JP3991168B2 - aggregate - Google Patents

aggregate Download PDF

Info

Publication number
JP3991168B2
JP3991168B2 JP05909497A JP5909497A JP3991168B2 JP 3991168 B2 JP3991168 B2 JP 3991168B2 JP 05909497 A JP05909497 A JP 05909497A JP 5909497 A JP5909497 A JP 5909497A JP 3991168 B2 JP3991168 B2 JP 3991168B2
Authority
JP
Japan
Prior art keywords
aggregate
concrete
crushed
sand
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05909497A
Other languages
Japanese (ja)
Other versions
JPH10251046A (en
Inventor
直己 前田
聡 鈴木
智 三浦
Original Assignee
前田製管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 前田製管株式会社 filed Critical 前田製管株式会社
Priority to JP05909497A priority Critical patent/JP3991168B2/en
Publication of JPH10251046A publication Critical patent/JPH10251046A/en
Application granted granted Critical
Publication of JP3991168B2 publication Critical patent/JP3991168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Revetment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、接触変成岩からなる骨材、特にモルタルまたはコンクリート用の骨材に関する。
【0002】
【従来の技術】
モルタルやコンクリートは、周知のようにセメントに骨材を加え、水および必要に応じて各種の混和材または添加剤を加えて混練することにより製造される。モルタルに用いられる骨材は最大粒径が5mmの細骨材であり、また、コンクリートには上記細骨材の他に粒径が5mmを超える粗骨材が使用される。
これら細骨材や粗骨材として、従来は川砂や川砂利を用いていたが、川砂や川砂利が枯渇してきたため、最近では安山岩や石灰岩などを粉砕して得た砕砂や砕石などが多く用いられるようになってきた。
【0003】
モルタルやコンクリートの強度は、セメントおよび水、必要に応じて添加される各種の混和材や添加剤などの硬化ペースト部分に依存すると云われているが、これに限らず、特に高強度のモルタルやコンクリートでは硬化ペーストの他に使用骨材によっても発現強度が大きく左右される。従って、川砂や川砂利に代わる良質な骨材が求められている。
【0004】
【発明が解決しようとする課題】
本発明は、モルタルやコンクリート等に用いられる骨材について、従来の上記課題を解決したものであり、これまで骨材として使用されていなかった接触変成岩からなる砕石ないし砕砂について骨材としての用途を拡げたものである。
【0005】
【課題を解決する手段】
本発明者らは、これまで骨材として使用されていなかった岩石種について検討を進め、特定の接触変成岩からなる砕石ないし砕砂が従来の安山岩や石灰岩の砕石や砕砂と同等以上の骨材としての使用でき、特にモルタルやコンクリートの骨材として好適であることを見出した。本発明はかかる知見に基づくものであり、本発明によれば、以下の構成からなる骨材が提供される。
【0006】
すなわち、本発明は、(1)ホルンフェルス化した接触変成岩の砕石ないし砕砂からなり、比重2.70〜2.90、ショアー硬度80〜120であって、モルタル用またはコンクリート用の細骨材および/または粗骨材として用いられることを特徴とする骨材である。
本発明の骨材は、(2)斜長石、角閃石、石英および雲母の含有量が、それぞれ10〜60重量%、5〜50重量%、30重量%以下、20重量%以下であるものを含む。
【0007】
【具体的な説明】
本発明の骨材は、ホルンフェルス化した接触変成岩の砕石ないし砕砂からなるものである。ホルンフェルス化したとは、岩石が接触変成作用を受けて造岩鉱物が再結晶したものを云う。この変成岩は、柱状結晶がばらばらな方位に成長して十字に絡み合ったデカッセイト組織をなし、緻密である。従って、吸水率が小さく、また比重や硬度が大きく、摩耗による減量も殆どない良質な骨材を得ることができる。
具体的には、上記変成岩の砕石ないし砕砂であって、比重(絶乾比重)2.70〜2.90、ショアー硬度80〜120のものが適当であり、更には比重(絶乾比重)2.80〜2.90、ショアー硬度100〜120のものがより好ましい。
【0008】
上記変成岩の主要構成鉱物としては、例えば、斜長石、角閃石、石英および雲母が含まれ、これらの含有量が、それぞれ10〜60重量%、5〜50重量%、30重量%以下、20重量%以下であるものが好ましく、更には、それぞれ30〜40重量%、20〜30重量%、15〜25重量%、5〜15重量%であるものがより好ましい。
【0009】
本発明の骨材としては、例えば、岩手県江剌市米里地区に分布する下部石炭紀の米里層の輝緑凝灰宕がホルンフェルス化した接触変成岩(以下、米里接触変成岩と云う)の砕石や砕砂を挙げることができる。米里接触変成岩は、主要構成鉱物として斜長石、角閃石、石英、雲母を含み、これら鉱物の含有率がそれぞれ約40重量%、約25重量%、約20重量%、約15重量%であり、比重が2.76〜2.85、ショアー硬度が100〜110である。
【0010】
上記変成岩からなる砕石および砕砂は、用途に応じて適宜用いることができ、5mm以上のものは粗骨材として利用でき、これより小さいものは細骨材として用いることができる。また、その使用量や使用態様も特に制限されず、川砂や川砂利の通常の骨材と同等に用いることができる。
【0011】
【発明の実施の形態】
以下に、本発明の骨材をコンクリート用骨材として使用した例を示し、これにより本発明を具体的に説明する。
【0012】
実施例1(コンクリート)
上記米里接触変成岩を粉砕し篩分けして、砕砂(以下、米里産細骨材と云う)および砕石(以下、米里産粗骨材と云う)とした。
一方、普通ポルトランドセメントを用い、粗骨材および細骨材、シリカフューム、減水剤、水を表1に示す配合量とした。各材料の詳細は次のとおりである。なお、比較例として使用した粗骨材および細骨材の石英安山岩は、主要鉱物が長石約60重量%、石英約20重量%、雲母約10重量%であり、絶乾比重2.55〜2.70である。その5mm以上の砕石を石英安山岩粗骨材、5mm未満の砕砂を石英安山岩細骨材として示した。
普通ポルトランドセメント:秩父小野田(株)製
シリカフューム:ノルウェー産
粗骨材:米里産粗骨材(5〜10mm、10〜15mm、15〜25mm)
石英安山岩粗骨材(5〜10mm、10〜15mm、15〜25mm)
細骨材:米里産細骨材、石英安山岩細骨材(いずれも5mm未満)
減水剤:花王(株)製マイテイ150
【0013】
【表1】

Figure 0003991168
【0014】
上記配合原料をミキサーに入れ、温度20℃、湿度80%の恒温室内で混練してコンリートを調製し、スランプを測定した。
この結果、骨材として米里産粗骨材および米里産細骨材を使用したコンクリート(実施例)のスランプは18.5cmであった。一方、石英安山岩粗骨材および石英安山岩細骨材を使用したコンクリート(比較例)のスランプは12.0cmであった。このことから、米里産粗骨材および米里産細骨材を使用したものはワーカビリチーの良いコンクリートが得られることが分る。
【0015】
スランプ測定後、コンクリートを円柱形(径7.5×高15cm)および角柱形(10×10×40cm)に成形した。成形後、24時間、20℃、湿度80%の恒温室内に前置きした後、蒸気養生(昇温:20℃/h、養生:80℃-4h)を行った。蒸気養生後、材令7日まで20℃、湿度80%の恒温室内に静置した。
【0016】
材令7日後にコンクリートの比重、圧縮強度、曲げ強度を求めた。また最大圧縮応力の1/3における応力と歪みの比から静弾性係数を求めた。これらの結果(3供試体の平均値)を表2に示す。
表2の結果から、本発明に係る米里産粗骨材および米里産細骨材を使用したものは、比較例の石英安山岩の粗骨材および細骨材を用いたものよりも比重が大きく、強度、特に曲げ強度が強く、かつ静弾性係数の大きいコンクリ−卜が得られることが分る。
【0017】
【表2】
Figure 0003991168
【0018】
実施例2(ポリマーセメントモルタル)
白色セメント(秩父小野田社製)に細骨材とスチレン-アクリル共重合樹脂エマルション(へキスト合成社製、商品名:モビニール、全固形分約50%)を、重量比1:1:0.4で配合してポリマーセメントモルタルを調製し、そのフロー試験を行った。
試料は、細骨材として粒径1.2mm以下、比重2.78の米里産細骨材を使用した実施例と、細骨材として4号珪砂(比重2.63)と6号珪砂(比重2.62)とを1:1(重量比)で混合したものを使用した比較例とを準備した。
フロー試験の結果、本発明の骨材を用いたモルタルのフローは197mmであったが、比較例のモルタルのフローは145mmであった。
【0019】
フロー試験を行った後、テーブル振動機を用いて角柱形(4×4×16cm)に成形し、成形後、5日間、温度20℃、湿度80%以上で養生し、次いで所定材令まで温度20℃、湿度50%で養生した後に、強度を測定した。圧縮強度試験および曲げ強度試験の結果を表3に示す。
表3の結果から、本発明の米里産細骨材を用いたポリマーセメントモルタルは比較例の珪砂を用いたポリマーセメントモルタルよりも、強さ、特に曲げ強さが大きいことが分る。
【0020】
【表3】
Figure 0003991168
【0021】
【発明の効果】
本発明によれば、従来用いられていない変成岩の砕石および砕砂を骨材として用いることができ、この骨材は、特にモルタルやコンクリートの骨材として使用した場合、ワーカビリチーや強度、特に曲げ強度の大きなモルタルやコンクリートを得ることができる。
また、本発明の骨材は単味で使用しても良く、また、従来の通常使用されている川砂や川砂利、あるいは他の各種砕石や砕砂などの骨材と適宜混合して使用しても良い。例えば、モルタルを製造する際に、本発明の細骨材と従来の川砂などを混合して使用することができる。また、コンクリートを製造する際に、粗骨材として本発明の粗骨材に従来の川砂利や他の各種砕石を混合し、細骨材として本発明の細骨材を単味でも使用し、あるいは、これと従来の川砂や他の各種砕砂の細骨材を混合して使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aggregate made of contact metamorphic rock, and more particularly to an aggregate for mortar or concrete.
[0002]
[Prior art]
As is well known, mortar and concrete are produced by adding aggregate to cement, adding water and various admixtures or additives as necessary, and kneading. The aggregate used for the mortar is a fine aggregate having a maximum particle size of 5 mm. In addition to the fine aggregate, coarse aggregate having a particle size exceeding 5 mm is used for concrete.
Conventionally, river sand and river gravel have been used as these fine aggregates and coarse aggregates, but since river sand and river gravel have been depleted, crushed sand and crushed stones obtained by grinding andesite and limestone have been used recently. Has come to be.
[0003]
The strength of mortar and concrete is said to depend on cement and water, and hardened paste parts such as various admixtures and additives that are added as necessary. In concrete, the expression strength is greatly influenced by the aggregate used in addition to the hardened paste. Therefore, there is a need for high-quality aggregates that can replace river sand and river gravel.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems for aggregates used in mortar, concrete, etc., and is used as aggregate for crushed stone or crushed sand made of contact metamorphic rock that has not been used as an aggregate until now. It has been expanded.
[0005]
[Means for solving the problems]
The present inventors proceeded with studies on rock types that have not been used as aggregates until now, and crushed stones or crushed sand made of specific contact metamorphic rocks as aggregates that are equivalent to or better than conventional andesite and limestone crushed stones and crushed sand. It was found that it can be used and is particularly suitable as an aggregate for mortar and concrete. The present invention is based on such knowledge, and according to the present invention, an aggregate having the following configuration is provided.
[0006]
That is, the present invention comprises (1) hornfelsified contact metamorphic rock crushed stone or crushed sand having a specific gravity of 2.70 to 2.90, a Shore hardness of 80 to 120, and a fine aggregate for mortar or concrete and / or Or it is an aggregate characterized by being used as a coarse aggregate.
In the aggregate of the present invention, (2) those containing plagioclase, amphibole, quartz and mica are 10 to 60% by weight, 5 to 50% by weight, 30% by weight or less, and 20% by weight or less, respectively. Including.
[0007]
[Specific explanation]
The aggregate of the present invention is made of crushed stone or crushed sand of hornfels contact metamorphic rock. “Hornfelsification” refers to the recrystallization of rock-forming minerals due to contact metamorphism. This metamorphic rock is dense with columnar crystals growing in disjointed orientations and forming a cascading structure intertwined in a cross. Therefore, it is possible to obtain a high-quality aggregate having a low water absorption rate, a large specific gravity and hardness, and almost no loss due to wear.
Specifically, crushed stone or crushed sand of the above-mentioned metamorphic rocks having a specific gravity (absolute dry specific gravity) of 2.70 to 2.90 and a Shore hardness of 80 to 120 is suitable, and a specific gravity (absolute dry specific gravity) of 2 More preferred is .80-2.90 and Shore hardness 100-120.
[0008]
Examples of the main constituent minerals of the metamorphic rocks include plagioclase, amphibole, quartz, and mica, and the contents thereof are 10 to 60% by weight, 5 to 50% by weight, 30% by weight or less, and 20% by weight, respectively. % Or less, more preferably 30 to 40% by weight, 20 to 30% by weight, 15 to 25% by weight, or 5 to 15% by weight, respectively.
[0009]
As the aggregate of the present invention, for example, a contact metamorphic rock in which the bright green tuff of the lower Carboniferous Yoneri Formation distributed in the Yonezato district of Jiangsu City, Iwate Prefecture is hornfelsed (hereinafter referred to as the Yoneri contact metamorphic rock). Crushed stone and crushed sand. Yonezato contact metamorphic rocks include plagioclase, amphibole, quartz, and mica as main constituent minerals, and the contents of these minerals are about 40%, about 25%, about 20%, and about 15%, respectively. The specific gravity is 2.76 to 2.85, and the Shore hardness is 100 to 110.
[0010]
The crushed stone and crushed sand made of the above-mentioned metamorphic rocks can be appropriately used depending on the application, and those having a size of 5 mm or more can be used as coarse aggregates, and those smaller than this can be used as fine aggregates. Moreover, the amount of use and a use aspect are not restrict | limited in particular, It can use equivalent to the normal aggregate of river sand and river gravel.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Below, the example which used the aggregate of this invention as an aggregate for concrete is shown, and this invention is demonstrated concretely by this.
[0012]
Example 1 (concrete)
The Yonezato contact metamorphic rock was crushed and sieved to obtain crushed sand (hereinafter referred to as Yonezato fine aggregate) and crushed stone (hereinafter referred to as Yonezato coarse aggregate).
On the other hand, normal Portland cement was used, and coarse and fine aggregates, silica fume, a water reducing agent, and water were used in amounts shown in Table 1. Details of each material are as follows. In addition, the coarse and fine aggregate quartz andesite used as a comparative example has a main mineral of about 60% by weight of feldspar, about 20% by weight of quartz, and about 10% by weight of mica, and an absolute dry specific gravity of 2.55-2. .70. The crushed stone of 5 mm or more was shown as quartz andesite coarse aggregate, and the crushed sand of less than 5 mm was shown as quartz andesite fine aggregate.
Normal Portland cement: Silica fume manufactured by Chichibu Onoda Co., Ltd .: Norwegian coarse aggregate: Yonezato coarse aggregate (5-10 mm, 10-15 mm, 15-25 mm)
Quartz andesite coarse aggregate (5-10mm, 10-15mm, 15-25mm)
Fine aggregate: Yonezato fine aggregate, quartz andesite fine aggregate (both less than 5mm)
Water reducing agent: Mighty 150 manufactured by Kao Corporation
[0013]
[Table 1]
Figure 0003991168
[0014]
The above blended raw materials were put into a mixer, kneaded in a constant temperature room at a temperature of 20 ° C. and a humidity of 80% to prepare a concrete, and slump was measured.
As a result, the slump of the concrete (Example) using Yonezato coarse aggregate and Yonezato fine aggregate as the aggregate was 18.5 cm. On the other hand, the slump of concrete (comparative example) using quartz andesite coarse aggregate and quartz andesite fine aggregate was 12.0 cm. From this, it can be seen that concrete using good-workability is obtained with the use of Yonezato coarse aggregate and Yonezato fine aggregate.
[0015]
After the slump measurement, the concrete was formed into a cylindrical shape (diameter 7.5 × 15 cm) and a prismatic shape (10 × 10 × 40 cm). After molding, it was placed in a constant temperature room at 20 ° C. and 80% humidity for 24 hours, and then subjected to steam curing (temperature increase: 20 ° C./h, curing: 80 ° C.-4 h). After steam curing, it was left in a constant temperature room at 20 ° C. and humidity 80% until the 7th day of the material age.
[0016]
Seven days after the material age, the specific gravity, compressive strength, and bending strength of the concrete were determined. The static elastic modulus was determined from the ratio of stress to strain at 1/3 of the maximum compressive stress. These results (average value of 3 specimens) are shown in Table 2.
From the results of Table 2, those using the Yonezato coarse aggregate and Yonezato fine aggregate according to the present invention have a specific gravity higher than that of the comparative example using the quartz andesite coarse aggregate and fine aggregate. It can be seen that a concrete crease having a large strength, particularly a bending strength, and a large static elastic modulus can be obtained.
[0017]
[Table 2]
Figure 0003991168
[0018]
Example 2 (polymer cement mortar)
White cement (manufactured by Chichibu Onoda Co., Ltd.) and fine aggregate and styrene-acrylic copolymer resin emulsion (manufactured by Hoechst Synthetic Co., Ltd., trade name: mobile, total solid content of about 50%), weight ratio 1: 1: 0.4 The polymer cement mortar was prepared by blending with the above, and the flow test was conducted.
The sample is an example using Yonezato fine aggregate having a particle size of 1.2 mm or less and a specific gravity of 2.78 as fine aggregate, and No. 4 silica sand (specific gravity 2.63) and No. 6 silica sand ( A comparative example using a mixture of specific gravity 2.62) and 1: 1 (weight ratio) was prepared.
As a result of the flow test, the flow of the mortar using the aggregate of the present invention was 197 mm, but the flow of the mortar of the comparative example was 145 mm.
[0019]
After performing the flow test, it is molded into a prismatic shape (4 x 4 x 16 cm) using a table vibrator, and after the molding, it is cured at a temperature of 20 ° C and a humidity of 80% or more for 5 days, and then the temperature reaches a predetermined age. After curing at 20 ° C. and a humidity of 50%, the strength was measured. Table 3 shows the results of the compressive strength test and the bending strength test.
From the results shown in Table 3, it can be seen that the polymer cement mortar using the Yonezato fine aggregate of the present invention has higher strength, particularly bending strength, than the polymer cement mortar using the silica sand of the comparative example.
[0020]
[Table 3]
Figure 0003991168
[0021]
【The invention's effect】
According to the present invention, metamorphic rocks and sand that have not been used in the past can be used as aggregates, and these aggregates, especially when used as aggregates for mortar and concrete, have workability and strength, especially bending strength. Large mortar and concrete can be obtained.
In addition, the aggregate of the present invention may be used as a simple substance, or used by appropriately mixing with conventional aggregates such as river sand and river gravel, or other various crushed stones and crushed sand. Also good. For example, when manufacturing mortar, the fine aggregate of this invention, the conventional river sand, etc. can be mixed and used. In addition, when producing concrete, the coarse aggregate of the present invention is mixed with conventional river gravel and other various crushed stones as the coarse aggregate, and the fine aggregate of the present invention is used as a simple aggregate, Alternatively, it can be used in combination with conventional river sand and other fine aggregates of crushed sand.

Claims (2)

ホルンフェルス化した接触変成岩の砕石ないし砕砂からなり、比重2 . 70〜2 . 90、ショアー硬度80〜120であって、モルタル用またはコンクリート用の細骨材および / または粗骨材として用いられることを特徴とする骨材。It consists Crushed or crushed sand of hornfelses of the contact metamorphic, specific gravity 2.70 to 2.90, a Shore hardness 80 to 120, to be used as fine aggregate and / or coarse aggregate for mortar or concrete Aggregate featured. 斜長石、角閃石、石英および雲母の含有量が、それぞれ10〜60重量%、5〜50重量%、30重量%以下、20重量%以下である請求項1に記載する骨材。The aggregate according to claim 1, wherein the contents of plagioclase, amphibole, quartz and mica are 10 to 60 wt%, 5 to 50 wt%, 30 wt% or less and 20 wt% or less, respectively.
JP05909497A 1997-03-13 1997-03-13 aggregate Expired - Fee Related JP3991168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05909497A JP3991168B2 (en) 1997-03-13 1997-03-13 aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05909497A JP3991168B2 (en) 1997-03-13 1997-03-13 aggregate

Publications (2)

Publication Number Publication Date
JPH10251046A JPH10251046A (en) 1998-09-22
JP3991168B2 true JP3991168B2 (en) 2007-10-17

Family

ID=13103412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05909497A Expired - Fee Related JP3991168B2 (en) 1997-03-13 1997-03-13 aggregate

Country Status (1)

Country Link
JP (1) JP3991168B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05006537A (en) 2002-12-19 2006-02-17 Carriere R Poudrette Inc Method and device for treating raw manure.
JP2005329046A (en) * 2004-05-20 2005-12-02 Cap:Kk Rock heating bath facility

Also Published As

Publication number Publication date
JPH10251046A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
US2250107A (en) Concrete
Ahmadi et al. Development of mechanical properties of self compacting concrete contain rice husk ash
US6451104B2 (en) Method for producing a blended cementitious composition
AU652944B2 (en) Highly durable cement products containing siliceous ashes
PT1315683E (en) Highly resistant and ductile fibre concrete
MX2007006298A (en) Concrete and mortar additive, process for the preparation thereof, and its use, as well as concrete or mortar containing it.
Atiş et al. Relation between abrasion resistance and flexural strength of high volume fly ash concrete
CN112876175A (en) Self-curing recycled brick-concrete aggregate concrete and preparation method thereof
RU2007142826A (en) KNITTING COMPOSITION AND CONCRETE FROM THIS COMPOSITION
WO1990013524A1 (en) Shaped article with a cement-bound matrix and method and composition for the preparation thereof
JPH0680456A (en) Fluid hydraulic composition
US6855200B2 (en) Inorganic cohesion agent for self-compacting cement pastes
Šerelis et al. Influence of water to cement ratio with different amount of binder on properties of ultra-high performance concrete
JP3991168B2 (en) aggregate
JP2004115315A (en) High-flow concrete
Chkheiwer Improvement of concrete paving blocks properties by mineral additions
JP2002037653A (en) Cement slurry
Ashik et al. Strength properties of concrete using metakaolin
JP2844211B2 (en) Kneading method of ultra-high-strength concrete hardened body and ultra-high-strength concrete compound
KR20040084533A (en) Cement admixture composite for high flowability concrete fabrication
JPH0680449A (en) Production of concrete product having abrasion resistance and ultrahigh strength
Ravindrarajah et al. Properties of high-strength high-performance concrete for marine environment
RU2055034C1 (en) Concrete mixture
US7402205B2 (en) Composition comprising water- and air-hardenable binders and its use notably to the preparation of a product having the aspect of a natural stone
RU2177919C2 (en) Concrete mix and additive to concrete mix

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees