JP3992985B2 - Method for manufacturing piezoelectric vibrator - Google Patents

Method for manufacturing piezoelectric vibrator Download PDF

Info

Publication number
JP3992985B2
JP3992985B2 JP2002015338A JP2002015338A JP3992985B2 JP 3992985 B2 JP3992985 B2 JP 3992985B2 JP 2002015338 A JP2002015338 A JP 2002015338A JP 2002015338 A JP2002015338 A JP 2002015338A JP 3992985 B2 JP3992985 B2 JP 3992985B2
Authority
JP
Japan
Prior art keywords
piezoelectric vibrator
electrode
mask
cross
electrode pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002015338A
Other languages
Japanese (ja)
Other versions
JP2003218657A (en
Inventor
啓一 大内
嘉孝 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002015338A priority Critical patent/JP3992985B2/en
Publication of JP2003218657A publication Critical patent/JP2003218657A/en
Application granted granted Critical
Publication of JP3992985B2 publication Critical patent/JP3992985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電振動子の電極パターン加工及び圧電振動子製造方法に関し、とくに電極パターンの露光方法に関するものである。
【0002】
【従来の技術】
通信機器、コンピュータ、時計等の様々な電子機器において、水晶振動子が電子部品として使用されている。その水晶振動子の圧電材料として、水晶ウェハを使用する傾向があり、量産性を高めるためフォトリソグラフィー技術で成形している。
【0003】
図1は、従来の水晶デバイスの製造方法の一例を示すフローチャートであり、水晶ウェハ表面加工工程(ステップ1〜6)、振動子形成工程(ステップ7〜11)、電極形成工程(ステップ12〜16)とに大きく分けることができる。
まず、ステップ1において、人工水晶の原石から水晶ブロックが所定の大きさに切断され、ステップ2において、切断された水晶ブロックがスライスされて、水晶ウェハが切れ出される。その後ステップ3において、水晶ウェハの表面がラッピング(研磨)され、これにより切り出された水晶ウェハが所定の厚さに加工される。そしてステップ4のポリッシング工程により水晶ウェハ表面が鏡面加工される。その後ステップ5のウェハ洗浄(純水洗浄)され、ステップ6で水晶表面層をエッチングする。
【0004】
次に、電極の形成について説明する。まず、ステップ7において、Cr-Auなどをスパッタ成膜機で外形成形膜を成膜する。ステップ8において、外形成形膜の上にレジストが塗布される。その後、ステップ8で塗布されたレジスト膜の上に水晶デバイスの外形形状に象られたマスクで露光し、現像される。
ステップ9で形成された水晶振動子外形形状パターンに基づいて外形形状膜に対しステップ10のエッチング工程でエッチングされ、水晶振動子の外形が形成される。その後ステップ11でレジスト膜と外形成形膜が剥離される。
【0005】
次に電極の成形について説明する。ステップ12において、水晶振動子の外形が成形された水晶ウェハ表面に電極膜が形成される。その後ステップ13において、電極膜の上にレジストが塗布され、ステップ14において、所定の電極パターンに象られたマスクで、露光された後、現像が行われ所定のレジストパターンが形成される。そして、ステップ15において、形成されたレジストパターンに基づいてエッチングが行われ、電極及び、配線が形成され、ステップ16において、レジスト膜が剥離される。上記のステップ1からステップ16の工程を通り水晶ウェハに中に、所定の電極及び、配線パターンが形成された複数の水晶振動子片が完成する。
【0006】
ここで、電極パターンの形成工程について図2により詳細に説明する。ステップ17でレジストを塗布し、ステップ18でプリベーキングした後、ステップ19で露光し、ステップ20で現像し、ステップ21でポストベーキングをし、ステップ22で電極膜のエッチングをし、ステップ23でレジストを剥離し、ステップ24で電極パターンが仕上がることとなる。
【0007】
【発明が解決しようとする課題】
しかし、ステップ19の露光工程において、電極形成膜が形成された水晶ウェハにレジスト塗布した後、電極パターンを露光する際、水晶振動子の形状がエッチングにより抜かれた水晶ウェハには、図4に示すように、電極に平面部35と断面部34があり、この部分を、図10に示すようなマウントパット部50と主面電極60と側面電極70のパターンが形成されたパターンマスクで、一度に電極パターンを成形する方法で、露光、現像し、電極成形膜を抜くと、図5の平面部35の電極パターンと断面部36との間に、適正露光量に差が生じてしまう。
【0008】
この適正露光量の差が生じた中、平面の微細電極パターンが鮮明になる様、露光・現像・電極膜エッチングをしようとすると、断面部36が露光量不足になり、図2のステップ22の電極膜エッチング工程で無くならなければいけない断面部の電極成形膜が残ってしまい、断面部でショートを引き起こす原因になる。
【0009】
また、断面部ショートを防止する為に、断面部にあわせた露光量で露光・現像・メタルエッチングすると、図5の平面部の微細な電極パターンは適正露光量を超えてしまい、微細電極パターンが断線してしまう可能性がある。図6の断面部39の近辺拡大図に、切れ易い微細電極パターン38を示す。
【0010】
また、通信機器は毎年、小型化が急ピッチで進みそれに使用される水晶振動子も小型化が要求され、小型水晶振動子の電極パターン及び配線もさらに微細化してきている。その為、従来の電極パターン成形方法では前述した問題がある為、水晶振動子の小型化に対応しきれない。
【0011】
そこで、本発明は上記課題を解決し、断面部のショートや電極パターンの断線を防止して、高精度な電極パターンの形成を行うことのできる電極パターン露光方法および水晶振動子製造方法を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明では圧電材料のウェハに圧電振動子の外形形成し、前記圧電振動子の表面に電極用の金属膜を成膜し、前記金属膜の表面にレジスト膜を形成し、前記レジスト膜を形状の異なる複数の電極パターン形成用のマスクで露光し圧電振動子を製造する。ここで、前記複数のマスクの一種を前記圧電振動子の厚み方向の垂直部を露光する第1のマスクとすると良い。さらに、前記複数のマスクの一種を前記圧電振動子の上面または下面を露光する第2のマスクとすると良い。
【0013】
本発明では、水晶振動子外形形状にエッチングされ、表面に電極用金属膜を成膜した水晶ウェハに塗布されたレジスト膜を異なる二種類の電極パターン成形用マスクでそれぞれ露光し水晶振動子を製造する。
ここで前記露光マスクは、平面のレジスト膜に露光する電極パターン成形用マスクと、斜面のレジスト膜を露光する斜面露光用マスクで露光すると良い。前記露光は、同じレジスト膜に連続して二種類の電極パターンマスクで露光すると良い。
【0014】
本発明では、音叉型圧電振動子の股部に形成された断面部を露光した後、前記音叉型圧電振動子の平面部にマウントパット部と主面電極と側面電極を形成する露光を行い音叉型圧電振動子を製造する。
また、本発明では圧電振動体のウエハ上に外形形状を形成した圧電振動子の表面に電極膜を形成し、前記電極膜の表面にレジストを塗布し、前記圧電振動子の股部に形成された断面部を前記ウエハの厚み方向から露光し、前記圧電振動子の表面にマウントパット部と主面電極と側面電極を形成する露光を行った後、前記レジストを現像し、前記電極膜をエッチングし、前記レジストを剥離し圧電振動子を製造する。
【0015】
この他に、本願発明では圧電振動体のウエハ上に外形形状を形成した圧電振動子の表面に電極膜を形成し、前記電極膜の表面にレジストを塗布し、前記圧電振動子の股部に形成された断面部を前記断面部に対応する開口部を有する第1のマスクにより前記ウエハの厚み方向から第1の露光をし、前記圧電振動子の表面に前記第1のマスクの前記開口部より幅の広い開口部を有する第2マスクにより、マウントパット部と主面電極と側面電極を形成する第2の露光を行った後、前記レジストを現像し、前記電極膜をエッチングし、前記レジストを剥離し圧電振動子を製造する。
【0016】
上記の方法により、高精度な電極パターンの成形が可能となり、小型かつ、高性能な圧電振動子や水晶振動子の製造が可能となる。
【0017】
【発明の実施の形態】
本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。図1は水晶振動子製造の一連を示すフローチャートである。
本発明の電極パターン成形は、図1のステップ11からステップ16で行われ。さらに詳細な電極パターン成形工程フローチャートを図3で説明する。
【0018】
電極膜を形成した振動子の表面にステップ25でレジストを塗布し、ステップ26でプリベーキングを行った後、ステップ27で断面部の露光を行う。次にステップ28で平面部の露光を行い、ステップ29で現像を行った後、ステップ30でポストベーキングし、ステップ31で電極膜のエッチングを行った後、ステップ32でレジスト剥離し、電極パターンを仕上げる、ステップ33。
【0019】
図7は、断面部用の露光用マスクで、振動子の全面に渡りマスクパターンが形成されているが、音叉型水晶振動子の音叉の腕の基部となる、いわゆる股部の近傍のみ長方形で、一辺が音叉の腕の幅方向に配置された開口部100を有する。開口部100は、最終的に電極パターンを仕上げた時の電極パターン幅より、小さい。ここで開口部100の幅は、仕上げ時の電極の間隔の80%以上100%未満が好ましい。
【0020】
図8は、平面部の露光用マスクで、マウントパット部50と主面電極60と側面電極70に対応するパターンを持ち、断面部の周囲に対応する略長方形の開口部110を有する。ここで開口部110の幅は、仕上げ時の電極パターン間隔と同一である。すなわち図7の開口部100の幅より広い。また、開口部110の音叉の腕の先端側には、断面部の曲線に倣う半円形の曲線部がある。
【0021】
このように、レジストが溜る断面部に予め露光し、次に平面部を露光することにより、断面部の露光量を多くして断面部のショートを防止することができる。
【0022】
従来工程(図2従来電極成形工程フローチャート)では露光作業が一回であるのに対し、本実施例の方法(図3電極成形工程フローチャート)は露光が二回である。従来の方法と比べると露光作業が一回多い分作業時間が長くなるが、図2の電極パターン成形工程をすべて二回繰り返す訳ではないので、差ほど変わらない作業時間で大きな効果を得られる。
【0023】
さらに、主面電極と側面電極の間の幅は、狭い方が電界強度が高くなり、断面部の露光量と独立に平面部の露光量を調整することにより微細な間隔を形成することができ、結果として振動特性の優れた振動子を得ることができる。また、主面電極と側面電極の間隔を一定にすることにより電極間で形成される容量が一定になり、振動子の緩急特性が改善される。
【0024】
他の実施例として、圧電振動片の基部に一体に形成され、圧電振動片の外周を同一平面上に囲む枠体からなる圧電振動子において、振動片の基部の外側の2ヶ所と振動片の中央部に形成される微小な半円部の垂直面に対して、垂直面の露光と平面の露光を別々に行い、電極パターンを形成した。枠体を含む圧電振動子の製造においては、断面部の個数が一枚の圧電材料ウエハあたり数千個となり、断面部と平面部を別々に露光し、微細な平面部の電極パターン形成と断面部のショートの防止は振動子の特性向上と歩留まり向上に効果がある。
【0025】
他の実施例として、両端支持型の圧電振動片の垂直面と平面の露光を別々に行い、微細な電極パターン形成ができた。両端支持型の圧電振動子では、1個の振動子あたり10箇所以上の断面部があり断面部のショートを防止することは、歩留まり向上に重要である。
【0026】
【発明の効果】
以上説明したように、電極成形工程において断面部専用マスクと平面部電極パターンマスクで二回露光する事により、高精度で鮮明な微細電極パターンを成形する事ができる。それに伴い、水晶振動子製造において断面部のショートを防止することによる歩留り向上と品質向上及び、主面電極と側面電極間の微細パターン形成による緩急特性の改善や振動子の小型化など性能向上に効果を発揮する。
【図面の簡単な説明】
【図1】水晶振動子の製造工程を示すフローチャートである。
【図2】従来の電極パターン成形工程を示すフローチャートである。
【図3】本発明による電極パターン成形工程の実施例を示すフローチャートである。
【図4】水晶振動子の断面部を示す斜視図である。
【図5】電極パターンを示す平面図である。
【図6】断面部付近の平面拡大図である。
【図7】断面部の露光用マスクを示す平面図である。
【図8】電極パターンの露光用マスクを示す平面図である。
【図9】電極パターンを示す平面図である。
【図10】従来の電極パターンマスクを示す平面図である。
【符号の説明】
34 断面部
35 平面部
37 平面部
36 断面部
38 微細電極パターン
39 断面部
50 マウントパット部
60 主面電極
70 側面電極
100 開口部
110 開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode pattern processing of a piezoelectric vibrator and a piezoelectric vibrator manufacturing method, and more particularly to an electrode pattern exposure method.
[0002]
[Prior art]
In various electronic devices such as communication devices, computers, and watches, crystal resonators are used as electronic components. There is a tendency to use a quartz wafer as the piezoelectric material of the quartz crystal vibrator, and it is molded by a photolithography technique in order to increase mass productivity.
[0003]
FIG. 1 is a flowchart showing an example of a conventional method of manufacturing a quartz device. A quartz wafer surface processing step (steps 1 to 6), a vibrator forming step (steps 7 to 11), and an electrode forming step (steps 12 to 16). ) And can be broadly divided.
First, in step 1, a quartz block is cut into a predetermined size from the raw quartz crystal, and in step 2, the cut quartz block is sliced and a quartz wafer is cut out. Thereafter, in step 3, the surface of the quartz wafer is lapped (polished), and the cut quartz wafer is processed to a predetermined thickness. Then, the surface of the crystal wafer is mirror-finished by the polishing process in step 4. Thereafter, wafer cleaning (pure water cleaning) in step 5 is performed, and in step 6, the crystal surface layer is etched.
[0004]
Next, formation of an electrode will be described. First, in step 7, an outer shape forming film is formed using Cr—Au or the like by a sputtering film forming machine. In step 8, a resist is applied on the outer shape forming film. Thereafter, the resist film applied in Step 8 is exposed and developed with a mask formed in the external shape of the quartz crystal device.
Based on the crystal resonator outer shape pattern formed in step 9, the outer shape film is etched in the etching process of step 10 to form the outer shape of the crystal resonator. Thereafter, in step 11, the resist film and the outer shape forming film are peeled off.
[0005]
Next, the forming of the electrode will be described. In step 12, an electrode film is formed on the surface of the crystal wafer on which the external shape of the crystal resonator is formed. Thereafter, in step 13, a resist is coated on the electrode film. In step 14, after exposure with a mask formed in a predetermined electrode pattern, development is performed to form a predetermined resist pattern. In step 15, etching is performed based on the formed resist pattern to form electrodes and wirings. In step 16, the resist film is peeled off. A plurality of crystal resonator pieces in which predetermined electrodes and wiring patterns are formed in the quartz wafer through the steps 1 to 16 are completed.
[0006]
Here, the electrode pattern forming step will be described in detail with reference to FIG. After applying a resist in step 17, pre-baking in step 18, exposing in step 19, developing in step 20, post-baking in step 21, etching of the electrode film in step 22, and resist in step 23 The electrode pattern is finished in step 24.
[0007]
[Problems to be solved by the invention]
However, in the exposure process of Step 19, when the resist pattern is applied to the crystal wafer on which the electrode forming film is formed and the electrode pattern is exposed, the crystal wafer in which the shape of the crystal resonator is removed by etching is shown in FIG. Thus, the electrode has a flat portion 35 and a cross-sectional portion 34, and this portion is formed with a pattern mask in which a pattern of the mount pad portion 50, the main surface electrode 60, and the side surface electrode 70 as shown in FIG. When the electrode pattern is formed and exposed and developed, and the electrode forming film is removed, a difference in the appropriate exposure amount occurs between the electrode pattern on the flat portion 35 and the cross-sectional portion 36 in FIG.
[0008]
When the exposure / development / electrode film etching is performed so that the fine electrode pattern on the plane becomes clear while the difference in the appropriate exposure amount occurs, the cross-sectional portion 36 becomes insufficient in the exposure amount. The electrode forming film in the cross-sectional portion that must be eliminated in the electrode film etching step remains, causing a short circuit in the cross-sectional portion.
[0009]
In addition, in order to prevent short-circuiting of the cross section, exposure, development, and metal etching with an exposure amount that matches the cross-section portion, the fine electrode pattern on the planar portion of FIG. There is a possibility of disconnection. The fine electrode pattern 38 which is easy to cut is shown in the enlarged view of the vicinity of the cross section 39 in FIG.
[0010]
In addition, communication devices have been downsized at a rapid pace every year, and the crystal units used therefor are also required to be downsized, and the electrode patterns and wiring of the small crystal units have been further miniaturized. For this reason, the conventional electrode pattern forming method has the above-mentioned problems, and cannot cope with the miniaturization of the crystal resonator.
[0011]
Accordingly, the present invention provides an electrode pattern exposure method and a crystal resonator manufacturing method capable of solving the above-described problems and preventing formation of short-circuited cross-sections and disconnection of the electrode pattern and forming a highly accurate electrode pattern. The purpose is that.
[0012]
[Means for Solving the Problems]
In the present invention, the outer shape of a piezoelectric vibrator is formed on a wafer of piezoelectric material, a metal film for an electrode is formed on the surface of the piezoelectric vibrator, a resist film is formed on the surface of the metal film, and the resist film is shaped. A piezoelectric vibrator is manufactured by exposing with a plurality of masks for forming electrode patterns different from each other. Here, one type of the plurality of masks may be a first mask that exposes a vertical portion in the thickness direction of the piezoelectric vibrator. Further, one of the plurality of masks may be a second mask that exposes the upper surface or the lower surface of the piezoelectric vibrator.
[0013]
In the present invention, a crystal resonator is manufactured by exposing a resist film applied to a crystal wafer having a metal film for an electrode formed on the surface of the crystal wafer by etching with two different types of electrode pattern forming masks. To do.
Here, the exposure mask is preferably exposed by an electrode pattern forming mask that exposes a planar resist film and a slope exposure mask that exposes a sloped resist film. The exposure may be performed with two types of electrode pattern masks in succession on the same resist film.
[0014]
In the present invention, after exposing the cross section formed in the crotch portion of the tuning fork type piezoelectric vibrator, the tuning fork is exposed by forming the mount pad portion, the main surface electrode, and the side electrode on the flat portion of the tuning fork type piezoelectric vibrator. Type piezoelectric vibrators are manufactured.
Further, in the present invention, an electrode film is formed on the surface of the piezoelectric vibrator having an outer shape formed on the wafer of the piezoelectric vibrator, and a resist is applied to the surface of the electrode film to form the crotch portion of the piezoelectric vibrator. The exposed cross section is exposed from the thickness direction of the wafer, and exposure is performed to form a mount pad portion, a main surface electrode, and side electrodes on the surface of the piezoelectric vibrator, and then the resist is developed and the electrode film is etched. Then, the resist is peeled off to manufacture a piezoelectric vibrator.
[0015]
In addition, in the present invention, an electrode film is formed on the surface of the piezoelectric vibrator having an outer shape formed on the wafer of the piezoelectric vibrator, a resist is applied to the surface of the electrode film, and the crotch portion of the piezoelectric vibrator is applied. The formed cross section is first exposed from the thickness direction of the wafer by a first mask having an opening corresponding to the cross section, and the opening of the first mask is formed on the surface of the piezoelectric vibrator. After the second exposure for forming the mount pad portion, the main surface electrode, and the side electrode with a second mask having a wider opening, the resist is developed, the electrode film is etched, and the resist Is peeled off to produce a piezoelectric vibrator.
[0016]
By the above method, it is possible to form a highly accurate electrode pattern, and it is possible to manufacture a small and high-performance piezoelectric vibrator or crystal vibrator.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a flowchart showing a series of quartz crystal resonator manufacturing.
The electrode pattern formation of the present invention is performed in steps 11 to 16 in FIG. A more detailed electrode pattern forming process flowchart will be described with reference to FIG.
[0018]
A resist is applied to the surface of the vibrator on which the electrode film is formed in step 25, pre-baking is performed in step 26, and then a cross section is exposed in step 27. Next, the planar portion is exposed in step 28, developed in step 29, post-baked in step 30, the electrode film is etched in step 31, the resist is peeled off in step 32, and the electrode pattern is formed. Finish, step 33.
[0019]
FIG. 7 shows an exposure mask for a cross-section, and a mask pattern is formed over the entire surface of the vibrator. , And an opening 100 having one side arranged in the width direction of the arm of the tuning fork. The opening 100 is smaller than the electrode pattern width when the electrode pattern is finally finished. Here, the width of the opening 100 is preferably 80% or more and less than 100% of the gap between the electrodes at the time of finishing.
[0020]
FIG. 8 shows an exposure mask having a flat portion, which has a pattern corresponding to the mount pad portion 50, the main surface electrode 60, and the side surface electrode 70, and has a substantially rectangular opening 110 corresponding to the periphery of the cross section. Here, the width of the opening 110 is the same as the electrode pattern interval at the time of finishing. That is, it is wider than the width of the opening 100 in FIG. Further, there is a semicircular curved portion that follows the curve of the cross-sectional portion on the tip end side of the tuning fork arm of the opening 110.
[0021]
In this way, by exposing the cross-sectional portion where the resist is accumulated in advance and then exposing the flat portion, it is possible to increase the exposure amount of the cross-sectional portion and prevent a short-circuit of the cross-sectional portion.
[0022]
In the conventional process (FIG. 2 conventional electrode forming process flowchart), the exposure operation is performed once, whereas in the method of this embodiment (FIG. 3 electrode forming process flowchart), the exposure is performed twice. Compared with the conventional method, the work time becomes longer because the exposure work is increased by one time. However, since the electrode pattern forming process shown in FIG. 2 is not necessarily repeated twice, a great effect can be obtained with a work time that does not change as much as the difference.
[0023]
Furthermore, the narrower the width between the main surface electrode and the side electrode, the higher the electric field strength. By adjusting the exposure amount of the plane portion independently of the exposure amount of the cross section, a fine interval can be formed. As a result, a vibrator having excellent vibration characteristics can be obtained. Further, by making the distance between the main surface electrode and the side electrode constant, the capacitance formed between the electrodes becomes constant, and the gradual characteristics of the vibrator are improved.
[0024]
As another embodiment, in a piezoelectric vibrator formed of a frame that is integrally formed on the base of the piezoelectric vibrating piece and surrounds the outer periphery of the piezoelectric vibrating piece on the same plane, two places outside the base of the vibrating piece and the vibrating piece With respect to the vertical surface of the minute semicircular portion formed in the center portion, the vertical surface exposure and the flat surface exposure were separately performed to form an electrode pattern. In the manufacture of a piezoelectric vibrator including a frame, the number of cross-sectional portions is several thousand per piezoelectric material wafer, and the cross-sectional portion and the flat portion are exposed separately to form a fine flat-surface electrode pattern and cross-section. Prevention of short circuit is effective in improving the characteristics and yield of the vibrator.
[0025]
As another example, a vertical electrode and a flat surface of a piezoelectric vibrating piece supported on both ends were separately exposed to form a fine electrode pattern. In a double-sided support type piezoelectric vibrator, there are 10 or more cross-sections per vibrator, and it is important to improve the yield to prevent short-circuiting of the cross-sections.
[0026]
【The invention's effect】
As described above, by exposing twice with the cross-section dedicated mask and the planar electrode pattern mask in the electrode forming step, a highly precise and clear fine electrode pattern can be formed. Along with this, in crystal resonator manufacturing, yield is improved and quality is improved by preventing short-circuiting of the cross-section, and performance is improved by improving the steepness characteristics by forming a fine pattern between the main surface electrode and side electrode and miniaturizing the resonator. Demonstrate the effect.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a manufacturing process of a crystal resonator.
FIG. 2 is a flowchart showing a conventional electrode pattern forming process.
FIG. 3 is a flowchart showing an embodiment of an electrode pattern forming process according to the present invention.
FIG. 4 is a perspective view showing a cross section of a crystal resonator.
FIG. 5 is a plan view showing an electrode pattern.
FIG. 6 is an enlarged plan view in the vicinity of a cross section.
FIG. 7 is a plan view showing an exposure mask in a cross section.
FIG. 8 is a plan view showing an exposure mask for an electrode pattern.
FIG. 9 is a plan view showing an electrode pattern.
FIG. 10 is a plan view showing a conventional electrode pattern mask.
[Explanation of symbols]
34 Cross section 35 Flat section 37 Flat section 36 Cross section 38 Fine electrode pattern 39 Cross section 50 Mount pad section 60 Main surface electrode 70 Side electrode 100 Opening section 110 Opening section

Claims (6)

圧電材料のウエハに断面部と平面部を有する圧電振動子の外形を形成する工程と、
前記圧電振動子の表面に電極用の金属膜を成膜する工程と、
前記金属膜の表面にレジスト膜を形成する工程と、
前記レジスト膜を、前記断面部を露光するための第1のマスクで露光する行程と、
前記レジスト膜を、前記平面部を露光するための第2のマスクで露光する行程と、
を有する圧電振動子の製造方法。
Forming an outer shape of a piezoelectric vibrator having a cross-sectional portion and a planar portion on a wafer of piezoelectric material;
Forming a metal film for an electrode on the surface of the piezoelectric vibrator;
Forming a resist film on the surface of the metal film;
A step of exposing the resist film with a first mask for exposing the cross-sectional portion;
A step of exposing the resist film with a second mask for exposing the planar portion;
A method of manufacturing a piezoelectric vibrator having
前記第1のマスクが前記圧電振動子の厚み方向の垂直部を露光するマスクである請求項1記載の圧電振動子の製造方法。  The method of manufacturing a piezoelectric vibrator according to claim 1, wherein the first mask is a mask that exposes a vertical portion in a thickness direction of the piezoelectric vibrator. 前記第2のマスクが前記圧電振動子の上面または下面を露光し、電極パターンを形成するマスクである請求項1記載の圧電振動子の製造方法。  The method of manufacturing a piezoelectric vibrator according to claim 1, wherein the second mask is a mask that exposes an upper surface or a lower surface of the piezoelectric vibrator to form an electrode pattern. 前記第1のマスクは、前記断面部の斜面のレジスト膜を露光する斜面露光用マスクである請求項1に記載の圧電振動子の製造方法。  2. The method of manufacturing a piezoelectric vibrator according to claim 1, wherein the first mask is a slope exposure mask that exposes a resist film on the slope of the cross section. 前記第1のマスクが、前記断面部の上面または側面を露光するマスクであり、
前記第2のマスクが、電極パターンを有し、前記断面部の上面または側面と、前記平面部の上面を露光するマスクである請求項1に記載の圧電振動子の製造方法。
The first mask is a mask that exposes an upper surface or a side surface of the cross-sectional portion;
2. The method of manufacturing a piezoelectric vibrator according to claim 1, wherein the second mask has an electrode pattern and exposes an upper surface or a side surface of the cross-sectional portion and an upper surface of the planar portion.
前記圧電振動子の外形は腕部を有する音叉型であり、前記断面部は前記腕部の基部である請求項5に記載の圧電振動子の製造方法。  The method of manufacturing a piezoelectric vibrator according to claim 5, wherein the outer shape of the piezoelectric vibrator is a tuning fork type having an arm portion, and the cross-sectional portion is a base portion of the arm portion.
JP2002015338A 2002-01-24 2002-01-24 Method for manufacturing piezoelectric vibrator Expired - Fee Related JP3992985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015338A JP3992985B2 (en) 2002-01-24 2002-01-24 Method for manufacturing piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015338A JP3992985B2 (en) 2002-01-24 2002-01-24 Method for manufacturing piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JP2003218657A JP2003218657A (en) 2003-07-31
JP3992985B2 true JP3992985B2 (en) 2007-10-17

Family

ID=27651764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015338A Expired - Fee Related JP3992985B2 (en) 2002-01-24 2002-01-24 Method for manufacturing piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP3992985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075833B2 (en) 2003-06-04 2008-04-16 セイコーエプソン株式会社 Piezoelectric vibration gyro element, manufacturing method thereof, and piezoelectric vibration gyro sensor

Also Published As

Publication number Publication date
JP2003218657A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JP4506135B2 (en) Piezoelectric vibrator
JP4435758B2 (en) Method for manufacturing crystal piece
US8365371B2 (en) Methods for manufacturing piezoelectric vibrating devices
US8093787B2 (en) Tuning-fork-type piezoelectric vibrating piece with root portions having tapered surfaces in the thickness direction
US7770275B2 (en) Methods for manufacturing tuning-fork type piezoelectric vibrating devices
JP2005094410A5 (en)
JP2006203700A (en) Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator
JP4509621B2 (en) Manufacturing method of tuning-fork type crystal resonator for angular velocity sensor
JP3992985B2 (en) Method for manufacturing piezoelectric vibrator
US7560040B2 (en) Etching method and article etched molded by that method
JPH10190390A (en) Manufacture of electronic component and manufacture of surface acoustic wave device
JP2007096369A (en) Metal mask and method of cutting piezoelectric resonator element
JP4007115B2 (en) Micromachine and manufacturing method thereof
GB1594980A (en) Tuning fork-type quartz crystal vibrator and method of forming the same
JP3255534B2 (en) Manufacturing method of ultra-thin piezoelectric resonator element plate
KR100815566B1 (en) Manufacturing method of quartz vibrator
WO2004011366A1 (en) Micromachine and method of manufacturing the micromachine
JPH04294622A (en) Production of piezoelectric element
JP3255456B2 (en) Manufacturing method of ultra-thin piezoelectric resonator element plate
JP3191164B2 (en) Manufacturing method of composite longitudinal vibration mechanical filter
JP2005026847A (en) Method of manufacturing piezoelectric transducer element
JP2002314162A (en) Crystal substrate and its manufacturing method
JP2005191703A (en) Manufacturing method of surface acoustic wave element
JP2007295555A (en) Quartz vibrator, its manufacturing method and quartz vibrator package
JP2000201041A (en) Manufacture of surface acoustic wave element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees