JP3992408B2 - Energy absorbing member - Google Patents

Energy absorbing member Download PDF

Info

Publication number
JP3992408B2
JP3992408B2 JP29576399A JP29576399A JP3992408B2 JP 3992408 B2 JP3992408 B2 JP 3992408B2 JP 29576399 A JP29576399 A JP 29576399A JP 29576399 A JP29576399 A JP 29576399A JP 3992408 B2 JP3992408 B2 JP 3992408B2
Authority
JP
Japan
Prior art keywords
upper wall
energy absorbing
absorbing member
wall portion
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29576399A
Other languages
Japanese (ja)
Other versions
JP2001114044A (en
Inventor
晋 宮崎
耕司 久山
浩志 狩集
徹 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Toyota Motor East Japan Inc
Original Assignee
Kobe Steel Ltd
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kanto Auto Works Ltd filed Critical Kobe Steel Ltd
Priority to JP29576399A priority Critical patent/JP3992408B2/en
Publication of JP2001114044A publication Critical patent/JP2001114044A/en
Application granted granted Critical
Publication of JP3992408B2 publication Critical patent/JP3992408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エネルギー吸収部材に関し、例えば自動車のバンパー補強材として用いられる低速衝突時のエネルギー吸収性能に優れたエネルギー吸収部材に関する。
【0002】
【従来の技術】
近年、自動車、船舶、電車などの輸送機の外板や構造材あるいは部品用として、または家電製品の構造材あるいは部品用として、さらには屋根材などの建築構造物の部材用として、軽量化の観点からアルミニウム(Al)合金の使用が期待されている。
【0003】
アルミニウム合金の用途の一つとして、自動車のバンパー補強(リインフォースメント)材などのエネルギー吸収部材がある。エネルギー吸収部材には断面矩形の中空形材として成形されるものがある。エネルギー吸収部材には、様々なタイプのものが存在するが、バンパー補強材などとして使われるエネルギー吸収部材は、自動車の衝突などにより外部からエネルギーが与えられたときに、その衝撃エネルギーを形材の塑性変形により吸収する。これにより、他の部材が極力破損しないようにすることが可能となる。
【0004】
かかるエネルギー吸収部材の使用状態の一例を、図6、図7に示す。これらの図面は、自動車用バンパーの性能評価試験法の一つであり、米国NHTSAのPart581規準にその詳細が定められている試験法の様子を示した概略図である。図6、図7に示した試験法では、自動車61の前端に存在するバンパー62に、定められた形状および重量の振り子型の打撃子63を一定の速度で衝突させて自動車の損傷を評価する。通常、バンパー62はバンパーカバーに覆われおり、バンパー補強材や緩衝材が外部から見えないことが多いが、バンパーカバーを取り外すと内部にはエネルギー吸収部材としてのバンパー補強材が納められた構造になっていることが多い。この状態で打撃子63がバンパー62に衝突すると、バンパー補強材には、その長手方向中央部の1個所(図2(a)参照)或いは打撃子63の幅に対応した2個所(図2(b)参照)において塑性曲げ変形が発生する。これら部位の曲げ変形により、衝突時のエネルギーを吸収し、車体の他の部位の損傷を小さくすることが可能である。
【0005】
【発明が解決しようとする課題】
上述のようなエネルギー吸収部材には、その重量を小さく維持しつつ、形材の曲げ剛性と曲げ時のエネルギー吸収量を大きくすることが求められる。断面形状の工夫によりこれらの特性を増大させる試みは、例えば特開平8−80789号公報または特開平9−109805号公報に開示されている。また、エネルギー吸収部材の材質をより高強度かつねばりのあるものに変更する試みも行われている。
【0006】
しかしながら、近年、自動車においては地球温暖化防止のための低燃費化の観点から、車体重量のより一層の軽量化が求められており、エネルギー吸収部材にもより一層の軽量化とエネルギー吸収量の増大が求められており、現状のエネルギー吸収部材は、これらの要請を十分に満足するものではない。
【0007】
そこで、本発明の目的は、中空形材の断面形状をさらに見直して、より軽量であるとともに曲げ剛性および曲げ変形によるエネルギー吸収量を増大させたエネルギー吸収部材を提供することである。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1のエネルギー吸収部材は、2つの上壁部と、前記2つの上壁部とそれぞれ対向する2つの底壁部と、前記2つの上壁部および2つの底壁部の間に設けられた3つの側壁部とからなる2つの中空構造を有しており、前記上壁部に与えられる前記上壁部から前記底壁部へと向かう方向の外部からの荷重によるエネルギーを中空部分の変形により吸収するエネルギー吸収部材において、前記底壁部と前記側壁部とが直交しており、前記上壁部のそれぞれがどの部分においても同じ曲率で中空外側に膨らむように湾曲していると共に、前記中空構造の内部にはリブが形成されていない、アルミニウム合金製の押出形材であることを特徴とするものである。
【0009】
請求項1によると、上壁部が中空外側に膨らむように湾曲している部分を有しているために、板厚を大きくしなくとも上壁部の曲げ剛性が向上して上壁部に大きな荷重が与えられた場合であっても衝突面となる上壁部が中空内側に座屈しにくく、エネルギー吸収部材におけるエネルギー吸収量が増加する。そのため、請求項1のエネルギー吸収部材は、軽量であってもエネルギー吸収量が多いものとなる。言い換えると、上壁部が中空外側に膨らむように湾曲している部分を有しているために、エネルギー吸収量が同じであれば、エネルギー吸収部材の変形量を小さく抑制できるという利点がある。
また、中空外側に膨らむように湾曲している2つの上壁部を有しているので、特に底壁部の幅が高さに比べて比較的大きいような断面形状を有する場合に、エネルギー吸収量が大きい。
さらに、エネルギー吸収部材がアルミニウム合金製の押出形材であることにより、部材の重量を軽量化することができるとともに、部材を比較的容易に製造することが可能となる。
【0010】
なお、請求項1のエネルギー吸収部材は、任意の断面形状を有していてよく、略矩形の断面形状を有するものに限られるものではない。また、上壁部と底壁部は、必ずしも互いに平行に対向している必要はない。また、上壁部、底壁部および側壁部は、それぞれ必ずしも1つの面で構成されている必要はなく、複数の面(平面および曲面の両方を含む)で構成されていてよい
【0011】
また、請求項2のエネルギー吸収部材は、前記上壁部が、前記上壁部と3つの前記側壁部のうち両端にある前記側壁部との接続個所を越えて外側に伸延して設けられていることを特徴とするものである。
【0012】
請求項2によると、上壁部と3つの側壁部のうち両端にある側壁部との接続個所を越えて上壁部が外側に伸延しているために、上壁部がその端点において側壁部と接続されている場合と比較して上壁部の曲げ剛性が向上し、衝突時に上壁部が座屈しにくく、エネルギー吸収量が増加する。
【0013】
【0014】
【0015】
また、本発明で用いられる材料は、アルミニウム合金としては、要求特性に応じて、AAないしJIS規格による1000系、3000系、5000系、6000系または7000系などのアルミニウム合金が適宜選択されて用いられる。特に、本発明では、軽量化のためにはAAないしJIS規格による7000系アルミニウム合金板(以下、単に「7000系Al合金板」という)であることが好ましい。また、これら高強度材料を用いることにより、バンパーなどをより薄肉化できるという効果がある。
【0016】
7000系アルミニウム合金の一例としての7003アルミニウム合金は、Al−Zn−Mg−Cu系合金であって、基本的にZnを5.0〜6.5重量%、Mgを0.5〜1.0重量%、Feを0.35重量%、Mnを0.3重量%、Siを0.3重量%、Cuを0.2重量%、Crを0.2重量%、Tiを0.2重量%、残部Alおよび不可避的不純物を含有している。しかし、必ずしも各成分が規格通りにならずとも、適宜成分組成の変更は許容される。すなわち、上記元素の成分範囲の変更や、より具体的な用途および要求特性に応じて、他の元素を適宜含むことは許容される。
【0017】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、図面を参照して説明する。
【0018】
図1は、本発明の参考例に係る自動車のバンパー補強材として用いられるエネルギー吸収部材の断面図である。本参考例のエネルギー吸収部材1は、7000系Al合金からなる押出形材であって、4つの部位に囲まれた略矩形の中空構造を有している。すなわち、エネルギー吸収部材1は、若干中空外側(すなわち上向き)に膨らむように湾曲した上壁部11と、上壁部11と対向する平板として形成された底壁部12と、上壁部11および底壁部12の間に設けられてこれら2つの部位を連結する一対のウェブ(側壁部)13、14とを具備している。
【0019】
上壁部11は、左端部11a、中央部11b、右端部11cの3つの部分から構成されている。左端部11aと中央部11bとの境界部にはウェブ13が接続されており、中央部11bと右端部11cとの境界部にはウェブ14が接続されている。つまり、上壁部11の左端部11aは、上壁部11とウェブ13との接続個所を越えて左外側に伸延しており、上壁部11の右端部11cは、上壁部11とウェブ14との接続個所を越えて右外側に伸延している。
【0020】
上壁部11が中空外側に膨らむように湾曲している一方で、底壁部12およびウェブ13、14は湾曲していない平板として形成されている。また、底壁部12とウェブ13、14との接続角部は、比較的大きな曲率半径にされている。ウェブ13、14は、上壁部11と110°程度の角度で接続されており、底壁部12と90°程度の角度で接続されている。
【0021】
このように構成されたエネルギー吸収部材1が自動車のバンパー補強材として用いられる場合、例えば図2(a)、(b)に示すように、長尺部材として成形されたエネルギー吸収部材1の底壁部12端部近傍に2本の支持部材21、22が取り付けられ、上壁部11側には発泡材からなる緩衝材24とカバー材25とが取り付けられる。このような状態で、図6および図7で説明したような振り子型の打撃子23とエネルギー吸収部材1とが緩衝材24およびカバー材25を介して衝突して、エネルギー吸収部材1に主として曲げモーメント荷重が加えられると、主に上壁部11に紙面垂直方向に圧縮力が、下壁部12に同じく引張応力が作用する。すると、エネルギー吸収部材1は、図2(a)に示すようにその長手方向の中央部1個所で曲げ変形するか、図2(b)に示すように打撃子23の幅方向端部に対応した2個所で曲げ変形する。
【0022】
このとき、本参考例のエネルギー吸収部材1においては、上壁部11が中空外側に膨らむように湾曲していることにより、上壁部11の曲げ剛性が通常の断面矩形のエネルギー吸収部材のものよりも大きく、そのため、衝突時に上壁部11が座屈しにくいので、エネルギー吸収部材1によるエネルギー吸収量が通常の平板状の上壁部を有するものよりも大きくなる。
【0023】
さらに、本参考例のエネルギー吸収部材1は、上壁部11がウェブ13、14との接続個所を越えて外側に伸延した左端部11a、右端部11cを有していることから、上壁部11がその端点においてウェブ13、14と接続されている場合と比較して上壁部11の曲げ剛性が大きい。そのため、衝突時に上壁部11が座屈しにくく、この点からもエネルギー吸収部材1によるエネルギー吸収量が大きくなる。
【0024】
次に、本発明の実施の形態について説明する。図3は、本実施の形態に係る自動車のバンパー補強材として用いられるエネルギー吸収部材の断面図である。本実施の形態のエネルギー吸収部材3は、7000系Al合金からなる押出形材であって、上壁領域31と、上壁領域31と対向する平板として形成された底壁領域32と、上壁領域31および底壁領域32の間に設けられてこれら2つの領域を連結する一対のウェブ(側壁部)33、34と、上壁領域31および底壁領域32を中間において連結するリブ(側壁部)35から構成されている。
【0025】
上壁領域31は、左端部31a、左中央上壁部31b、右中央上壁部31c、右端部31dの4つの部分から構成されている。左端部31aと左中央上壁部31b、および、右中央上壁部31cと右端部31dは、実質的に均等な大きさであってそれぞれ独立して中空外側に膨らむように湾曲しており、上壁領域31全体としては、中空外側に膨らむように湾曲した2つの部分が接続された形状をしているので、その接続部分は中空内側に突出している。左端部31aと左中央上壁部31bとの境界部にはウェブ33が接続されており、左中央上壁部31bと右中央上壁部31cとの境界部にはリブ35が接続されており、右中央上壁部31cと右端部31dとの境界部にはウェブ34が接続されている。つまり、上壁領域31の左端部31aは、上壁領域31とウェブ33との接続個所を越えて左外側に伸延しており、上壁領域31の右端部11dは、上壁領域31とウェブ34との接続個所を越えて右外側に伸延している。
【0026】
底壁領域32は、ともに平板状の左側底壁部32aと右側底壁部32bとから構成されている。左側底壁部32aと右側底壁部32bとの境界部にはリブ35が接続されている。
【0027】
上壁領域31が中空外側に膨らむように湾曲している一方で、底壁領域32、リブ35およびウェブ33、34は湾曲していない平板として形成されている。また、底壁領域32とウェブ33、34との接続角部は、比較的大きな曲率半径にされている。ウェブ33、34は、上壁領域31と110°程度の角度で接続されており、底壁領域32と90°程度の角度で接続されている。また、リブ35は、上壁領域31の左中央上壁部31bおよび右中央上壁部31cとそれぞれ110°程度の角度で接続されており、底壁領域32と90°程度の角度で接続されている。
【0028】
このように構成されたエネルギー吸収部材3が自動車のバンパー補強材として用いられる場合も、図2(a)、(b)で説明したように底壁領域32端部近傍に2本の支持部材21、22が取り付けられ、上壁領域31側には発泡材からなる緩衝材24とカバー材25とが取り付けられる。このような状態で、図6および図7で説明したような振り子型の打撃子23とエネルギー吸収部材3とが緩衝材24およびカバー材25を介して衝突して、エネルギー吸収部材3に主として曲げモーメント荷重が加えられると、エネルギー吸収部材3は、図2(a)または図2(b)に示すように曲げ変形する。
【0029】
このとき、本実施の形態のエネルギー吸収部材3においては、上壁領域31が中空外側に膨らむように湾曲している2つの部分を有していることにより、上壁領域31の曲げ剛性が通常の断面矩形のエネルギー吸収部材のものよりも大きく、そのため、衝突時に上壁領域31が座屈しにくくので、エネルギー吸収部材3によるエネルギー吸収量が通常の平板状の上壁部を有するものよりも大きくなる。特に、本実施の形態のエネルギー吸収部材3は、上壁領域31が中空外側に膨らむように湾曲している2つの部分に分割されていることにより、特に底壁領域32の幅l(図3参照)が高さに比べて比較的大きいような断面形状を有する場合に、エネルギー吸収量が参考例のエネルギー吸収部材1よりも大きいという利点がある。
【0030】
さらに、本実施の形態のエネルギー吸収部材3は、上壁領域31がウェブ33、34との接続個所を越えて外側に伸延した左端部31a、右端部31dを有していることから、上壁領域31がその端点においてウェブ33、34と接続されている場合と比較して上壁領域31の曲げ剛性が大きい。そのため、衝突時に上壁領域31が座屈しにくく、この点からもエネルギー吸収部材3によるエネルギー吸収量が大きくなる。
【0031】
以上、本発明の好適な実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、様々な設計変更が可能である。例えば、上述の実施の形態では断面が略矩形のエネルギー吸収部材について説明したが、本発明はこれに限られるものではなく、例えば断面が略5角形であってもよい。
【0032】
【実施例】
次に、本発明の参考実施例について説明する。
【0033】
図1に示したのと同様の断面形状を有するエネルギー吸収部材(上壁部幅70mm、底壁部幅50mm、ウェブ長さ40mm、板厚1.5mm)について、図2(a)、(b)で示したような振り子型の打撃子を用いた衝突試験を行い、その荷重−変位特性を調べた(参考実施例)。また、上壁部が湾曲していない点以外は参考実施例と同様であるエネルギー吸収部材(その断面形状を図4に示す)についても、同様に振り子打撃子を用いた衝突試験を行ってその荷重−変位特性を調べた(比較例)。
【0034】
このときの試験条件は、以下のようなものである。この試験において、エネルギー吸収部材は図示しない台車の前方に支持されており、上壁部側が打撃子と対向するように設置されている。打撃子は支点を中心として揺動可能に吊り下げられている。打撃子は、その突出部の先端がエネルギー吸収部材の上壁部の上端と衝突するように調整されている。衝突試験時の打撃子の傾斜角度は、エネルギー吸収部材と打撃子との衝突速度が4.0km/hとなるように調整された。このような条件で、衝突による荷重が発生してからなくなるまでのエネルギー吸収部材の底壁部中央付近における凹み変位(座屈)量と荷重との経時的な関係を調べた。その結果を図5に示す。
【0035】
図5において、太線が参考実施例を、細線が比較例をそれぞれ示している。図5の荷重−変位特性において、参考実施例および比較例の結果を比較すると、参考実施例のエネルギー吸収部材は最大荷重が1050kgf程度であるのに対して、比較例のエネルギー吸収部材は最大荷重が950kgf程度である。その一方で、参考実施例のエネルギー吸収部材は最大変位が32mm程度であるのに対して、比較例のエネルギー吸収部材は最大変位が35mm程度である。つまり、同じ大きさのエネルギーを吸収した場合に、参考実施例のエネルギー吸収部材は比較例のものに比べて最大荷重が大きい分だけ最大変位が小さくなっている。そして、それに伴って、参考実施例のエネルギー吸収部材は永久変形量(衝突後に荷重0に戻った後の変形量)が8mm程度であり、12mm程度である比較例のものよりも小さくなっている。なお、エネルギー吸収部材の上壁部中央付近における凹み変位量と荷重との経時的な関係も図5と同様の傾向を示すことが本発明者により確認された。
【0036】
従って、エネルギー吸収量が同じという条件では参考実施例のものは比較例のものよりも永久変形量(または最大変位量)が小さく、言い換えると、永久変形量(または最大変位量)が同じという条件では参考実施例のものは比較例のものよりもエネルギー吸収量が大きい。よって、上壁部を中空外側に膨らむように湾曲させることによって、板厚を大きくしなくともエネルギー吸収部材によるエネルギー吸収量を増加させられること、或いは、エネルギー吸収部材の変形量を抑制できることが分かる。
【0037】
【発明の効果】
以上説明したように、請求項1によると、上壁部が中空外側に膨らむように湾曲している部分を有しているために、板厚を大きくしなくとも上壁部の曲げ剛性が向上して上壁部に大きな荷重が与えられた場合であっても衝突面となる上壁部が中空内側に座屈しづらく、エネルギー吸収部材におけるエネルギー吸収量が増加する。そのため、請求項1のエネルギー吸収部材は、軽量であってもエネルギー吸収量が多いものとなる。また、請求項1によると、上壁部が中空外側に膨らむように湾曲しているために、エネルギー吸収量が同じ場合には、エネルギー吸収部材の変形量を小さく抑制することができる。
また、中空外側に膨らむように湾曲している2つの上壁部を有しているので、特に底壁部の幅が高さに比べて比較的大きいような断面形状を有する場合に、エネルギー吸収量が大きい。
さらに、エネルギー吸収部材がアルミニウム合金製の押出形材であることにより、部材の重量を軽量化することができるとともに、部材を比較的容易に製造することが可能となる。
【0038】
請求項2によると、上壁部と3つの側壁部のうち両端にある側壁部との接続個所を越えて上壁部が外側に伸延しているために、上壁部がその端点において側壁部と接続されている場合と比較して上壁部の曲げ剛性が向上し、衝突時に上壁部が座屈しにくく、エネルギー吸収量が増加する。
【0039】
【図面の簡単な説明】
【図1】 本発明の参考例に係る自動車のバンパー補強材として用いられるエネルギー吸収部材の断面図である。
【図2】 図1に示したエネルギー吸収部材が自動車のバンパー補強材として用いられる場合を示す概略的な模式図である。
【図3】 本発明の実施の形態に係るエネルギー吸収部材の断面図である。
【図4】 本発明の比較例のエネルギー吸収部材の断面図である。
【図5】 本発明の参考実施例および比較例のエネルギー吸収部材における荷重−変位特性を示すグラフである。
【図6】 衝突試験の様子を示す模式的な側面図である。
【図7】 衝突試験の様子を示す模式的な平面図である。
【符号の説明】
1、エネルギー吸収部材
11 上壁部
12 底壁部
13、14 ウェブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energy absorbing member, for example, an energy absorbing member that is used as a bumper reinforcing material for automobiles and has excellent energy absorbing performance during low-speed collision.
[0002]
[Prior art]
In recent years, it has been reduced in weight for outer panels and structural materials or parts of transportation equipment such as automobiles, ships, and trains, or for structural materials or parts of household electrical appliances, and for building structural members such as roofing materials. From the viewpoint, use of an aluminum (Al) alloy is expected.
[0003]
One of the uses of aluminum alloys is energy absorbing members such as automobile bumper reinforcement (reinforcement) materials. Some energy absorbing members are molded as hollow sections having a rectangular cross section. There are various types of energy absorbing members, but energy absorbing members used as bumper reinforcements, etc., receive impact energy from the shape of the material when energy is applied from the outside due to automobile collisions, etc. Absorbs by plastic deformation. This makes it possible to prevent other members from being damaged as much as possible.
[0004]
An example of the usage state of such an energy absorbing member is shown in FIGS. These drawings are one of the performance evaluation test methods for bumpers for automobiles, and are schematic diagrams showing the test methods whose details are defined in Part 581 standard of NHTSA in the United States. In the test methods shown in FIGS. 6 and 7, the damage of the automobile is evaluated by colliding a bumper 62 having a predetermined shape and weight with a bumper 62 existing at the front end of the automobile 61 at a constant speed. . Normally, the bumper 62 is covered with a bumper cover, and the bumper reinforcement and the cushioning material are often not visible from the outside. However, when the bumper cover is removed, the bumper reinforcement as an energy absorbing member is housed inside. Often has become. When the striker 63 collides with the bumper 62 in this state, the bumper reinforcing member has one location in the longitudinal center (see FIG. 2A) or two locations corresponding to the width of the striker 63 (FIG. 2 ( In b)), plastic bending deformation occurs. By bending deformation of these parts, it is possible to absorb energy at the time of collision and reduce damage to other parts of the vehicle body.
[0005]
[Problems to be solved by the invention]
The energy absorbing member as described above is required to increase the bending rigidity of the shape member and the energy absorption amount at the time of bending while keeping the weight small. Attempts to increase these characteristics by devising the cross-sectional shape are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 8-80789 and 9-109805. Attempts have also been made to change the material of the energy absorbing member to one having higher strength and stickiness.
[0006]
However, in recent years, automobiles have been required to further reduce the weight of the vehicle body from the viewpoint of reducing fuel consumption in order to prevent global warming. Increase is demanded, and the current energy absorbing member does not sufficiently satisfy these requirements.
[0007]
Accordingly, an object of the present invention is to further review the cross-sectional shape of the hollow shape member and provide an energy absorbing member that is lighter and has increased bending rigidity and energy absorption due to bending deformation.
[0008]
[Means for Solving the Problems]
To achieve the above object, the energy absorbing member according to claim 1 includes two upper walls, and two bottom wall portions facing respectively said two upper walls, the two upper walls and two It has two hollow structures composed of three side walls provided between the bottom walls, and is provided from the outside in the direction from the upper wall to the bottom wall provided to the upper wall. In an energy absorbing member that absorbs energy by a load by deformation of a hollow portion, the bottom wall portion and the side wall portion are orthogonal to each other, and each of the upper wall portions swells to the outside of the hollow with the same curvature in any portion. It is an extruded shape made of an aluminum alloy that is curved in the shape of the hollow structure and has no ribs formed inside the hollow structure.
[0009]
According to the first aspect, since the upper wall portion has a curved portion so as to swell outward in the hollow, the bending rigidity of the upper wall portion is improved without increasing the plate thickness, and the upper wall portion is Even when a large load is applied, the upper wall portion serving as a collision surface is unlikely to buckle inside the hollow, and the amount of energy absorption in the energy absorbing member increases. Therefore, the energy absorbing member of claim 1 has a large amount of energy absorption even if it is lightweight. In other words, since the upper wall portion has a curved portion so as to swell outward in the hollow, if the energy absorption amount is the same, there is an advantage that the deformation amount of the energy absorbing member can be suppressed small.
In addition, since it has two upper wall portions that are curved so as to bulge to the outside of the hollow space, it absorbs energy especially when it has a cross-sectional shape in which the width of the bottom wall portion is relatively large compared to the height. The amount is large.
Furthermore, since the energy absorbing member is an extruded shape made of an aluminum alloy, the weight of the member can be reduced, and the member can be manufactured relatively easily.
[0010]
In addition, the energy absorption member of Claim 1 may have arbitrary cross-sectional shapes, and is not restricted to what has a substantially rectangular cross-sectional shape. Further, the upper wall portion and the bottom wall portion do not necessarily have to face each other in parallel. Moreover, the upper wall part, the bottom wall part, and the side wall part do not necessarily need to be configured by one surface, and may be configured by a plurality of surfaces (including both a flat surface and a curved surface) .
[0011]
The energy absorbing member according to claim 2 is provided such that the upper wall portion extends outward beyond a connection portion between the upper wall portion and the side wall portions at both ends of the three side wall portions. It is characterized by being.
[0012]
According to claim 2, since the upper wall portion extends outward beyond the connection portion between the upper wall portion and the side wall portions at both ends of the three side wall portions, the upper wall portion is the side wall portion at the end point thereof. The bending rigidity of the upper wall portion is improved compared to the case where the upper wall portion is connected to the upper wall portion, and the upper wall portion is less likely to buckle at the time of collision, increasing the amount of energy absorption.
[0013]
[0014]
[0015]
The material used in the present invention, the A aluminum alloy, depending on the required characteristics, AA and 1000 system according to the JIS standard, 3000 series, 5000 series, aluminum alloy such as 6000 series or 7000 series is appropriately selected Used. In particular, the present invention, 7000-series aluminum alloy sheet according to JIS standards to no AA is for weight reduction (hereinafter, simply referred to as "7000-series Al alloy plate") is preferably. Further, by using these high strength materials, there is an effect that a bumper or the like can be made thinner.
[0016]
A 7003 aluminum alloy as an example of a 7000 series aluminum alloy is an Al-Zn-Mg-Cu series alloy, and is basically 5.0 to 6.5 wt% Zn and 0.5 to 1.0 Mg. Wt%, Fe 0.35 wt%, Mn 0.3 wt%, Si 0.3 wt%, Cu 0.2 wt%, Cr 0.2 wt%, Ti 0.2 wt% In addition, the remainder contains Al and inevitable impurities. However, even if each component does not necessarily conform to the standard, a change in the component composition is allowed as appropriate. That is, it is permitted to appropriately include other elements according to changes in the component ranges of the above elements and more specific uses and required characteristics.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
[0018]
FIG. 1 is a cross-sectional view of an energy absorbing member used as a bumper reinforcing material for an automobile according to a reference example of the present invention. The energy absorbing member 1 of this reference example is an extruded profile made of a 7000 series Al alloy and has a substantially rectangular hollow structure surrounded by four parts. That is, the energy absorbing member 1 includes an upper wall portion 11 that is curved so as to swell slightly outward (that is, upward), a bottom wall portion 12 that is formed as a flat plate facing the upper wall portion 11, an upper wall portion 11 and A pair of webs (side wall portions) 13 and 14 that are provided between the bottom wall portion 12 and connect these two portions are provided.
[0019]
The upper wall part 11 is composed of three parts: a left end part 11a, a central part 11b, and a right end part 11c. A web 13 is connected to a boundary portion between the left end portion 11a and the central portion 11b, and a web 14 is connected to a boundary portion between the central portion 11b and the right end portion 11c. That is, the left end portion 11a of the upper wall portion 11 extends to the left outer side beyond the connection portion between the upper wall portion 11 and the web 13, and the right end portion 11c of the upper wall portion 11 is extended to the upper wall portion 11 and the web. 14 extends beyond the connection with 14.
[0020]
While the upper wall portion 11 is curved so as to swell outward in the hollow, the bottom wall portion 12 and the webs 13 and 14 are formed as flat plates that are not curved. Moreover, the connection corner | angular part of the bottom wall part 12 and the webs 13 and 14 is made into the comparatively big curvature radius. The webs 13 and 14 are connected to the upper wall portion 11 at an angle of about 110 °, and are connected to the bottom wall portion 12 at an angle of about 90 °.
[0021]
When the energy absorbing member 1 configured as described above is used as a bumper reinforcing material for an automobile, for example, as shown in FIGS. 2A and 2B, the bottom wall of the energy absorbing member 1 formed as a long member. Two support members 21 and 22 are attached in the vicinity of the end of the portion 12, and a cushioning material 24 made of a foam material and a cover material 25 are attached to the upper wall portion 11 side. In such a state, the pendulum-type striker 23 and the energy absorbing member 1 described with reference to FIGS. 6 and 7 collide with each other via the cushioning material 24 and the cover material 25, and the energy absorbing member 1 is mainly bent. When a moment load is applied, a compressive force mainly acts on the upper wall portion 11 in the direction perpendicular to the paper surface, and a tensile stress acts on the lower wall portion 12 in the same manner. Then, the energy absorbing member 1 bends and deforms at one central portion in the longitudinal direction as shown in FIG. 2 (a), or corresponds to the widthwise end of the striker 23 as shown in FIG. 2 (b). Bend and deform at the two locations.
[0022]
At this time, in the energy absorbing member 1 of the present reference example , the upper wall portion 11 is curved so as to swell outward in the hollow, so that the bending rigidity of the upper wall portion 11 is an ordinary energy absorbing member having a rectangular cross section. Therefore, the upper wall portion 11 is less likely to buckle at the time of a collision, so that the amount of energy absorbed by the energy absorbing member 1 is larger than that of a normal plate-shaped upper wall portion.
[0023]
Further, the energy absorbing member 1 of the present reference example has an upper wall portion 11 having a left end portion 11a and a right end portion 11c that extend outward beyond the connection portions with the webs 13 and 14, so Compared with the case where 11 is connected to the webs 13 and 14 at the end points, the bending rigidity of the upper wall portion 11 is large. For this reason, the upper wall portion 11 is unlikely to buckle at the time of a collision, and the energy absorption amount by the energy absorbing member 1 also increases from this point.
[0024]
Next, a description will be given implementation of the present invention. Figure 3 is a cross-sectional view of an energy absorbing member used as a bumper reinforcement of the vehicle according to the embodiment of the present implementation. The energy absorbing member 3 of the present embodiment is a extruded profile made of 7000 series Al alloy, the upper wall region 31, a bottom wall region 32 formed as a flat plate facing the upper wall region 31, top wall A pair of webs (side wall portions) 33 and 34 provided between the region 31 and the bottom wall region 32 and connecting these two regions , and ribs (side wall portions) connecting the upper wall region 31 and the bottom wall region 32 in the middle 35 ) .
[0025]
The upper wall region 31 includes four portions, that is, a left end portion 31a, a left center upper wall portion 31b, a right center upper wall portion 31c, and a right end portion 31d. The left end portion 31a and the left center upper wall portion 31b, and the right center upper wall portion 31c and the right end portion 31d are substantially equal in size and are curved so as to swell independently to the outside of the hollow, The upper wall region 31 as a whole has a shape in which two portions curved so as to swell outward in the hollow are connected to each other, so that the connected portion protrudes into the hollow. A web 33 is connected to the boundary between the left end 31a and the left center upper wall 31b, and a rib 35 is connected to the boundary between the left center upper wall 31b and the right center upper wall 31c. A web 34 is connected to a boundary portion between the right center upper wall portion 31c and the right end portion 31d. That is, the left end portion 31a of the upper wall region 31 is then extended in the left outwardly beyond the connection point of the upper wall region 31 and the web 33, the right end portion 11d of the upper wall region 31 has an upper wall area 31 and the web 34 extends beyond the connection with 34.
[0026]
The bottom wall region 32 is composed of a flat left-side bottom wall portion 32a and a right-side bottom wall portion 32b. A rib 35 is connected to a boundary portion between the left bottom wall portion 32a and the right bottom wall portion 32b.
[0027]
While the upper wall region 31 is curved so as to swell outward in the hollow, the bottom wall region 32, the rib 35, and the webs 33, 34 are formed as flat plates that are not curved. Further, the connecting corner between the bottom wall region 32 and the webs 33 and 34 has a relatively large radius of curvature. The webs 33 and 34 are connected to the upper wall region 31 at an angle of about 110 °, and are connected to the bottom wall region 32 at an angle of about 90 °. The rib 35 is connected to the left center upper wall portion 31b and the right center upper wall portion 31c of the upper wall region 31 at an angle of about 110 °, and is connected to the bottom wall region 32 at an angle of about 90 °. ing.
[0028]
Even when the energy absorbing member 3 configured as described above is used as a bumper reinforcing material for an automobile, the two support members 21 are provided in the vicinity of the end of the bottom wall region 32 as described with reference to FIGS. 22 are attached, and a cushioning material 24 and a cover material 25 made of foam are attached to the upper wall region 31 side. In such a state, the pendulum-type striker 23 and the energy absorbing member 3 described with reference to FIGS. 6 and 7 collide with each other via the cushioning material 24 and the cover material 25, and the energy absorbing member 3 is mainly bent. When a moment load is applied, the energy absorbing member 3 bends and deforms as shown in FIG. 2 (a) or 2 (b).
[0029]
At this time, in the energy absorbing member 3 according to the present embodiment, the upper wall region 31 has two portions that are curved so as to swell outward in the hollow, so that the bending rigidity of the upper wall region 31 is normal. Therefore, the upper wall region 31 is less likely to buckle at the time of collision, so that the amount of energy absorbed by the energy absorbing member 3 is larger than that of a normal plate-shaped upper wall portion. Become. In particular, the energy absorbing member 3 according to the present embodiment is divided into two parts that are curved so that the upper wall region 31 swells to the outside of the hollow, so that the width l of the bottom wall region 32 (see FIG. 3). In the case where the cross-sectional shape is relatively large compared to the height, there is an advantage that the energy absorption amount is larger than that of the energy absorbing member 1 of the reference example .
[0030]
Furthermore, the energy absorbing member 3 according to the present embodiment has the upper wall region 31 having a left end portion 31a and a right end portion 31d that extend outward beyond the connection portions with the webs 33 and 34. The bending rigidity of the upper wall region 31 is larger than when the region 31 is connected to the webs 33 and 34 at the end points. Therefore, the upper wall region 31 is unlikely to buckle at the time of collision, and the amount of energy absorbed by the energy absorbing member 3 also increases from this point.
[0031]
The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various design changes are possible. For example, in the above-described embodiment, the energy absorbing member having a substantially rectangular cross section has been described. However, the present invention is not limited to this, and for example, the cross section may be a substantially pentagonal shape.
[0032]
【Example】
Next, reference examples of the present invention will be described.
[0033]
2 (a) and (b) for an energy absorbing member (upper wall width 70 mm, bottom wall width 50 mm, web length 40 mm, plate thickness 1.5 mm) having the same cross-sectional shape as shown in FIG. A collision test using a pendulum-type impactor as shown in FIG. 3 was conducted to examine the load-displacement characteristics ( Reference Example). In addition, with respect to the energy absorbing member (the cross-sectional shape of which is shown in FIG. 4) which is the same as that of the reference example except that the upper wall portion is not curved, a collision test using a pendulum striker is similarly performed. The load-displacement characteristics were examined (comparative example).
[0034]
The test conditions at this time are as follows. In this test, the energy absorbing member is supported in front of a cart (not shown), and is installed so that the upper wall side faces the striker. The striker is suspended so as to be swingable about a fulcrum. The striker is adjusted so that the tip of the protruding portion collides with the upper end of the upper wall portion of the energy absorbing member. The inclination angle of the striker during the collision test was adjusted so that the collision speed between the energy absorbing member and the striker was 4.0 km / h. Under such conditions, the temporal relationship between the amount of dent displacement (buckling) and the load in the vicinity of the center of the bottom wall portion of the energy absorbing member from when the load due to collision occurs until it disappears was examined. The result is shown in FIG.
[0035]
In FIG. 5, a thick line indicates a reference example, and a thin line indicates a comparative example. In the load-displacement characteristics of FIG. 5, when the results of the reference example and the comparative example are compared, the energy absorbing member of the reference example has a maximum load of about 1050 kgf, whereas the energy absorbing member of the comparative example has a maximum load. Is about 950 kgf. On the other hand, the energy absorbing member of the reference example has a maximum displacement of about 32 mm, whereas the energy absorbing member of the comparative example has a maximum displacement of about 35 mm. That is, when the same amount of energy is absorbed, the energy absorbing member of the reference example has a smaller maximum displacement than the comparative example because the maximum load is larger. Accordingly, the energy absorbing member of the reference example has a permanent deformation amount (deformation amount after returning to the load 0 after the collision) of about 8 mm, which is smaller than that of the comparative example of about 12 mm. . It has been confirmed by the present inventor that the temporal relationship between the amount of displacement of the dent and the load in the vicinity of the center of the upper wall of the energy absorbing member also shows the same tendency as in FIG.
[0036]
Therefore, under the condition that the amount of energy absorption is the same, the amount of permanent deformation (or maximum displacement) in the reference example is smaller than that of the comparative example, in other words, the amount of permanent deformation (or maximum displacement) is the same. Then, the energy absorption amount of the reference example is larger than that of the comparative example. Therefore, it can be seen that the amount of energy absorbed by the energy absorbing member can be increased without increasing the plate thickness or the amount of deformation of the energy absorbing member can be suppressed by curving the upper wall portion so as to swell outward in the hollow. .
[0037]
【The invention's effect】
As described above, according to the first aspect, since the upper wall portion has a curved portion so as to swell outward in the hollow, the bending rigidity of the upper wall portion is improved without increasing the plate thickness. Even when a large load is applied to the upper wall portion, the upper wall portion serving as a collision surface is difficult to buckle inside the hollow, and the amount of energy absorption in the energy absorbing member increases. Therefore, the energy absorbing member of claim 1 has a large amount of energy absorption even if it is lightweight. Further, according to the first aspect, since the upper wall portion is curved so as to swell outward in the hollow, when the energy absorption amount is the same, the deformation amount of the energy absorption member can be suppressed to a small value.
In addition, since it has two upper wall portions that are curved so as to bulge to the outside of the hollow space, it absorbs energy especially when it has a cross-sectional shape in which the width of the bottom wall portion is relatively large compared to the height. The amount is large.
Furthermore, since the energy absorbing member is an extruded shape made of an aluminum alloy, the weight of the member can be reduced, and the member can be manufactured relatively easily.
[0038]
According to claim 2, since the upper wall portion extends outward beyond the connection portion between the upper wall portion and the side wall portions at both ends of the three side wall portions, the upper wall portion is the side wall portion at the end point thereof. The bending rigidity of the upper wall portion is improved as compared with the case where the upper wall portion is connected to the upper wall portion, and the upper wall portion is less likely to buckle at the time of collision, and the amount of energy absorption is increased.
[0039]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an energy absorbing member used as a bumper reinforcing material for an automobile according to a reference example of the present invention.
FIG. 2 is a schematic diagram showing a case where the energy absorbing member shown in FIG. 1 is used as a bumper reinforcing material for an automobile.
3 is a cross-sectional view of the energy absorbing member according to the implementation of the embodiment of the present invention.
FIG. 4 is a cross-sectional view of an energy absorbing member of a comparative example of the present invention.
FIG. 5 is a graph showing load-displacement characteristics in energy absorbing members of reference examples and comparative examples of the present invention.
FIG. 6 is a schematic side view showing a state of a collision test.
FIG. 7 is a schematic plan view showing a state of a collision test.
[Explanation of symbols]
1, energy absorbing member 11 upper wall portion 12 bottom wall portion 13, 14 web

Claims (2)

2つの上壁部と、前記2つの上壁部とそれぞれ対向する2つの底壁部と、前記2つの上壁部および2つの底壁部の間に設けられた3つの側壁部とからなる2つの中空構造を有しており、前記上壁部に与えられる前記上壁部から前記底壁部へと向かう方向の外部からの荷重によるエネルギーを中空部分の変形により吸収するエネルギー吸収部材において、
前記底壁部と前記側壁部とが直交しており、前記上壁部のそれぞれがどの部分においても同じ曲率で中空外側に膨らむように湾曲していると共に、前記中空構造の内部にはリブが形成されていない、アルミニウム合金製の押出形材であることを特徴とするエネルギー吸収部材。
2 consisting of the two upper wall portion, and two bottom wall portions facing respectively said two upper walls, and three side wall portions provided between said two upper walls and two bottom wall In the energy absorbing member that has two hollow structures and absorbs energy due to external load in a direction from the upper wall portion to the bottom wall portion given to the upper wall portion by deformation of the hollow portion,
The bottom wall portion and the side wall portion are orthogonal to each other, and each of the upper wall portions is curved so as to swell outwardly with the same curvature in any portion, and ribs are formed inside the hollow structure. An energy absorbing member, which is an extruded shape made of an aluminum alloy, which is not formed.
前記上壁部が、前記上壁部と3つの前記側壁部のうち両端にある前記側壁部との接続個所を越えて外側に伸延して設けられていることを特徴とする請求項1に記載のエネルギー吸収部材。The said upper wall part is extended and provided outside the connection part with the said side wall part in both ends among the said upper wall part and three said side wall parts, It is provided. Energy absorbing member.
JP29576399A 1999-10-18 1999-10-18 Energy absorbing member Expired - Lifetime JP3992408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29576399A JP3992408B2 (en) 1999-10-18 1999-10-18 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29576399A JP3992408B2 (en) 1999-10-18 1999-10-18 Energy absorbing member

Publications (2)

Publication Number Publication Date
JP2001114044A JP2001114044A (en) 2001-04-24
JP3992408B2 true JP3992408B2 (en) 2007-10-17

Family

ID=17824859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29576399A Expired - Lifetime JP3992408B2 (en) 1999-10-18 1999-10-18 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP3992408B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002225651A (en) * 2001-02-02 2002-08-14 Kobe Steel Ltd Extrusion hollow section for bending
US6893062B2 (en) 2002-11-01 2005-05-17 Mitsubishi Aluminum Co., Ltd. Bumper beam for automobiles
JP5179396B2 (en) * 2009-02-09 2013-04-10 株式会社神戸製鋼所 Shock absorbing member

Also Published As

Publication number Publication date
JP2001114044A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
US8317240B2 (en) Bumper for a motor vehicle
JP4434081B2 (en) Vehicle end structure
JP5795332B2 (en) Vehicle underrun protector
JP4035292B2 (en) Bumper reinforcement with excellent offset impact
JP3938451B2 (en) Energy absorbing member
JP3992408B2 (en) Energy absorbing member
JP2001199292A (en) Bumper reinforcement
WO2004054848A2 (en) Improved bumper assembly
JP2008013124A (en) Energy absorbing member for personal protection
JP2010120512A (en) Vehicular underrun protector having excellent buckling resistance characteristic
JP3308719B2 (en) Bumper reinforcement
JP2009286202A (en) Reinforcement structure for bending member
JP5875449B2 (en) Bumper member for vehicles
JP4216065B2 (en) Bumper beam for automobile
JP4303659B2 (en) Shock absorption structure of automobile
JP2018111378A (en) Vehicle bumper structure
JP4688318B2 (en) Vehicle beam
JP2012030624A (en) Automobile bumper
JP7394174B1 (en) Vehicle side structure
JP2001227573A (en) Energy absorbing member
JPH08207679A (en) Energy absorbing member
CN218400717U (en) Supporting and protecting beam of automobile
US11981370B2 (en) Structural member for vehicle
CN215621839U (en) Vehicle rear protection device
JP4480969B2 (en) Bumper members for vehicles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Ref document number: 3992408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

EXPY Cancellation because of completion of term