圧操作およびガス導入口からのガス導入操作によって処理容器内を所定のガス雰囲気とし、高周波電源より供給された高周波電流を高周波誘導コイルに通電して電磁界作用によって誘導結合型プラズマを発生させ、酸素ガスのプラズマ化により生じた活性酸素原子を作用させて被処理物を灰化減容するプラズマ処理装置において、
(1)第一の参考手段として、上記のガス導入口を、窓の下端と処理皿の上端との間の高さに位置する円筒型処理容器の内壁に、円周上に均等に配置して複数個備えることとする。
【0010】
(2)また、第二の参考手段として、上記の(1)において、ガス導入方向が円筒型処理容器の周方向へと向かう周方向成分を持つようにガス導入口を形成することとする。
(3)また、本発明によれば、上記の(1)において、ガス導入口のうちの一部を、ガス導入方向が円筒型処理容器の周方向へと向かう周方向成分を持つように形成し、その他のガス導入口を、そのガス導入方向が円筒型処理容器の中心軸方向へと向かうように形成することとする。
【0011】
(4)また、上記の(3)において、少なくとも1個のガス導入口を、ガス導入方向が円筒型処理容器の軸方向上端に配された電気絶縁性の窓の方向へと向かう成分を持つように形成することとする。
(5)また、上記の()〜(4)において、上下方向の幅に比べて水平方向の幅の大きい偏平状の開口を持つようにガス導入口を形成することとする。
【0012】
(6)また、上記の()〜(5)において、その深部より開口に近づくにしたがってガスの流路面積が増大する広がり管の形状にガス導入口を形成することとする。
上記(1)のごとく、高周波誘導コイルによる誘導結合型プラズマが生じる窓の下側の被処理物が搭載される処理皿の上部に位置する処理容器の内壁にガス導入口を配置することとすれば、酸素または酸素を含むガスを効果的にプラズマ生成領域に供給することができるので効率的に活性酸素が形成され、被処理物の灰化減容処理が行われる。特に、ガス導入口を処理容器の内壁に円周上に均等に配置して複数個備えれば、反応ガスを各ガス導入口から容器内部へ均等に供給できることとなり、個々のガス導入口からのガスの流速を大きくしなくとも全体として多量のガスを供給できる。したがって、従来例で認められた過大な流速による被処理物の飛散を生じることなく、多量のガスの供給による効率的な灰化減容処理が可能となる。
【0013】
また、上記の(2)のごとくとすれば、ガス導入口から導入されたガスの処理皿部分に到達するまでの距離が長くなり、流れが広がるので、処理皿部分でのガス流速が低下する。したがって、被処理物の飛散の抑制に効果的である。
また、上記の(3)の本発明のごとくとすれば、上記(1)のごとく酸素または酸素を含むガスを効果的にプラズマ生成領域に供給することができ、かつ、上記の(2)のごとく被処理物の飛散を抑制して多量に供給できることとなるので、速い処理速度で灰化減容処理できることとなる。
【0014】
また、上記の(4)のごとくとすれば、導入されたガスはより確実にプラズマ生成領域に供給されるとともに、上記の(3)と同様にガスの流れが広がるので、処理皿部分でのガス流速が低下し、被処理物の飛散が抑制される。
さらに上記の(5)あるいは(6)のごとく構成すれば、ガス導入口から導入されるガスはガス導入口の出口で広がりをもつこととなり、ガス流速がより抑制されるので、被処理物の飛散の防止に効果的である。
【0015】
【発明の実施の形態】
参考例1>
図1は、本発明の参考手段1に記載のプラズマ処理装置の構成例を示す模式図で、(a)は(b)のY1 −Y1 面の縦断面図、(b)は(a)のX1 −X1 面の断面図である。本プラズマ処理装置は図9に示した従来の構成例を基に形成されたもので、図1(a)に見られるように、酸素または酸素を含む複数のガスを導入するためのガス導入口5が円筒型処理容器2の内壁の電気絶縁性の窓11の下端と被処理物3を搭載した処理皿4の上端との間の高さに配され、かつ図1(b)に見られるように、複数のガス導入口5が処理容器2の中心部へとガスが供給されるように円周上に均等に配置されているのが特徴である。
【0016】
したがって本参考例の構成においては、酸素または酸素を含むガスが集中的にプラズマ生成領域に供給されるので効率的に活性酸素が形成され、被処理物の灰化減容処理が効果的に行われる。また、図1(b)に見られるように8個のガス導入口5を備えているので、従来のようにガス導入口が1個の場合に比べて導入されるガスの流速が大幅に低く抑えられる。したがって、例えば処理容器2の内部を 1000 Paに保持して 8 L/min(0℃,1.013 ×105 Pa換算)の酸素を導入する場合、ガス導入口5が直径4mmの円形の場合には、各ガス導入口5での流速は16.8 m/s となるので、処理皿4に搭載した被処理物3へと吹き付けるガスの流速が低く抑えられ、被処理物3の飛散を生じることなく処理を行うことができる。
【0017】
参考例2>
図2は、本発明の参考手段2に記載のプラズマ処理装置の構成例を示す模式図で、(a)は(b)のY2 −Y2 面の縦断面図、(b)は(a)のX2 −X2 面の断面図である。本参考例の構成の参考例1の構成との相違点は、図2(b)に見られるように、円筒型処理容器2の内壁の周上に均等に配された複数のガス導入口5を通して供給されるガスが処理容器2の中心方向に対して周方向に一定の傾斜を備えて供給されるように、各ガス導入口5の出口方向が設定されている点にある。
【0018】
本構成においては、導入されたガスのガス導入口5から処理皿4の部分に到達するまでの距離が長くなり、ガスの流れが広がるので、被処理物3の部分に到達時のガス流速が低下する。したがって、被処理物3の飛散が効果的に抑制されることとなる。
<実施例
図3は、本発明の請求項に記載のプラズマ処理装置の構成例を示す模式図で、(a)は(b)のY3 −Y3 面の縦断面図、(b)は(a)のX3 −X3 面の断面図である。本実施例の構成の特徴は、円筒型処理容器2の内壁の周上に、実施例1と同様に処理容器2の中心部へとガスが供給されるように配されたガス導入口5と、実施例2と同様に処理容器2の中心方向に対して周方向に一定の傾斜を備えてガスが供給されるように配されたガス導入口5が、交互に、かつ、均等に配されている点にある。
【0019】
本構成においては、参考例1と同様に酸素または酸素を含むガスが集中的にプラズマ生成領域に供給されるとともに、参考例2と同様に被処理物3の飛散が効果的に抑制され、被処理物の灰化減容処理が効果的に行われる。
<実施例
図4は、本発明の請求項に記載のプラズマ処理装置の構成例を模式的に示す縦断面図である。本構成の特徴は、参考例1,2、実施例1と同様に円筒型処理容器2の内壁の電気絶縁性の窓11の下端と被処理物3を搭載した処理皿4の上端との間の高さに配された8個のガス導入口5のガス導入方向が、円筒型処理容器2の軸方向上端に配された電気絶縁性の窓11の方向へと向かう成分を持つように形成されている点にある。
【0020】
したがって、本構成においては、ガス導入口5から導入されたガスが誘導結合型プラズマが生じる窓11の下側へと導かれるので、効果的に活性酸素が形成され、灰化、減容処理が行われるとともに、参考例2と同様に導入口5から処理皿4の部分に到達するまでの距離が長くなるので、ガスの流れが広がり、被処理物3の部分に到達時のガス流速が低下する。したがって、被処理物3の飛散が抑制される。
【0021】
<実施例3>
図5は、本発明の請求項に記載のプラズマ処理装置の他の構成例を示す模式図で、(a)は(b)のY4 −O−Y4 面の縦断面図、(b)は(a)のX4 −X4 面の断面図である。本実施例の構成の特徴は、円筒型処理容器2の内壁の周上に、処理容器2の中心軸方向への成分と上端に配された電気絶縁性の窓11の方向への成分を持つようにガスが供給されるガス導入口5と、参考例2と同様に処理容器2の中心方向に対して周方向に一定の傾斜を備えてガスが供給されるガス導入口5が、交互に、かつ、均等に配されている点にある。
【0022】
本構成は、実施例の装置の長所と実施例の装置の長所を兼ね備えるので、
被処理物3の飛散を効果的に抑制して被処理物の灰化減容処理を効果的に行うプラズマ処理装置として好適である。
<実施例4>
図6は、本発明の請求項に記載のプラズマ処理装置に用いられるガス導入口の構成を示す模式図である。本図は、図1〜5のごとく円筒型処理容器2の内壁の電気絶縁性の窓11の下端と被処理物3を搭載した処理皿4の上端との間の高さに配した複数のガス導入口5の一つを処理容器2の内側より見た平面図であり、処理容器2の内面のガス導入口5の開口部を、高さ方向の幅Aに比べて水平方向の幅Bが広い偏平型の開口部に形成し、開口部の面積を大きくした点が特徴である。
【0023】
このようにガス導入口5の開口部の面積を大きくすれば、導入口5から処理容器2の内部へと導入されるガスの導入口5での流速が低下するので、被処理物の飛散の抑制に有効である。
なお、ガス導入口5の開口部の高さ方向の幅Aを大きくすれば開口部の面積も増大し、ガスの導入口5での流速が低下することとなるが、円筒型処理容器の内部の電気絶縁性の窓の下端と被処理物3を搭載した処理皿4の上端との間に効果的にガスを導くには幅Aは所定の範囲内に抑える必要があるので、図6のごとく高さ方向の幅Aに比べて水平方向の幅Bが広い偏平型の開口部とすることが有効である。
【0024】
<実施例5>
図7は、本発明の請求項に記載のプラズマ処理装置に用いられるガス導入口の構成を示す模式図である。本図は、図1〜5のごとく電気絶縁性の窓11の下端と被処理物3を搭載した処理皿4の上端との間の高さにある円筒型処理容器2の壁面に配された複数のガス導入口5のうちの一つの水平方向の断面を示したもので、図の右側が処理容器2の外側、図の左側が処理容器2の内側である。本実施例の特徴は、ガス導入口5が、処理容器2の外側(幅B1)より内側(幅B2)へと内部に行くにしたがって流路の広がる構造に構成されている点にある。
【0025】
したがって本構成においても、実施例と同様に、導入口5から処理容器2の内部へと導入されるガスの導入口5での流速が低下するので、被処理物の飛散の抑制に有効である。
なお、上述の実施例においては、処理容器2の軸方向上端に電気絶縁性の平板状の窓11を配した構成のプラズマ処理装置として例示したが、電気絶縁性の窓は平板状である必要はなく、図8に示した従来例の構成のごとくドーム状に形成された電気絶縁性の窓を有するものでもよい。また、上述の実施例1〜では8個の導入口5が等分に配置されているものとして図示されているが、本発明の原理よりみて8個に限定されるものでないことは図示するまでもない。
【0026】
【発明の効果】
上述のごとく、本発明によれば、プラズマ処理装置を請求項1〜に記載のごとく構成することとしたので、
処理容器内に導入された酸素がプラズマ生成領域へと効果的に送られ、プラズマによる活性酸素が樹脂等の被処理物との反応領域、さらには被処理物の処理に伴って生じる熱分解ガスとの反応領域に効率的に導かれ、被処理物ならびに熱分解ガスが効果的に処理されるプラズマ処理装置が得られるとともに、被処理物に加わるガスの圧力が効果的に抑制されて、被処理物の飛散を生じることなく運転できるプラズマ処理装置が得られることとなった。
【図面の簡単な説明】
【図1】 本発明の参考手段1に記載のプラズマ処理装置の構成例を示す模式図で、(a)は(b)のY1 −Y1 面の縦断面図、(b)は(a)のX1 −X1 面の断面図
【図2】 本発明の参考手段2に記載のプラズマ処理装置の構成例を示す模式図で、(a)は(b)のY2 −Y2 面の縦断面図、(b)は(a)のX2 −X2 面の断面図
【図3】 本発明の請求項に記載のプラズマ処理装置の構成例を示す模式図で、(a)は(b)のY3 −Y3 面の縦断面図、(b)は(a)のX3 −X3 面の断面図
【図4】 本発明の請求項に記載のプラズマ処理装置の構成例を模式的に示す縦断面図
【図5】 本発明の請求項2に記載のプラズマ処理装置の他の構成例を模式的に示す模式図で、(a)は(b)のY4 −O−Y4 面の縦断面図、(b)は(a)のX4 −X4 面の断面図
【図6】 本発明の請求項3に記載のプラズマ処理装置に用いられるガス導入口の構成を示す模式図
【図7】 本発明の請求項に記載のプラズマ処理装置に用いられるガス導入口の構成を示す模式図
【図8】 従来のこの種のプラズマ処理装置の基本構成例を模式的に示した断面図
【図9】 従来のこの種のプラズマ処理装置の他の基本構成例を模式的に示した断面図
【符号の説明】
1 プラズマ
2 処理容器
3 被処理物(イオン交換樹脂)
4 処理皿
5 ガス導入口
6 高周波電源
7 高周波誘導コイル
8 排気口
9 移動ステージ
10 移動機構
11 窓
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a volume reduction processing apparatus for waste such as ion exchange resin, and more particularly to a plasma processing apparatus that performs ashing volume reduction processing using active oxygen atoms generated by plasma in an oxygen-containing atmosphere.
[0002]
[Prior art]
FIG. 8 is a cross-sectional view schematically showing a basic configuration example of this type of conventional plasma processing apparatus. This treatment apparatus is a volume reduction treatment apparatus for ion exchange resins described in Japanese Patent Application Laid-Open No. 10-232300, and has a cylindrical shape containing a treatment dish 4 in which waste ion exchange resin 3 is mounted. A discharge vessel 21 formed in a dome shape is disposed above the reaction vessel 22, and a dome-shaped high-frequency induction coil 7A is wound around the outside of the dome-shaped window. A gas inlet 5 for introducing oxygen or a plurality of gases containing oxygen is provided at the upper end of the cylindrical side surface of the reaction vessel 22, and an exhaust pump 23 is provided below the cylindrical side surface of the reaction vessel 22. A connected exhaust pipe 24 is arranged.
[0003]
In this configuration, the pressure is reduced by the exhaust pump 23, oxygen or a plurality of gases containing oxygen are introduced from the gas inlet 5, the inside of the reaction vessel 22 and the discharge vessel 21 is made a reduced-pressure oxygen-containing atmosphere, and the high-frequency power source 6 Active oxygen is generated by supplying a high-frequency current to the high-frequency induction coil 7 </ b> A to form a high-frequency discharge in the discharge vessel 21. The generated active oxygen acts on the waste ion exchange resin 3 mounted on the processing dish 4 in the reaction vessel 22, and the ash is reduced in volume.
[0004]
FIG. 9 is a cross-sectional view schematically showing another basic configuration example of this type of plasma processing apparatus. This processing apparatus is a volume reduction processing apparatus for an ion exchange resin described in Japanese Patent Application No. 10-284064, and has a cylindrical shape with a processing dish 4 on which a waste ion exchange resin 3 is mounted. A flat window 11 made of an electrical insulator is provided on the upper surface of the processing container 2, and a high frequency induction coil 7 connected to a high frequency power source 6 is wound on the upper portion of the window 11. A gas inlet 5 for introducing oxygen or a plurality of gases containing oxygen is provided at the lower end of the cylindrical side surface of the processing vessel 2, and an exhaust port 8 is provided above the cylindrical side surface of the processing vessel 2. Arranged and connected to a vacuum pump (not shown). The processing dish 4 is placed on a moving stage 9 incorporated by a moving mechanism 10 so as to be movable in the vertical direction.
[0005]
In this configuration, by adjusting the position of the moving stage 9 in the height direction, it is possible to reduce the volume of the ion exchange resin 3 to be processed mounted on the processing dish 4 in accordance with its properties. That is, in the case of a resin that has high temperature resistance and is difficult to be thermally decomposed by heating with plasma, the moving stage 9 is disposed relatively upward so that the ion exchange resin 3 is brought close to the region of the plasma 1 and actively becomes active oxygen. A method of increasing the processing efficiency by exposure is adopted, whereby the generation of inert oxide is suppressed. In the case of containing a large amount of chelating material or a resin having low temperature resistance, the moving stage 9 is disposed relatively downward, and the ion exchange resin 3 is kept away from the region of the plasma 1 to suppress heating by the plasma 1. By doing so, it is possible to suppress the generation of a large amount of pyrolysis gas and to effectively reduce the generation of tar and the like resulting from the generation of incomplete oxide due to the lack of active oxygen particles.
[0006]
[Problems to be solved by the invention]
As described above, in this type of plasma processing apparatus, active oxygen is allowed to act on the object to be processed to perform the ashing volume reduction processing. Therefore, oxygen introduced from the gas inlet 5 reaches the plasma generation region to generate active oxygen particles, and the active oxygen particles need to reach a reaction region with the object to be processed. Therefore, in the conventional example shown in FIG. 8, oxygen or a gas containing oxygen is introduced from the gas inlet 5 provided at one end of the upper end of the reaction vessel 22, and provided at the other end of the lower end of the reaction vessel 22. In the example shown in FIG. 9, oxygen or a gas containing oxygen is introduced from a gas inlet 5 provided at the lower end of the processing vessel 2, and the upper end of the processing vessel 2 is taken. The structure which exhausts from the exhaust port 8 provided in this is taken.
[0007]
However, as described above, in the case of an object to be treated such as the ion exchange resin 3, a large amount of pyrolysis gas is generated by heating. Therefore, in order to completely oxidize this pyrolysis gas, this pyrolysis gas is used. It is necessary to further supply a considerable amount of oxygen commensurate with Since the ion exchange resin 3 to be processed has a particle size of several mm or less and a specific gravity of about 1 to 2, in the above configuration, the oxygen gas flow rate is set to oxidize a large amount of pyrolysis gas generated. Increasing the flow rate increases the flow rate inside the container, increasing the possibility that the resin will move beyond the limit frictional velocity of the resin and eventually scatter.
[0008]
The object of the present invention is to react the active oxygen by plasma with the object to be treated such as resin,
In addition, plasma treatment is efficiently conducted to the reaction region with the pyrolysis gas that occurs during the treatment of the workpiece, and the workpiece and the pyrolysis gas are effectively treated without causing scattering of the workpiece. To provide an apparatus.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention,
A metal cylindrical processing container, an electrically insulating window arranged at the axial upper end of the processing container,
A high-frequency induction coil for generating a high-frequency electromagnetic field disposed in the vicinity of the window outside the processing container, a processing dish for mounting a processing object disposed in the processing container facing the window, and in the processing container The processing dish is provided with a pressure reducing means for reducing the pressure of the gas, a gas inlet for introducing oxygen or a plurality of gases containing oxygen into the processing container, and a high frequency power source for supplying a high frequency current to the high frequency induction coil. The processing vessel is made into a predetermined gas atmosphere by depressurization operation by the depressurization means and gas introduction operation from the gas introduction port, and a high-frequency current supplied from a high-frequency power source is passed through the high-frequency induction coil by electromagnetic field action. In a plasma processing apparatus that generates inductively coupled plasma and ashes and reduces the volume of an object to be processed by the action of active oxygen atoms generated by the oxygen gas plasma
(1) As a first reference means, the gas inlets described above are evenly arranged on the inner wall of the cylindrical processing container located at a height between the lower end of the window and the upper end of the processing dish on the circumference. A plurality of them will be provided.
[0010]
(2) Further, as the second reference means, in (1) above, the gas introduction port is formed so that the gas introduction direction has a circumferential component toward the circumferential direction of the cylindrical processing container.
(3) Further , according to the present invention, in the above (1), a part of the gas inlet is formed so that the gas introduction direction has a circumferential component toward the circumferential direction of the cylindrical processing container. The other gas introduction ports are formed so that the gas introduction direction is directed toward the central axis of the cylindrical processing container.
[0011]
(4) In the above (3) , at least one gas introduction port has a component in which the gas introduction direction is directed to the direction of the electrically insulating window arranged at the upper end in the axial direction of the cylindrical processing container. It will be formed as follows.
(5) Further, in the above ( 3 ) to (4), the gas inlet is formed so as to have a flat opening having a horizontal width larger than the vertical width.
[0012]
(6) Further, in the above ( 3 ) to (5), the gas inlet is formed in the shape of a spread tube in which the gas flow path area increases as it approaches the opening from the deep part.
As described in (1) above, the gas inlet is arranged on the inner wall of the processing vessel located at the upper part of the processing dish on which the object to be processed below the window where the inductively coupled plasma is generated by the high frequency induction coil. For example, oxygen or a gas containing oxygen can be effectively supplied to the plasma generation region, so that active oxygen is efficiently formed and ashing and volume reduction processing of the object to be processed is performed. In particular, if a plurality of gas inlets are arranged evenly on the inner wall of the processing vessel and provided with a plurality, the reaction gas can be supplied uniformly from each gas inlet to the inside of the vessel. A large amount of gas can be supplied as a whole without increasing the gas flow rate. Therefore, efficient ashing and volume reduction processing by supplying a large amount of gas can be performed without causing scattering of the object to be processed due to the excessive flow velocity recognized in the conventional example.
[0013]
Moreover, if it carries out like said (2), since the distance until it reaches | attains the process tray part of the gas introduce | transduced from the gas inlet becomes long and a flow spreads, the gas flow rate in a process dish part will fall. . Therefore, it is effective for suppressing scattering of the object to be processed.
Further, according to the present invention of (3) above, oxygen or a gas containing oxygen can be effectively supplied to the plasma generation region as described in (1) above, and the above (2) Thus, since scattering of the object to be processed can be suppressed and a large amount can be supplied, ashing and volume reduction processing can be performed at a high processing speed.
[0014]
Further, if the above (4) is adopted, the introduced gas is more reliably supplied to the plasma generation region, and the gas flow spreads in the same manner as in the above (3) . The gas flow rate is reduced, and scattering of the workpiece is suppressed.
Further, if configured as in the above (5) or (6), the gas introduced from the gas introduction port has a spread at the outlet of the gas introduction port, and the gas flow rate is further suppressed. It is effective in preventing scattering.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
< Reference Example 1>
1A and 1B are schematic views showing a configuration example of a plasma processing apparatus described in the reference means 1 of the present invention. FIG. 1A is a longitudinal sectional view of the Y 1 -Y 1 plane of FIG. 1B, and FIG. ) is a sectional view of X 1 -X 1 side of. This plasma processing apparatus is formed based on the conventional configuration example shown in FIG. 9, and as shown in FIG. 1 (a), a gas inlet for introducing oxygen or a plurality of gases containing oxygen. 5 is arranged at a height between the lower end of the electrically insulating window 11 on the inner wall of the cylindrical processing container 2 and the upper end of the processing dish 4 on which the workpiece 3 is mounted, and can be seen in FIG. Thus, the plurality of gas inlets 5 are characterized in that they are uniformly arranged on the circumference so that gas is supplied to the central portion of the processing container 2.
[0016]
Therefore, in the configuration of this reference example, oxygen or a gas containing oxygen is intensively supplied to the plasma generation region, so that active oxygen is efficiently formed, and the ashing and volume reduction treatment of the workpiece is effectively performed. Is called. Also, as shown in FIG. 1B, since eight gas inlets 5 are provided, the flow rate of the introduced gas is significantly lower than in the case of a single gas inlet as in the prior art. It can be suppressed. Therefore, for example, when the inside of the processing vessel 2 is held at 1000 Pa and oxygen of 8 L / min (0 ° C., 1.013 × 10 5 Pa equivalent) is introduced, when the gas inlet 5 is circular with a diameter of 4 mm, Since the flow velocity at each gas inlet 5 is 16.8 m / s, the flow velocity of the gas blown to the workpiece 3 mounted on the treatment tray 4 is kept low, and the treatment of the workpiece 3 without scattering occurs. It can be performed.
[0017]
< Reference Example 2>
2A and 2B are schematic views showing a configuration example of the plasma processing apparatus described in the reference means 2 of the present invention. FIG. 2A is a longitudinal sectional view of the Y 2 -Y 2 plane of FIG. 2B, and FIG. ) is a sectional view of the X 2 -X 2 side of. The difference between the configuration of this reference example and the configuration of Reference Example 1 is that a plurality of gas inlets 5 arranged evenly on the circumference of the inner wall of the cylindrical processing vessel 2 are seen in FIG. The outlet direction of each gas introduction port 5 is set such that the gas supplied through the gas supply port is supplied with a certain inclination in the circumferential direction with respect to the central direction of the processing container 2.
[0018]
In this configuration, the distance of the introduced gas from the gas inlet 5 to the portion of the processing dish 4 is increased, and the gas flow is widened. descend. Therefore, scattering of the workpiece 3 is effectively suppressed.
<Example 1 >
Figure 3 is a schematic diagram showing a configuration example of a plasma processing apparatus according to claim 1 of the present invention, (a) is a longitudinal sectional view of the Y 3 -Y 3 side of (b), (b) is (a Is a cross-sectional view of the X 3 -X 3 plane. A feature of the configuration of the present embodiment is that a gas inlet port 5 is arranged on the circumference of the inner wall of the cylindrical processing container 2 so that gas is supplied to the central portion of the processing container 2 as in the first embodiment. Similarly to the second embodiment, the gas introduction ports 5 arranged so as to be supplied with a constant inclination in the circumferential direction with respect to the central direction of the processing vessel 2 are alternately and evenly arranged. There is in point.
[0019]
In this configuration, oxygen or a gas containing oxygen is intensively supplied to the plasma generation region as in Reference Example 1, and scattering of the workpiece 3 is effectively suppressed as in Reference Example 2, and The ashing and volume reduction treatment of the processed product is effectively performed.
<Example 2 >
FIG. 4 is a longitudinal sectional view schematically showing a configuration example of the plasma processing apparatus according to claim 2 of the present invention. The feature of this configuration is that between the lower end of the electrically insulating window 11 on the inner wall of the cylindrical processing vessel 2 and the upper end of the processing dish 4 on which the workpiece 3 is mounted, as in Reference Examples 1, 2, and Example 1. The gas introduction directions of the eight gas introduction ports 5 arranged at the height of the cylindrical processing vessel 2 are formed so as to have a component toward the direction of the electrically insulating window 11 arranged at the upper end in the axial direction of the cylindrical processing vessel 2. It is in the point.
[0020]
Therefore, in this configuration, since the gas introduced from the gas inlet 5 is guided to the lower side of the window 11 where the inductively coupled plasma is generated, active oxygen is effectively formed, and ashing and volume reduction treatment are performed. As in the case of Reference Example 2, the distance from the inlet 5 to the portion of the processing dish 4 is increased, so that the gas flow spreads and the gas flow velocity when reaching the portion of the object to be processed 3 decreases. To do. Therefore, scattering of the workpiece 3 is suppressed.
[0021]
<Example 3>
FIG. 5 is a schematic view showing another configuration example of the plasma processing apparatus according to claim 2 of the present invention, wherein (a) is a longitudinal sectional view of the Y 4 -O—Y 4 plane of (b), (b) ) Is a cross-sectional view of the X 4 -X 4 plane of (a). The feature of the configuration of the present embodiment is that there are a component in the direction of the central axis of the processing container 2 and a component in the direction of the electrically insulating window 11 arranged at the upper end on the circumference of the inner wall of the cylindrical processing container 2. In this manner, the gas introduction port 5 to which gas is supplied and the gas introduction port 5 to which gas is supplied with a certain inclination in the circumferential direction with respect to the central direction of the processing container 2 are alternately provided as in Reference Example 2. And is evenly distributed .
[0022]
This configuration, since combine the advantages of strengths and apparatus of Example 2 of the device of Example 1,
It is suitable as a plasma processing apparatus that effectively suppresses scattering of the object to be processed 3 and effectively performs ashing and volume reduction processing of the object to be processed.
<Example 4>
FIG. 6 is a schematic diagram showing the configuration of the gas inlet used in the plasma processing apparatus according to claim 3 of the present invention. As shown in FIGS. 1 to 5, this figure shows a plurality of portions arranged at the height between the lower end of the electrically insulating window 11 on the inner wall of the cylindrical processing container 2 and the upper end of the processing dish 4 on which the workpiece 3 is mounted. FIG. 3 is a plan view of one of the gas inlets 5 as viewed from the inside of the processing container 2, and the opening of the gas inlet 5 on the inner surface of the processing container 2 is wider than the width A in the height direction. It is characterized in that it is formed in a wide flat type opening and the area of the opening is increased.
[0023]
If the area of the opening of the gas inlet 5 is increased in this way, the flow velocity of the gas introduced from the inlet 5 into the processing container 2 at the inlet 5 decreases, so that the processing object is scattered. Effective for suppression.
Note that if the width A in the height direction of the opening of the gas inlet 5 is increased, the area of the opening will also increase and the flow velocity of the gas at the inlet 5 will decrease, but the inside of the cylindrical processing vessel will be reduced. In order to effectively introduce gas between the lower end of the electrically insulating window and the upper end of the processing dish 4 on which the workpiece 3 is mounted, the width A must be kept within a predetermined range. Thus, it is effective to use a flat opening having a width B in the horizontal direction wider than the width A in the height direction.
[0024]
<Example 5>
FIG. 7 is a schematic diagram showing the configuration of the gas inlet used in the plasma processing apparatus according to claim 4 of the present invention. This figure is arranged on the wall surface of the cylindrical processing container 2 at a height between the lower end of the electrically insulating window 11 and the upper end of the processing dish 4 on which the workpiece 3 is mounted as shown in FIGS. The cross section of one of the gas inlets 5 in the horizontal direction is shown. The right side of the figure is the outside of the processing container 2, and the left side of the figure is the inside of the processing container 2. A feature of the present embodiment is that the gas inlet 5 is configured to have a structure in which the flow path widens from the outside (width B1) to the inside (width B2) of the processing container 2 toward the inside.
[0025]
Therefore, also in this configuration, as in the fourth embodiment, the flow velocity of the gas introduced from the inlet 5 into the processing container 2 at the inlet 5 is reduced, which is effective for suppressing scattering of the object to be processed. is there.
In the above-described embodiment, the plasma processing apparatus is illustrated as having the configuration in which the electrically insulating flat window 11 is arranged at the upper end in the axial direction of the processing vessel 2, but the electrically insulating window needs to be flat. Instead, it may have an electrically insulating window formed in a dome shape as in the configuration of the conventional example shown in FIG. Further, in the above-described first to third embodiments, the eight inlets 5 are illustrated as being equally arranged, but it is illustrated that the number is not limited to eight in view of the principle of the present invention. Not too long.
[0026]
【The invention's effect】
As described above, according to the present invention, the plasma processing apparatus is configured as described in claims 1 to 4 .
Oxygen introduced into the processing vessel is effectively sent to the plasma generation region, and the active oxygen generated by the plasma is a reaction region with the object to be processed such as a resin, and further, a pyrolysis gas generated by processing the object to be processed And a plasma processing apparatus in which the object to be processed and the pyrolysis gas are effectively processed, and the pressure of the gas applied to the object to be processed is effectively suppressed. A plasma processing apparatus that can be operated without causing scattering of the processed material was obtained.
[Brief description of the drawings]
1A and 1B are schematic views showing a configuration example of a plasma processing apparatus described in reference means 1 of the present invention, in which FIG. 1A is a longitudinal sectional view of a Y 1 -Y 1 plane in FIG. 1B, and FIG. in schematic view showing a configuration example of a plasma processing apparatus described in reference unit 2 of a cross-sectional view of the X 1 -X 1 side [2] the present invention), Y 2 -Y 2 side of (a) is (b) longitudinal sectional view of, (b) is a schematic diagram showing a configuration example of a plasma processing apparatus according to claim 1 of a cross-sectional view of the X 2 -X 2 side of (a) [3] the present invention, (a) (B) is a longitudinal cross-sectional view of the Y 3 -Y 3 plane, (b) is a cross-sectional view of the X 3 -X 3 plane of (a). FIG. 4 shows the plasma processing apparatus according to claim 2 of the present invention. FIG. 5 is a schematic cross-sectional view schematically showing another configuration example of the plasma processing apparatus according to claim 2 of the present invention, in which (a) is a schematic view of Y 4 in (b). -O-Y 4 vertical cross-sectional view, (b) is (a) Sectional view of the X 4 -X 4 side of FIG. 6 according to claim 4 of the present schematic diagram showing a gas inlet structure used in the plasma processing apparatus according to claim 3 of the invention [7] The present invention FIG. 8 is a schematic view showing the configuration of a gas inlet used in the plasma processing apparatus of FIG. 8. FIG. 9 is a cross-sectional view schematically showing a basic configuration example of this type of conventional plasma processing apparatus. Sectional drawing schematically showing another basic configuration example of the processing equipment
1 Plasma
2 processing container
3 Object to be treated (ion exchange resin)
4 processing dishes
5 Gas inlet
6 High frequency power supply
7 High frequency induction coil
8 Exhaust vent
9 Moving stage 10 Moving mechanism 11 Window

Claims (4)

金属製の円筒型処理容器、処理容器の軸方向上端に配された電気絶縁性の窓、処理容器の外の前記の窓の近傍に配された高周波電磁界発生用の高周波誘導コイル、処理容器内に前記の窓に対向して配された被処理物搭載用の処理皿、処理容器内を減圧状態とする減圧手段、処理容器内に酸素または酸素を含む複数のガスを導入するためのガス導入口、前記の高周波誘導コイルに高周波電流を供給する高周波電源を備え、処理皿に被処理物を搭載し、減圧手段による減圧操作およびガス導入口からのガス導入操作によって処理容器内を所定のガス雰囲気とし、高周波電源より供給された高周波電流を高周波誘導コイルに通電して電磁界作用によって誘導結合型プラズマを発生させ、酸素ガスのプラズマ化により生じた活性酸素原子を作用させて被処理物を灰化減容するプラズマ処理装置において、
前記のガス導入口が、窓の下端と処理皿の上端との間の高さに位置する円筒型
処理容器の内壁に、円周上に均等に配置して複数個備えられ
前記のガス導入口のうちの一部が、ガス導入方向が円筒型処理容器の周方向へと向かう周方向成分を持つように形成され、その他のガス導入口が、ガス導入方向が円筒型処理容器の中心軸方向へと向かうように形成されていることを特徴とするプラズマ処理装置。
Metal-made cylindrical processing container, an electrically insulating window disposed at the upper end in the axial direction of the processing container, a high-frequency induction coil for generating a high-frequency electromagnetic field disposed near the window outside the processing container, and the processing container A processing dish for mounting an object to be processed disposed inside the window, a decompression means for reducing the pressure in the processing container, and a gas for introducing oxygen or a plurality of gases containing oxygen into the processing container A high-frequency power source for supplying a high-frequency current to the high-frequency induction coil is provided, an object to be processed is mounted on the processing dish, and the inside of the processing vessel is predetermined by a pressure reducing operation by a pressure reducing means and a gas introducing operation from the gas introducing port. In a gas atmosphere, a high-frequency current supplied from a high-frequency power source is passed through a high-frequency induction coil to generate inductively coupled plasma by electromagnetic field action, and active oxygen atoms generated by the oxygen gas plasma are allowed to act In the plasma processing apparatus for volume decrease ashing treated,
A plurality of the gas inlets are provided on the inner wall of the cylindrical processing container located at a height between the lower end of the window and the upper end of the processing dish, and are arranged evenly on the circumference ,
Some of the gas introduction ports are formed so that the gas introduction direction has a circumferential component that goes in the circumferential direction of the cylindrical processing vessel, and the other gas introduction ports have a cylindrical treatment in the gas introduction direction. A plasma processing apparatus, wherein the plasma processing apparatus is formed so as to be directed toward the central axis of the container.
前記のガス導入口のうちの少なくとも1個が、ガス導入方向が円筒型処理容器の軸方向上端に配された電気絶縁性の窓の方向へと向かう成分を持つように形成されていることを特徴とする請求項に記載のプラズマ処理装置。At least one of the gas inlets is formed to have a component in which the gas introduction direction is directed toward an electrically insulating window disposed at the upper end in the axial direction of the cylindrical processing vessel. The plasma processing apparatus according to claim 1 . 前記のガス導入口が、上下方向の幅に比べて水平方向の幅の大きい偏平状の開口を持つように形成されていることを特徴とする請求項1乃至のいずれか一つに記載のプラズマ処理装置。Wherein the gas inlet is according to any one of claims 1 to 2, characterized in that it is formed to have a large flat opening of the horizontal width than the vertical width Plasma processing equipment. 前記のガス導入口が、その深部より開口に近づくにしたがってガスの流路面積が増大する広がり管の形状に形成されていることを特徴とする請求項1乃至のいずれか一つに記載のプラズマ処理装置。Wherein the gas inlet is according to any one of claims 1 to 3, characterized in that the flow passage area of the gas is formed in the shape of the spread tube increases toward the opening from the deep Plasma processing equipment.
JP37219999A 1999-09-16 1999-12-28 Plasma processing equipment Expired - Fee Related JP3994608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37219999A JP3994608B2 (en) 1999-09-16 1999-12-28 Plasma processing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26149099 1999-09-16
JP11-261490 1999-09-16
JP37219999A JP3994608B2 (en) 1999-09-16 1999-12-28 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2001153998A JP2001153998A (en) 2001-06-08
JP3994608B2 true JP3994608B2 (en) 2007-10-24

Family

ID=26545105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37219999A Expired - Fee Related JP3994608B2 (en) 1999-09-16 1999-12-28 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3994608B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111463A1 (en) 2011-02-15 2012-08-23 富士電機株式会社 Resin volume reduction treatment system and resin volume reduction treatment method
JP5790668B2 (en) 2011-02-15 2015-10-07 富士電機株式会社 Resin volume reduction processing apparatus with radioactive material and method of operating the same

Also Published As

Publication number Publication date
JP2001153998A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
WO2004049419A1 (en) Plasma processing method and apparatus
JP2010240534A (en) Control method of plasma by magnetic field in exhaust gas treating apparatus and exhaust gas treating apparatus using the same
KR20020003808A (en) Toroidal plasma source for plasma processing
JP2001500322A (en) Apparatus and method for uniform, less damaging and anisotropic processing
KR20060090745A (en) Side rf coil and side heater for plasma processing apparatus
US7713377B2 (en) Apparatus and method for plasma treating a substrate
CN111383884B (en) Plasma confinement system and method
JP2016096149A (en) Toroidal plasma channel with varying cross-sectional area along the channel
JP2009088284A (en) Plasma processing apparatus
JP2022100339A (en) Substrate processing apparatus and substrate processing method
JP2013098172A (en) Plasma supply unit and substrate processing device including the same
JP3994608B2 (en) Plasma processing equipment
CN112447474B (en) Plasma processor with movable ring
KR20010053216A (en) Plasma vacuum pumping cell
CN108615670B (en) Exhaust module with powder adsorption prevention device and plasma washing device
JP5271456B2 (en) Plasma processing apparatus and plasma processing method
TWI778081B (en) Gas exhaust plate and plasma processing apparatus
KR20150124903A (en) Apparatus of manufacturing nano powder
KR20160049630A (en) Plasma chamber having particle reduction structure
KR102340857B1 (en) Plasma water treatmemt apparatus using bubbles in water
JP3845933B2 (en) Volume reduction processing method and apparatus for ion exchange resin
KR102121598B1 (en) A baffle assembly and an apparatus for treating a substrate with the baffle
TWI806400B (en) Plasma treatment device
JP3733733B2 (en) Volume reduction treatment method for ion exchange resin
CN116614926A (en) Plasma confinement system and method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees