JP3990554B2 - Steel sheet with excellent shape freezing property and method for producing the same - Google Patents

Steel sheet with excellent shape freezing property and method for producing the same Download PDF

Info

Publication number
JP3990554B2
JP3990554B2 JP2001196510A JP2001196510A JP3990554B2 JP 3990554 B2 JP3990554 B2 JP 3990554B2 JP 2001196510 A JP2001196510 A JP 2001196510A JP 2001196510 A JP2001196510 A JP 2001196510A JP 3990554 B2 JP3990554 B2 JP 3990554B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolling
shape freezing
freezing property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001196510A
Other languages
Japanese (ja)
Other versions
JP2002080933A (en
Inventor
夏子 杉浦
直樹 吉永
学 高橋
亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001196510A priority Critical patent/JP3990554B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to KR1020037004171A priority patent/KR100543956B1/en
Priority to CNB018160859A priority patent/CN1208490C/en
Priority to CA002422753A priority patent/CA2422753C/en
Priority to US10/380,844 priority patent/US6962631B2/en
Priority to PCT/JP2001/008277 priority patent/WO2002024968A1/en
Priority to EP01970195A priority patent/EP1327695B1/en
Publication of JP2002080933A publication Critical patent/JP2002080933A/en
Application granted granted Critical
Publication of JP3990554B2 publication Critical patent/JP3990554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、形状凍結性に優れた鋼板およびその製造方法に関するもので、該鋼板は、自動車部品等が主たる用途のものである。
本発明の鋼板は熱延鋼板と冷延鋼板の双方を含むものである。
【0002】
【従来の技術】
自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用して自動車車体を軽量化することが進められている。また、搭乗者の安全性を確保するためにも、自動車車体には、軟鋼板の他に高強度鋼板が多く使用されるようになってきている。更に、自動車車体の軽量化を今後進めていくために、従来以上に高強度鋼板の使用強度レベルを高めたいという新たな要請が非常に高まりつつある。
【0003】
しかしながら、高強度鋼板に曲げ変形を加えると、加工後の形状が、その高強度ゆえに、加工冶具の形状から離れて加工前の形状の方向にもどりやすくなるというスプリング・バック現象や、成形中の“曲げ−曲げ戻し”からの弾性回復により、側壁部の平面が曲率を持った面になってしまうという“壁そり現象”が起こり、狙いとする加工部品の形状が得られないという寸法精度不良が生じる。
【0004】
従って、従来の自動車の車体では、主として440MPa以下の高強度鋼板に限って使用されてきた。すなわち、自動車車体にとっては、490MPa以上の高強度鋼板を使用して車体の軽量化を進めていく必要があるにもかかわらず、スプリング・バックや“壁そり”が少なく、形状凍結性の良い高強度鋼板が存在しないのが実状である。
【0005】
付け加えるまでもなく、440MPa以下の高強度鋼板や軟鋼板の加工後の形状凍結性を高めることも、自動車や家電製品などの製品の形状精度を高める上で極めて重要である。
このような実状の中で、特開平10−72644号公報には、圧延面に平行な面における{200}集合組織の集積度が1.5以上であることを特徴とするスプリングバック量が小さいオーステナイト系ステンレス冷延鋼板が開示されている。しかし、フェライト系鋼板のスプリングバック量を小さくする技術については何ら記載されていない。
【0006】
【発明が解決しようとする課題】
軟鋼板や高強度鋼板に曲げ加工を施すと、鋼板の強度に依存しながら大きなスプリング・バックが発生し、加工成形部品の形状凍結性が悪いというのが現状である。本発明は、この問題を抜本的に解決して、形状凍結性に優れた熱延鋼板及び冷延鋼板及びその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
従来の知見によれば、スプリング・バックを抑えるための方策としては、鋼板の変形応力を低くすることがとりあえず重要であると考えられていた。そして、変形応力を低くするためには、引張強さの低い鋼板を使用せざるをえなかった。しかしこれだけでは、鋼板の曲げ加工性を向上させ、スプリング・バックや壁そりを低く抑えるための根本的な解決にはならない。
【0008】
そこで、本発明者らは、曲げ加工性を向上させてスプリング・バックや壁そりの発生を根本的に解決するために、新たに鋼板の集合組織の曲げ加工性への影響に着目して、その作用効果を詳細に調査、研究した。
その結果、{100}<011>〜{223}<110>方位群と{554}<225>、{111}<112>、{111}<110>の各方位の強度を制御すること、さらには圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つをできるだけ低い値にすることで、曲げ加工性が飛躍的に向上することを明らかにした。
【0009】
そして、曲げ加工性に優れた鋼板を見いだした。
加えて、このような形状凍結性に有利な集合組織を形成するためには、成分と熱間圧延条件を最適化することが極めて重要であることを明らかにした。
本発明は、前述の知見に基づいて構成されており、その主旨とするところは以下の通りである。
【0010】
(1)質量%で、C:0.00330.25%、Si:0.001〜2.5%、Mn:0.01〜2.5%、P:0.005〜0.076%、S:0.03%以下、Al:0.04〜2.0%、N:0.01%以下、O:0.01%以下を含有し、(1)式と(2)式に示した質量%で表現した鋼の成分より求まる関係をいずれも満足し、残部は鉄および不可避的不純物よりなり、かつ、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以上で、かつ、{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下であり、さらに、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であることを特徴とする形状凍結性に優れた鋼板。
【0011】
203√C+15.2Ni-44.7Si-104V-31.5Mo+30Mn+11Cr+20Cu-700P-200Al<30 …(1)
44.7Si+700P+200Al>40 …(2)
【0013】
)更に、Ti:0.2%以、Nb:0.2%以下、V:0.2%以下、Cr:1.5%以下の1種又は2種以上を含有する前記()に記載の形状凍結性に優れた鋼板。
【0014】
)更に、Mo:1%以下、Cu:2%以下、Ni:1%以下、及び、Sn:0.2%以下の1種又は2種以上を含有する前記(1)又は(2)に記載の形状凍結性に優れた鋼板。
)前記(1)〜()の何れかに記載の鋼板にめっきを施したことを特徴とする形状凍結性に優れた鋼板。
【0015】
)前記(1)〜()の何れかに記載の鋼板を製造する方法であって、前記(1)〜(3)の何れか1項に記載の成分からなる鋼片を熱間圧延するに当たり、粗圧延をAr3変態温度超で行い、引き続き、仕上圧延をAr3変態温度以下で行い、仕上温度600℃以上Ar3変態温度未満で圧延を終了し、600〜900℃で巻き取り、熱延鋼板とすることを特徴とする形状凍結性に優れた鋼板の製造方法。
【0016】
)600℃以上Ar3変態温度以下において、少なくとも1パス以上を摩擦係数が0.2以下となるように仕上圧延を行うことを特徴とする前記()に記載の形状凍結性に優れた鋼板の製造方法。
)前記(又は)に記載の鋼板を酸洗し、圧下率80%未満の冷間圧延を施した後、600℃〜(Ac3+100)℃の温度範囲に加熱し、冷却し、冷延鋼板とすることを特徴とする形状凍結性に優れた鋼板の製造方法。
【0017】
【発明の実施の形態】
以下に、本発明の内容を詳細に説明する。
1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値、および、{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値:
これらの平均値は、本発明で特に重要な特性値である。板厚中心位置での板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{100}<011>〜{223}<110>方位群の平均値が3.0以上でなくてはならない。これが3.0未満では形状凍結性が劣悪となる。
【0018】
この方位群に含まれる主な方位は、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>および{223}<110>である。
これら各方位のX線ランダム強度比は{110}極点図に基づきベクトル法により計算した3次元集合組織や、{110}、{100}、{211}、{310}極点図のうち複数の極点図(好ましくは3つ以上)を用いて級数展開法で計算した3次元集合組織から求めればよい。
【0019】
たとえば、後者の方法における上記各結晶方位のX線ランダム強度比には、3次元集合組織のφ2=45゜断面における(001)[1−10]、(116)[1−10]、(114)[1−10]、(113)[1−10]、(112)[1−10]、(335)[1−10]、(223)[1−10]の強度をそのまま用ればよい。
【0020】
{100}<011>〜{223}<110>方位群の強度比の平均値とは、上記の各方位の強度比の相加平均である。上記の全ての方位の強度比を得ることができない場合には、{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の強度比の相加平均で代替してもよい。
【0021】
さらに、1/2板厚における板面の{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値は3.5以下でなくてはならない。
これが3.5超であると、{100}<011>〜{223}<110>方位群の強度比が適正であっても、良好な形状凍結性を得ることが困難となる。{554}<225>、{111}<112>および{111}<110>のX線ランダム強度比も、上記の方法に従って計算した3次元集合組織から求めればよい。
【0022】
より望ましくは、{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が4.0以上で、{554}<225>、{111}<112>および{111}<110>のX線ランダム強度比の相加平均値が2.5未満である。
以上述べた結晶方位のX線強度比が曲げ加工時の形状凍結性に対して重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。
【0023】
X線回折に供する試料は、機械研磨などによって、鋼板を所定の板厚まで減厚し、次いで、化学研磨や電解研磨などによって歪みを除去して、板厚1/2面が測定面となるように作製する。鋼板の板厚中心層に偏析帯や欠陥などが存在し、測定上不都合が生ずる場合には、板厚の3/8〜5/8の範囲で適当な面が測定面となるように上述の方法に従って試料を調整して測定すればよい。当然のことであるが、上述のX線強度の限定が板厚1/2近傍だけでなく、なるべく多くの厚みにわたって満たされることで、より一層、形状凍結性が良好になる。
【0024】
なお、{hkl}<uvw>で表される結晶方位とは、板面の法線方向が<hkl>に平行で、圧延方向が<uvw>と平行であることを示している。
圧延方向のr値(rL)および圧延方向と直角方向のr値(rC):
r値は、本発明において重要な値である。すなわち、本発明者らが鋭意検討の結果、上述した種々の結晶方位のX線強度比が適正であっても、必ずしも良好な形状凍結性が得られないことが判明した。上記のX線強度比と同時に、rLおよびrCのうち少なくとも1つが0.7以下であることが必須である。より好ましくは0.55以下である。rLおよびrCの下限は特に定めることなく本発明の効果を得ることができる。
【0025】
r値は、JIS5号引張試験片を用いた引張試験により評価する。引張歪みは通常15%であるが、均一伸びが15%を下回る場合には、均一伸びの範囲で、できるだけ15%に近い歪みで評価すればよい。
なお、曲げ加工を施す方向は加工部品によって異なるので、特に限定するものではないが、r値が小さい方向に対して垂直もしくは垂直に近い方向に折り曲げる加工を主として行なうことが好ましい。
【0026】
ところで、一般に集合組織とr値とは相関があることが知られているが、本発明においては、既述の結晶方位のX線強度比に関する限定とr値に関する限定とは互いに同義ではなく、両方の限定が同時に満たされなくては、良好な形状凍結性を得ることはできない。
次に成分組成に係る限定条件について述べる。
【0027】
の下限を0.0001%としたのは、実用鋼で得られる下限値を用いることにしたためである。一方でCが0.25%超になると加工性や溶接性が悪くなるので0.25%を上限とする。Cの下限は、実施例の表1の鋼種Bの0.0033%に基づいて、0.0033%とした。
Siは鋼板の機械的強度を高めるのに有効な元素であり、かつ、γ→α変態温度を上昇させる。しかし、2.5%超となると加工性が劣化したり、表面疵が発生したりするので、2.5%を上限とする。一方、実用鋼でSiを0.001%未満とするのは困難であるので、0.001%を下限とする。
【0028】
Mnも鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると加工性が劣化するので、2.5%を上限とする。また、Mnはγ→α変態点を顕著に低下させる。この観点から、Mnの上限は2%が望ましい。一方、実用鋼でMnを0.01%未満とするのは困難であるので、0.01%を下限とする。また、Mn以外にSによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、質量%で、Mn/S≧20となるMn量を添加することが望ましい。
【0029】
Pも鋼板の機械的強度を高め、Ar3変態温度も上昇させる元素である。したがって、0.005%以上添加する。しかし、多すぎると加工性が低下するので0.15%を上限とする。Pの上限は、実施例の表1の鋼種Eの0.076%に基づいて、0.076%とした。
Sは0.03%以下とする。これは加工性の劣化や熱間圧延または冷間圧延時の割れを防ぐためである。
【0030】
Alは脱酸のためにも0.01%以上の添加が必要である。また、Alはγ→α変態点を顕著に上昇させる。この観点からは、0.05%以上の添加がより望ましい。しかし、多すぎると加工性が低下したり、表面性状が劣悪となるため、上限を2.0%とする。Al量の下限は、実施例の表1の鋼種Bの0.040%に基づき、0.04%とした。
NとOは不純物であり、加工性を悪くさせないように、いずれも0.01%以下とする。
【0036】
i、Nb、V、Cr、炭素、窒素の固定、析出強化、組織制御、細粒強化などの機構を通じて材質を改善するので、必要に応じて、それぞれ、0.005%以上、0.001%以上、0.001%以上、0.01%以上添加することが望ましい。しかし、過度に添加しても格段の効果はなく、むしろ加工性や表面性状を劣化させるので、Ti、Nb、V、Crそれぞれの上限を、0.2%、0.2%、0.2%、1.5%した。
【0037】
o、Cu、Ni、Snは、機械的強度を高めたり材質を改善する効果があるので、必要に応じて、各成分とも、0.001%以上を添加することが望ましい。しかし、過度の添加は逆に加工性を劣化させるので、Mo、Cu、Ni、および、Snの上限を、それぞれ、1%、2%、1%、および、0.2%とする。
【0038】
以上の成分元素は、式(1)と式(2)に示された条件を満足する範囲で添加される。この範囲が満足されないと、Ar3変態温度が低下し、α域で仕上圧延を行う温度域が低くなるので、巻取温度の確保ができなくなり、巻取中に回復再結晶が十分起こらなくなる。また、理由は明確ではないが、上式の関係を満足しないと、Ar3変態温度以下で仕上げ熱延を行っても、形状凍結性に有利な集合組織の集積度があまりあがらない。なお、本発明において規定されたその他の成分は、変態温度や集合組織形成にほとんど影響を及ぼさないことから無視した。
【0039】
203√C+15.2Ni-44.7Si-104V-31.5Mo+30Mn+11Cr+20Cu-700P-200Al<30 …(1)
44.7Si+700P+200Al>40 …(2)
なお、本発明では特に限定しないが、脱酸の目的や硫化物の形態制御の目的でCaやMgを適量添加しても構わない。
前記()の発明において、メッキの種類は特に限定するものではなく、電気めっき、溶融めっき、蒸着めっき等の何れでも、本発明の効果が得られる。
【0040】
次に、製造方法について説明する。
熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉、転炉、電炉等による溶製に引き続き、各種の2次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。
【0041】
連続鋳造の場合には一度低温まで冷却したのち、再度加熱してから熱間圧延してもよいし、鋳造スラブを連続的に熱延してもよい。原料にはスクラップを使用しても構わない。
熱間圧延において、圧延温度がAr3変態温度以下になると、加工前に生成したフェライトが加工され、強い圧延集合組織を形成する。前記()の発明に記載のとおり、この様な集合組織を、最終的に、形状凍結性に有利な集合組織とするためには、仕上圧延をAr3変態温度以下で行い、600℃以上Ar3変態温度未満で完了し、高温で加工されたフェライトを、冷却途中および巻き取り中に、回復・再結晶させる必要がある。圧延完了温度が600℃より低いと、圧延機への負担が大きくなり、Ar3変態温度超では形状凍結性に有利な集合組織が得られないので、仕上温度を、600℃以上Ar3変態温度未満の範囲に限定する。
【0042】
仕上圧延の圧下率は25〜85%の範囲にすることが望ましい。圧下率が25%未満では、形状凍結に有利な集合組織が発達しにくく、85%超では、形状凍結性を劣化させる集合組織が発達してくる。この観点から、仕上げ圧延の圧下率は30〜80%の範囲にすることが更に望ましい。
巻取温度を600℃未満にすると、巻取中に十分な回復再結晶が起こらず、加工性が劣化する。また、巻取温度を900℃超にすると、粒成長によって形状凍結性に有利な集合組織への集積度が低下する。したがって、巻取温度の範囲は600〜900℃とする。なお、熱延終了後、一旦室温まで冷却した後に再度600〜900℃に再加熱焼鈍を行っても、同様の効果が得られることは明らかである。
【0043】
ここで、前記()の発明に記したように、熱間圧延時の熱間圧延ロールと鋼板との摩擦係数が0.2を越えている場合には、鋼板表面近傍における板面に、{110}面を主とする結晶方位が発達し、形状凍結性が劣化する。それ故に、より良好な形状凍結性を指向する場合には、600℃〜Ar3以下の仕上圧延における少なくとも1パスについては、ロールと鋼板との摩擦係数を0.2以下とすることが好ましい。この摩擦係数は低ければ低いほど望ましく、特に厳しい形状凍結性が要求される場合には、仕上圧延の全パスについて、摩擦係数を0.15以下とすることが望ましい。
【0044】
熱間圧延においては、Ar3変態温度以上で粗圧延を行った後にシートバーを接合し、引き続き、Ar3変態温度以下で仕上げ圧延をしてもよい。その際に、粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行ってもよい。熱延鋼板には、必要に応じて、スキンパス圧延を施してもよい。スキンパス圧延には、加工成形時に発生するストレッチャーストレインの防止や、形状矯正の効果があることは言うまでもない。
【0045】
この様にして得られた熱延鋼板を冷間圧延し、焼鈍して最終的な薄鋼板とする際に、冷間圧延の全圧下率が80%以上となる場合には、一般的な冷間圧延−再結晶集合組織である板面に平行な結晶面のX線回折積分面強度比の{111}面や{554}面成分が高くなり、本発明の特徴である前記(1)の発明の結晶方位の規定を満たなくなる。そのため、冷間圧延の圧下率の上限を80%とする。
【0046】
形状凍結性を高めるためには、冷間圧下率を70%以下に制限することが望ましい。冷間圧延率の下限は特に定めることなく、本発明の効果を得ることができるが、結晶方位の強度を適当な範囲に制御するためには3%以上とすることが好ましい。
この様な圧下率範囲で冷間圧延された冷延鋼板を焼鈍する際に、焼鈍温度が600℃未満の場合には、加工組織が残留し成形性を著しく劣化させるので、焼鈍温度の下限を600℃とする。
【0047】
一方、焼鈍温度が過度に高い場合には、再結晶によって生成したフェライトの集合組織が、オーステナイトへ変態後、オーステナイトの粒成長によってランダム化され、最終的に得られるフェライトの集合組織もランダム化される。特に、焼鈍温度が(Ac3+100)℃を越える場合にはそのような傾向が顕著となる。
【0048】
従って、焼鈍温度は(Ac3+100)℃以下とする。冷延鋼板には、必要に応じて、スキンパス圧延を施してもよい。
そして、本発明の形状凍結性に優れた鋼板は、曲げ加工だけでなく、曲げ、張り出し、絞り等、曲げ加工を主体とする複合成形にも適用できる。
本発明の実施例を挙げながら、本発明の技術的内容について説明する。
【0049】
【実施例】
(実施例)
表1に示した成分組成を有するAからMまでの鋼を用いて検討した結果について説明する。これらの鋼は、鋳造後、そのまま、もしくは、一旦室温まで冷却された後に、1100℃〜1300℃の温度範囲に再加熱され、その後熱間圧延が施され、最終的には、1.4mm厚、3.0mm厚、もしくは、8.0mm厚の熱延鋼板とした。3.0mm厚および8.0mm厚の熱延鋼板は、冷間圧延することによって1.4mm厚とし、その後、連続焼鈍工程にて焼鈍を行った。これら1.4mm厚の鋼板から、50mm幅、270mm長さの試験片を作製し、ポンチ幅78mm、ポンチ肩R5、ダイ肩R5の金型を用いて、ハット曲げ試験を行った。曲げ試験を行った試験片は、三次元形状測定装置にて板幅中心部の形状を測定し、図1に示した様に、点(1)と点(2)の接線と、点(3)と点(4)の接線の交点の角度から90°を引いた値の左右での平均値をスプリング・バック量とし、点(3)と点(5)間の曲率の逆数を左右で平均化した値を壁そり量とし、左右の点(5)間の長さからポンチ幅を引いた値を寸法精度として、形状凍結性を評価した。なお、曲げはr値の低い方向と垂直に折れ線が入るように行った。
【0050】
【表1】

Figure 0003990554
【0051】
【表2】
Figure 0003990554
【0052】
ところで、図2および図3に示す様に、スプリングバック量や壁そり量は、BHF(しわ押さえ力)によっても変化する。本発明の効果は、いずれのBHFで評価を行ってもその傾向は変わらないが、実機で実部品をプレスする際には、あまり高いBHFはかけられないので、今回は、BHF29kNで各鋼種のハット曲げ試験を行った。
【0053】
表2に、各鋼板の製造条件と、該製造条件が本発明の範囲内にあるか否かを示した。熱延条件の「圧延温度」の欄は、Ar3変態温度以下で仕上圧延を行った場合は「○」、仕上圧延の温度域がAr3変態温度以上を含んでいる場合「×」とした。以上の場合に、仕上圧延の少なくとも1パス以上についての摩擦係数が0.2以下の場合には、「潤滑」の欄に「○」、全パスにおける摩擦係数が0.2超の場合には、「△」を記入した。「巻取温度」の欄は、600〜900℃で巻き取った場合には「○」、600℃未満の場合には「×」とした。
【0054】
鋼L、Mを除いた全鋼種において、各鋼種の「−2」および「−3」の番号の実施例が本発明の製造条件を満たしている。
鋼L、Mは、「圧延温度」の条件を満足すると「巻取温度」の条件を確保できず、また、「巻取温度」の条件を確保すると、「圧延温度」の条件を満足しないものである。したがって、鋼L、Mに関しては、いずれの実施例も本発明の製造条件を満たしていない。
【0055】
この様な熱延鋼板を1.4mm厚に冷延する場合において、冷延圧下率が80%以上の場合には、「冷延圧下率」を「×」とし、「80%未満」の場合には「○」とした。また、焼鈍温度が600℃以上(Ac3+100)℃以下の場合には、「焼鈍温度」の欄を「○」とし、それ以外の場合には「×」とした。製造条件として関係のない項目は「―」とした。熱延鋼板および冷延鋼板のいずれに対しても、スキンパス圧延を0.5〜1.5%の範囲で施した。
【0056】
X線の測定は、鋼板の代表値として、板厚の7/16厚の位置で板面に平行なサンプルを作製し、実施した。
表3および表4(表3の続き)に、前記の方法によって製造した1.4mm厚の熱延鋼板と冷延鋼板の機械的特性値とスプリング・バック量とを示した。表4中の鋼L、Mを除いた全鋼種において、各鋼種の「−2」および「−3」の番号の実施例が本発明に該当するものである。
【0057】
これらは、発明外の「−1」と「−4」の番号のものに比べて、スプリング・バック量および壁そり量が小さくなり、結果として、寸法精度が向上していることがわかる。即ち、薄鋼板において、本発明で限定される各結晶方位のX線ランダム強度比とr値が満たされると、初めて、良好な形状凍結性が達成されるのである。
【0058】
各結晶方位のX線ランダム強度比やr値が形状凍結性の向上に重要であることの機構については、現在のところ、必ずしも明らかとはなっていない。おそらく、曲げ変形時にすべり変形の進行を容易にすることで、結果的に、曲げ変形時のスプリング・バック量および壁そり量を小さくしているものと理解される。
【0059】
【表3】
Figure 0003990554
【0060】
【表4】
Figure 0003990554
【0061】
【発明の効果】
薄鋼板においての集合組織とr値を制御すると、その曲げ加工性は著しく向上することを以上に詳述した。本発明によって、スプリング・バックや壁そりなどの形状不良が低減され、曲げ加工を主体とする形状凍結性に優れた薄鋼板を提供することができるようになった。
【0062】
特に、従来は、形状不良の問題から高強度鋼板の適用が難しかった部品にも高強度鋼板が使用できるようになる。自動車の軽量化を推進するためには、高強度鋼板の使用は是非とも必要である。形状凍結性に優れた高強度鋼板が適用できるようになると、自動車車体の軽量化をより一層推進することができる。従って、本発明は、工業的に極めて高い価値のある発明である。
【図面の簡単な説明】
【図1】ハット曲げ試験に用いた試験片の断面を示す図である。
【図2】スプリングバック量とBHF(しわ押さえ力)の関係を示す図である。
【図3】壁そり量とBHF(しわ押さえ力)の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate excellent in shape freezing property and a method for producing the same, and the steel plate is mainly used for automobile parts and the like.
The steel sheet of the present invention includes both hot-rolled steel sheets and cold-rolled steel sheets.
[0002]
[Prior art]
In order to suppress the amount of carbon dioxide emission from automobiles, it has been promoted to reduce the weight of automobile bodies using high-strength steel sheets. In addition, in order to ensure the safety of passengers, high strength steel plates are often used in automobile bodies in addition to mild steel plates. Furthermore, in order to further reduce the weight of automobile bodies in the future, new demands for increasing the strength level of use of high-strength steel sheets are increasing.
[0003]
However, when bending deformation is applied to a high-strength steel sheet, the shape after processing tends to return to the direction of the shape before processing away from the shape of the processing jig because of its high strength, Due to elastic recovery from “bend-bend-back”, the “wall warp phenomenon” occurs in which the flat surface of the side wall becomes a curved surface, resulting in poor dimensional accuracy resulting in failure to obtain the shape of the desired workpiece. Occurs.
[0004]
Therefore, the conventional automobile body has been mainly used only for high-strength steel sheets of 440 MPa or less. In other words, for automobile bodies, high-strength steel sheets of 490 MPa or more must be used to reduce the weight of the vehicle body, but there are few spring backs and “wall sleds” and high shape freezing properties. The fact is that there is no strength steel plate.
[0005]
Needless to say, increasing the shape freezing property after processing of a high-strength steel plate or mild steel plate of 440 MPa or less is also extremely important for improving the shape accuracy of products such as automobiles and home appliances.
In such a situation, Japanese Patent Application Laid-Open No. 10-72644 discloses a small amount of springback characterized in that the accumulation degree of {200} texture in a plane parallel to the rolling surface is 1.5 or more. An austenitic stainless cold-rolled steel sheet is disclosed. However, there is no description about a technique for reducing the springback amount of the ferritic steel sheet.
[0006]
[Problems to be solved by the invention]
When bending a mild steel plate or a high-strength steel plate, a large spring back is generated depending on the strength of the steel plate, and the shape freezing property of the processed molded part is poor. The present invention fundamentally solves this problem and provides a hot-rolled steel sheet and a cold-rolled steel sheet having excellent shape freezing properties and a method for producing the same.
[0007]
[Means for Solving the Problems]
According to the conventional knowledge, it was thought that it was important for the time being to reduce the deformation stress of the steel sheet as a measure for suppressing the spring back. And in order to make a deformation stress low, the steel plate with low tensile strength had to be used. However, this alone is not the fundamental solution for improving the bending workability of steel sheets and keeping springback and wall warpage low.
[0008]
Therefore, in order to improve the bending workability and fundamentally solve the occurrence of spring back and wall warpage, the present inventors pay attention to the influence on the bending workability of the texture of the steel sheet newly, The effects were investigated and studied in detail.
As a result, controlling the intensity of each of {100} <011> to {223} <110> orientation group and {554} <225>, {111} <112>, {111} <110>, Clarified that bending workability is dramatically improved by setting at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction as low as possible.
[0009]
And the steel plate excellent in bending workability was found.
In addition, it was clarified that it is extremely important to optimize the components and hot rolling conditions in order to form a texture that is advantageous for shape freezing.
The present invention is configured based on the above-mentioned knowledge, and the main points thereof are as follows.
[0010]
(1) By mass%, C: 0.0033 to 0.25 %, Si: 0.001 to 2.5%, Mn: 0.01 to 2.5%, P: 0.005 to 0.076% , S: 0.03% or less, Al: 0.04 to 2.0%, N: 0.01% or less, O: 0.01% or less, and shown in the formula (1) and formula (2) both the mass% determined from components of the steel expressed in relation satisfied, the balance consists of iron and inevitable impurities, and {100} plate surface in 1/2 thickness <011> - {223} < The average value of the X-ray random intensity ratio of 110> orientation group is 3.0 or more, and X-rays of three crystal orientations of {554} <225>, {111} <112> and {111} <110> The average value of the random strength ratio is 3.5 or less, and further, the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction. Steel sheet excellent in shape fixability, wherein at least one but not more than 0.7.
[0011]
203√C + 15.2Ni-44.7Si-104V-31.5Mo + 30Mn + 11Cr + 20Cu-700P-200Al <30… (1)
44.7Si + 700P + 200Al> 40… (2 )
[0013]
(2) In addition, Ti: 0.2% or, Nb: 0.2% or less, V: 0.2% or less, Cr: 1 type or the containing two or more under 1.5% or less (1 The steel plate having excellent shape freezing property as described in).
[0014]
( 3 ) The above (1) or (2) further containing one or more of Mo: 1% or less, Cu: 2% or less, Ni: 1% or less, and Sn: 0.2% or less A steel sheet having excellent shape freezing property as described in 1.
( 4 ) A steel plate excellent in shape freezing property, wherein the steel plate according to any one of (1) to ( 3 ) is plated.
[0015]
(5) the (1) to (3) A method of manufacturing a steel sheet according to any one of the above (1) to (3) hot a slab containing components according to any one of In rolling , rough rolling is performed above the Ar 3 transformation temperature, then finish rolling is performed at the Ar 3 transformation temperature or lower, the rolling is finished at a finishing temperature of 600 ° C. or higher and lower than the Ar 3 transformation temperature, and winding is performed at 600 to 900 ° C. A method for producing a steel sheet having excellent shape freezing properties, characterized in that it is a hot-rolled steel sheet.
[0016]
( 6 ) The shape freezing property as described in ( 5 ) above is excellent, wherein finish rolling is performed so that the friction coefficient is 0.2 or less at 600 ° C. or more and Ar3 transformation temperature or less. A method of manufacturing a steel sheet.
( 7 ) After pickling the steel sheet according to ( 5 ) or ( 6 ) and performing cold rolling with a reduction rate of less than 80%, the steel sheet is heated to a temperature range of 600 ° C. to (Ac 3 +100) ° C., A method for producing a steel sheet having excellent shape freezing property, characterized by cooling to a cold-rolled steel sheet.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The contents of the present invention will be described in detail below.
The average value of the X-ray random intensity ratios of {100} <011> to {223} <110> orientation groups on the plate surface at 1/2 plate thickness, and {554} <225>, {111} <112> and Average value of X-ray random intensity ratio of three crystal orientations of {111} <110>:
These average values are particularly important characteristic values in the present invention. The average value of {100} <011> to {223} <110> azimuth groups when the X-ray diffraction of the plate surface at the plate thickness center position and the intensity ratio of each azimuth with respect to the random sample is obtained is 3. Must be greater than or equal to zero. If this is less than 3.0, shape freezing property will be inferior.
[0018]
The main orientations included in this orientation group are {100} <011>, {116} <110>, {114} <110>, {113} <110>, {112} <110>, {335} <110> and {223} <110>.
The X-ray random intensity ratio in each of these directions is a three-dimensional texture calculated by the vector method based on the {110} pole figure, or a plurality of poles among {110}, {100}, {211}, {310} pole figures. What is necessary is just to obtain | require from the three-dimensional texture calculated by the series expansion method using the figure (preferably three or more).
[0019]
For example, the X-ray random intensity ratio of each crystal orientation in the latter method is (001) [1-10], (116) [1-10], (114) in the φ2 = 45 ° cross section of the three-dimensional texture. ) [1-10], (113) [1-10], (112) [1-10], (335) [1-10], (223) [1-10] strengths may be used as they are. .
[0020]
The average value of the intensity ratios of the {100} <011> to {223} <110> orientation groups is an arithmetic average of the intensity ratios of the above-mentioned orientations. When the intensity ratios of all the above directions cannot be obtained, {100} <011>, {116} <110>, {114} <110>, {112} <110>, {223} <110 An arithmetic average of intensity ratios in each direction may be substituted.
[0021]
Furthermore, the average value of the X-ray random intensity ratio of the three crystal orientations of {554} <225>, {111} <112> and {111} <110> on the plate surface at 1/2 plate thickness is 3.5 or less. It must be.
If this exceeds 3.5, it will be difficult to obtain good shape freezing properties even if the intensity ratio of the {100} <011> to {223} <110> orientation groups is appropriate. The X-ray random intensity ratio of {554} <225>, {111} <112>, and {111} <110> may be obtained from the three-dimensional texture calculated according to the above method.
[0022]
More preferably, the average value of the X-ray random intensity ratios of the {100} <011> to {223} <110> orientation groups is 4.0 or more, and {554} <225>, {111} <112> and { The arithmetic average value of the X-ray random intensity ratio of 111} <110> is less than 2.5.
The reason why the X-ray intensity ratio of the crystal orientation described above is important for the shape freezing property during bending is not necessarily clear, but it is assumed that it is related to the sliding behavior of the crystal during bending deformation. The
[0023]
Samples to be subjected to X-ray diffraction are mechanically polished to reduce the thickness of the steel sheet to a predetermined thickness, and then the distortion is removed by chemical polishing, electrolytic polishing, etc., and the thickness 1/2 surface becomes the measurement surface. Make as follows. When there is a segregation zone or a defect in the thickness center layer of the steel plate and inconvenience occurs in the measurement, the above-mentioned surface is set so that an appropriate surface becomes the measurement surface in the range of 3/8 to 5/8 of the plate thickness. The sample may be prepared and measured according to the method. As a matter of course, the above-mentioned limitation of the X-ray intensity is satisfied not only in the vicinity of the plate thickness ½ but also as much as possible, so that the shape freezing property is further improved.
[0024]
The crystal orientation represented by {hkl} <uvw> indicates that the normal direction of the plate surface is parallel to <hkl> and the rolling direction is parallel to <uvw>.
R value (rL) in the rolling direction and r value (rC) in the direction perpendicular to the rolling direction:
The r value is an important value in the present invention. That is, as a result of intensive studies by the present inventors, it has been found that even if the X-ray intensity ratios of the various crystal orientations described above are appropriate, good shape freezing property cannot always be obtained. At the same time as the above X-ray intensity ratio, it is essential that at least one of rL and rC is 0.7 or less. More preferably, it is 0.55 or less. The lower limit of rL and rC is not particularly defined, and the effects of the present invention can be obtained.
[0025]
The r value is evaluated by a tensile test using a JIS No. 5 tensile test piece. The tensile strain is usually 15%. However, when the uniform elongation is less than 15%, the strain may be evaluated as close to 15% as possible within the range of uniform elongation.
The direction in which the bending process is performed differs depending on the processed part, and is not particularly limited. However, it is preferable to mainly perform the bending process in a direction perpendicular to or close to the perpendicular to the direction in which the r value is small.
[0026]
By the way, it is generally known that there is a correlation between the texture and the r value, but in the present invention, the above-described limitation on the X-ray intensity ratio of the crystal orientation and the limitation on the r value are not synonymous with each other, Unless both limitations are satisfied at the same time, good shape freezing property cannot be obtained.
Next, limiting conditions related to the component composition will be described.
[0027]
The reason why the lower limit of C is set to 0.0001% is that the lower limit value obtained from practical steel is used . On the other hand, if C exceeds 0.25%, workability and weldability deteriorate, so 0.25% is made the upper limit. The lower limit of C was set to 0.0033% based on 0.0033% of steel type B in Table 1 of the examples.
Si is an effective element for increasing the mechanical strength of the steel sheet, and raises the γ → α transformation temperature. However, if it exceeds 2.5%, workability deteriorates or surface flaws occur, so 2.5% is made the upper limit. On the other hand, since it is difficult to make Si less than 0.001% in practical steel, 0.001% is made the lower limit.
[0028]
Mn is also an effective element for increasing the mechanical strength of the steel sheet, but if it exceeds 2.5%, the workability deteriorates, so 2.5% is made the upper limit. In addition, Mn significantly reduces the γ → α transformation point. From this viewpoint, the upper limit of Mn is desirably 2%. On the other hand, since it is difficult to make Mn less than 0.01% in practical steel, 0.01% is made the lower limit. In addition to Mn, when an element such as Ti that suppresses the occurrence of hot cracking due to S is not sufficiently added, it is desirable to add an amount of Mn that satisfies Mn / S ≧ 20 by mass%.
[0029]
P is also an element that increases the mechanical strength of the steel sheet and increases the Ar 3 transformation temperature. Therefore, 0.005% or more is added. However, if the amount is too large, the workability deteriorates, so 0.15% is made the upper limit. The upper limit of P was set to 0.076% based on 0.076% of steel type E in Table 1 of the Examples.
S is 0.03% or less. This is to prevent workability deterioration and cracking during hot rolling or cold rolling.
[0030]
Al needs to be added in an amount of 0.01% or more for deoxidation. Further, Al significantly increases the γ → α transformation point. From this viewpoint, addition of 0.05% or more is more desirable. However, if the amount is too large, the workability deteriorates or the surface properties become poor, so the upper limit is made 2.0%. The lower limit of the Al content was 0.04% based on 0.040% of steel type B in Table 1 of the Examples.
N and O are impurities, and both are made 0.01% or less so as not to deteriorate the workability.
[0036]
T i, Nb, V, Cr is carbon, fixed nitrogen, precipitation strengthening, structure control, so to improve the material through mechanisms such as granules reinforced, if necessary, respectively, 0.005% or more, 0. It is desirable to add 001% or more, 0.001% or more, or 0.01% or more. However, excessively no remarkable effect can be added, so deteriorating rather processability and surface properties, Ti, Nb, V, each of the upper limit of Cr, 0.2%, 0.2%, 0. 2%, was 1.5%.
[0037]
Since Mo, Cu, Ni, and Sn are effective in increasing mechanical strength and improving the material, it is desirable to add 0.001% or more of each component as necessary. However, excessive addition conversely degrades workability, so the upper limits of Mo, Cu, Ni, and Sn are 1%, 2%, 1%, and 0.2%, respectively.
[0038]
More Ingredients element is added in an amount that satisfies the conditions indicated in the formula (1) into equation (2). If this range is not satisfied, the Ar 3 transformation temperature decreases and the temperature range for finish rolling in the α region decreases, so that the winding temperature cannot be ensured and recovery recrystallization does not occur sufficiently during winding. Although the reason is not clear, if the relationship of the above formula is not satisfied, even if the finish hot rolling is performed below the Ar 3 transformation temperature, the accumulation degree of the texture advantageous to the shape freezing property does not increase so much. The other components defined in the present invention were ignored because they hardly affected the transformation temperature and texture formation.
[0039]
203√C + 15.2Ni-44.7Si-104V-31.5Mo + 30Mn + 11Cr + 20Cu-700P-200Al <30… (1)
44.7Si + 700P + 200Al> 40… (2)
Although not particularly limited in the present invention, an appropriate amount of Ca or Mg may be added for the purpose of deoxidation or the control of sulfide morphology.
In the invention of ( 4 ), the type of plating is not particularly limited, and the effect of the present invention can be obtained by any of electroplating, hot dipping, vapor deposition plating and the like.
[0040]
Next, a manufacturing method will be described.
The production method preceding hot rolling is not particularly limited. That is, various secondary smelting may be performed following smelting by a blast furnace, converter, electric furnace, etc., and then cast by a method such as thin slab casting in addition to normal continuous casting and ingot casting.
[0041]
In the case of continuous casting, after cooling to low temperature once, it may be heated again and then hot rolled, or the cast slab may be continuously hot rolled. Scrap may be used as a raw material.
In hot rolling, when the rolling temperature is equal to or lower than the Ar 3 transformation temperature, the ferrite generated before processing is processed to form a strong rolling texture. As described in the invention of ( 5 ), in order to finally make such a texture to a texture that is advantageous for shape freezing, finish rolling is performed at an Ar 3 transformation temperature or lower, and 600 ° C. or higher. It is necessary to recover and recrystallize the ferrite that has been completed below the Ar3 transformation temperature and processed at a high temperature during cooling and winding. When the rolling completion temperature is lower than 600 ° C., load on the rolling mill is increased, since the Ar 3 transformation temperature than in an advantageous texture in shape fixability can not be obtained, the finishing temperature, 600 ° C. or higher Ar 3 transformation temperature Limited to less than the range.
[0042]
The rolling reduction of finish rolling is desirably in the range of 25 to 85%. When the rolling reduction is less than 25%, a texture that is advantageous for shape freezing hardly develops, and when it exceeds 85%, a texture that deteriorates the shape freezing property develops. From this viewpoint, it is more desirable that the rolling reduction of finish rolling is in the range of 30 to 80%.
When the winding temperature is less than 600 ° C., sufficient recovery recrystallization does not occur during winding, and workability deteriorates. On the other hand, when the coiling temperature is higher than 900 ° C., the degree of accumulation in the texture that is advantageous for the shape freezing property is decreased by the grain growth. Therefore, the range of coiling temperature shall be 600-900 degreeC. In addition, it is clear that the same effect can be obtained even if reheating annealing is performed again at 600 to 900 ° C. after cooling to room temperature once after hot rolling.
[0043]
Here, as described in the invention of ( 6 ) above, when the friction coefficient between the hot rolling roll and the steel plate during hot rolling exceeds 0.2, the plate surface in the vicinity of the steel plate surface, Crystal orientation mainly consisting of {110} plane develops and shape freezeability deteriorates. Therefore, when aiming at better shape freezing property, it is preferable that the friction coefficient between the roll and the steel plate is 0.2 or less for at least one pass in finish rolling at 600 ° C. to Ar 3 or less. This friction coefficient is preferably as low as possible. When particularly severe shape freezing properties are required, it is desirable that the friction coefficient is 0.15 or less for all passes of finish rolling.
[0044]
In hot rolling, after rough rolling at an Ar 3 transformation temperature or higher, a sheet bar may be joined, and subsequently finish rolling at an Ar 3 transformation temperature or lower. At that time, the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining. The hot-rolled steel sheet may be subjected to skin pass rolling as necessary. Needless to say, the skin pass rolling has the effect of preventing stretcher strain generated during processing and shape correction.
[0045]
When the hot-rolled steel sheet thus obtained is cold-rolled and annealed to obtain a final thin steel sheet, when the total rolling reduction of the cold-rolling is 80% or more, a general cold-rolled steel sheet is used. The {111} plane and {554} plane components of the X-ray diffraction integral plane intensity ratio of the crystal plane parallel to the plate surface, which is a cold-rolled and recrystallized texture, are increased . The crystal orientation of the invention is not met. Therefore, the upper limit of the cold rolling reduction ratio is set to 80%.
[0046]
In order to increase the shape freezing property, it is desirable to limit the cold rolling reduction to 70% or less. The lower limit of the cold rolling rate is not particularly defined, and the effect of the present invention can be obtained. However, in order to control the crystal orientation strength within an appropriate range, it is preferably 3% or more.
When annealing a cold-rolled steel sheet that has been cold-rolled in such a range of rolling reduction, if the annealing temperature is less than 600 ° C., the work structure remains and the formability deteriorates significantly, so the lower limit of the annealing temperature is set. Set to 600 ° C.
[0047]
On the other hand, when the annealing temperature is excessively high, the ferrite texture formed by recrystallization is randomized by austenite grain growth after transformation to austenite, and the finally obtained ferrite texture is also randomized. The In particular, such a tendency becomes remarkable when the annealing temperature exceeds (Ac 3 +100) ° C.
[0048]
Accordingly, the annealing temperature is set to (Ac 3 +100) ° C. or lower. The cold-rolled steel sheet may be subjected to skin pass rolling as necessary.
And the steel plate excellent in the shape freezing property of this invention can be applied not only to a bending process but also to a composite molding mainly composed of a bending process such as bending, overhanging and drawing.
The technical contents of the present invention will be described with reference to examples of the present invention.
[0049]
【Example】
(Example)
The results of studies using steels A to M having the composition shown in Table 1 will be described. After casting, these steels are either as they are or once cooled to room temperature, and then reheated to a temperature range of 1100 ° C. to 1300 ° C., and then subjected to hot rolling. , 3.0 mm thick or 8.0 mm thick hot rolled steel sheet. The 3.0 mm thick and 8.0 mm thick hot-rolled steel sheets were cold rolled to a thickness of 1.4 mm, and then annealed in a continuous annealing process. A test piece having a width of 50 mm and a length of 270 mm was produced from the steel sheet having a thickness of 1.4 mm, and a hat bending test was performed using a die having a punch width of 78 mm, a punch shoulder R5, and a die shoulder R5. The test piece subjected to the bending test was measured for the shape of the central part of the plate width with a three-dimensional shape measuring apparatus, and as shown in FIG. 1, the tangent line between the point (1) and the point (2), and the point (3 ) And the point (4) tangent intersection angle minus 90 ° from the left and right average value is the spring back amount, and the inverse of the curvature between point (3) and point (5) is averaged on the left and right The shape freezing property was evaluated using the converted value as the wall warp amount and the value obtained by subtracting the punch width from the length between the left and right points (5) as the dimensional accuracy. The bending was performed so that a polygonal line entered perpendicular to the direction of low r value.
[0050]
[Table 1]
Figure 0003990554
[0051]
[Table 2]
Figure 0003990554
[0052]
By the way, as shown in FIG. 2 and FIG. 3, the amount of spring back and the amount of wall warp also change depending on BHF (wrinkle pressing force). The effect of the present invention does not change even if the evaluation is performed with any BHF, but when pressing an actual part with an actual machine, a very high BHF cannot be applied. A hat bending test was performed.
[0053]
Table 2 shows the manufacturing conditions of each steel sheet and whether or not the manufacturing conditions are within the scope of the present invention. Column "rolling temperature" of hot rolling conditions, the case of performing finish rolling at Ar 3 transformation temperature or less "○", a temperature range of finish rolling is set to "×" if it contains more than Ar 3 transformation temperature . In the above case, when the friction coefficient for at least one pass of finish rolling is 0.2 or less, “O” in the “Lubrication” column, and when the friction coefficient in all passes exceeds 0.2 , “△” was entered. In the column of “winding temperature”, “◯” is indicated when winding is performed at 600 to 900 ° C., and “X” is indicated when the winding is less than 600 ° C.
[0054]
In all steel types except steels L and M, the examples of the numbers “−2” and “−3” of the respective steel types satisfy the production conditions of the present invention.
Steels L and M cannot satisfy the “rolling temperature” condition when the “rolling temperature” condition is satisfied, and do not satisfy the “rolling temperature” condition when the “winding temperature” condition is ensured. It is. Therefore, regarding the steels L and M, none of the examples satisfy the production conditions of the present invention.
[0055]
When such a hot-rolled steel sheet is cold-rolled to a thickness of 1.4 mm, when the cold-rolling reduction ratio is 80% or more, the “cold-rolling reduction ratio” is “x” and “less than 80%” Was marked as “◯”. In addition, when the annealing temperature was 600 ° C. or higher (Ac 3 +100) ° C. or lower, the “annealing temperature” column was “◯”, and otherwise “X”. Items that have no relation to manufacturing conditions are marked with “-”. Skin pass rolling was performed in a range of 0.5 to 1.5% for both hot-rolled steel sheets and cold-rolled steel sheets.
[0056]
The X-ray measurement was performed by preparing a sample parallel to the plate surface at a position of 7/16 thickness as a representative value of the steel plate.
Tables 3 and 4 (continuation of Table 3) show the mechanical property values and springback amounts of the 1.4 mm thick hot-rolled steel sheet and cold-rolled steel sheet manufactured by the above method. In all steel types except steels L and M in Table 4, the examples of the numbers “−2” and “−3” of the respective steel types correspond to the present invention.
[0057]
It can be seen that the spring back amount and the wall warp amount are smaller than those of the numbers “−1” and “−4” outside the invention, and as a result, the dimensional accuracy is improved. That is, in a thin steel plate, good shape freezing property is achieved only when the X-ray random intensity ratio and r value of each crystal orientation defined in the present invention are satisfied.
[0058]
At present, the mechanism that the X-ray random intensity ratio and the r value of each crystal orientation are important for improving the shape freezing property is not necessarily clear at present. Perhaps, it can be understood that by facilitating the progress of slip deformation during bending deformation, as a result, the amount of spring back and wall warpage during bending deformation is reduced.
[0059]
[Table 3]
Figure 0003990554
[0060]
[Table 4]
Figure 0003990554
[0061]
【The invention's effect】
It has been described in detail above that when the texture and r value in a thin steel sheet are controlled, the bending workability is remarkably improved. According to the present invention, it is possible to provide a thin steel sheet with reduced shape defects such as a spring back and a wall sled and having excellent shape freezing properties mainly composed of bending.
[0062]
In particular, the high strength steel plate can be used for parts that have conventionally been difficult to apply the high strength steel plate due to the problem of shape defects. In order to promote the weight reduction of automobiles, the use of high-strength steel sheets is absolutely necessary. If a high-strength steel sheet having excellent shape freezing properties can be applied, it is possible to further promote weight reduction of the automobile body. Therefore, the present invention is industrially extremely valuable.
[Brief description of the drawings]
FIG. 1 is a view showing a cross section of a test piece used in a hat bending test.
FIG. 2 is a diagram showing a relationship between a springback amount and BHF (wrinkle pressing force).
FIG. 3 is a diagram showing the relationship between the amount of wall warpage and BHF (wrinkle holding force).

Claims (7)

質量%で、C:0.00330.25%、
Si:0.001〜2.5%、
Mn:0.01〜2.5%、
P:0.005〜0.076%
S:0.03%以下、
Al:0.04〜2.0%、
N:0.01%以下、
O:0.01%以下
を含有し、(1)式と(2)式に示した質量%で表現した鋼の成分より求まる関係をいずれも満足し、残部は鉄および不可避的不純物よりなり、かつ、1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以上で、かつ、{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が3.5以下であり、さらに、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であることを特徴とする形状凍結性に優れた鋼板。
203√C+15.2Ni-44.7Si-104V-31.5Mo+30Mn+11Cr+20Cu-700P-200Al<30 …(1)
44.7Si+700P+200Al>40 …(2)
% By mass, C: 0.0033 to 0.25 %,
Si: 0.001 to 2.5%,
Mn: 0.01 to 2.5%
P: 0.005-0.076 %
S: 0.03% or less,
Al: 0.04 to 2.0%,
N: 0.01% or less,
O: 0.01% or less, satisfying both of the relationships obtained from the steel components expressed by mass% shown in the formulas (1) and (2), the balance is made of iron and inevitable impurities, and an average value of 1 / {100} plate surface in 2 thickness <011> - {223} <110> orientation component group X-ray random intensity ratio of 3.0 or more, and {554} <225> , {111} <112> and {111} <110>, the average value of the X-ray random intensity ratio of the three crystal orientations is 3.5 or less, and the r value in the rolling direction and the direction perpendicular to the rolling direction A steel sheet excellent in shape freezing property, wherein at least one of r values is 0.7 or less.
203√C + 15.2Ni-44.7Si-104V-31.5Mo + 30Mn + 11Cr + 20Cu-700P-200Al <30… (1)
44.7Si + 700P + 200Al> 40… (2)
更に、Ti:0.2%以下、
Nb:0.2%以下、
V:0.2%以下、
Cr:1.5%以
1種又は2種以上を含有する請求項に記載の形状凍結性に優れた鋼板。
Furthermore, Ti: 0.2% or less,
Nb: 0.2% or less,
V: 0.2% or less,
Cr: 1.5% or less under
Steel sheet excellent in shape fixability according to claim 1 containing one or more of.
更に、Mo:1%以下、
Cu:2%以下、
Ni:1%以下、及び、
Sn:0.2%以下
の1種又は2種以上を含有する請求項1又は2に記載の形状凍結性に優れた鋼板。
Furthermore, Mo: 1% or less,
Cu: 2% or less,
Ni: 1% or less, and
The steel plate excellent in shape freezing property according to claim 1 or 2 , containing Sn: 0.2% or less.
請求項1〜の何れか1項に記載の鋼板にめっきを施したことを特徴とする形状凍結性に優れた鋼板。The steel plate excellent in the shape freezing property characterized by having plated the steel plate of any one of Claims 1-3 . 請求項1〜の何れか1項に記載の鋼板を製造する方法であって、請求項1〜3の何れか1項に記載の成分からなる鋼片を熱間圧延するに当たり、粗圧延をAr3変態温度超で行い、引き続き、仕上圧延をAr3変態温度以下で行い、仕上温度600℃以上Ar3変態温度未満で圧延を終了し、600〜900℃で巻き取り、熱延鋼板とすることを特徴とする形状凍結性に優れた鋼板の製造方法。 A method of manufacturing a steel sheet according to any one of claim 1 to 3 per a slab containing components according to any one of claims 1 to 3 hot rolling, a rough rolling Ar carried out at 3 transformation temperature greater than subsequently, finish rolling was carried out by the following Ar 3 transformation temperature, exit the rolling at less than finishing temperature 600 ° C. or higher Ar 3 transformation temperature, taken up at 600 to 900 ° C., and hot rolled steel sheet A method for producing a steel sheet having excellent shape freezing properties. 600℃以上Ar3変態温度以下において、少なくとも1パス以上を摩擦係数が0.2以下となるように仕上圧延を行うことを特徴とする請求項に記載の形状凍結性に優れた鋼板の製造方法。6. The production of a steel sheet excellent in shape freezing property according to claim 5 , wherein finish rolling is performed at 600 ° C. or more and Ar 3 transformation temperature or less so that the friction coefficient is 0.2 or less for at least one pass or more. Method. 請求項5又は6に記載の鋼板を酸洗し、80%未満の冷間圧延を施した後、600℃〜(Ac3+100)℃の温度範囲に加熱し、冷却し、冷延鋼板とすることを特徴とする形状凍結性に優れた鋼板の製造方法。The steel plate according to claim 5 or 6 is pickled and cold-rolled to less than 80%, and then heated to a temperature range of 600 ° C to (Ac 3 +100) ° C and cooled to obtain a cold-rolled steel plate. A method for producing a steel sheet having excellent shape freezing properties.
JP2001196510A 2000-06-30 2001-06-28 Steel sheet with excellent shape freezing property and method for producing the same Expired - Fee Related JP3990554B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001196510A JP3990554B2 (en) 2000-06-30 2001-06-28 Steel sheet with excellent shape freezing property and method for producing the same
CNB018160859A CN1208490C (en) 2000-09-21 2001-09-21 Steel plaster excellent in shape freezing property and method for production thereof
CA002422753A CA2422753C (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
US10/380,844 US6962631B2 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
KR1020037004171A KR100543956B1 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
PCT/JP2001/008277 WO2002024968A1 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
EP01970195A EP1327695B1 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000199280 2000-06-30
JP2000-199280 2000-06-30
JP2001196510A JP3990554B2 (en) 2000-06-30 2001-06-28 Steel sheet with excellent shape freezing property and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002080933A JP2002080933A (en) 2002-03-22
JP3990554B2 true JP3990554B2 (en) 2007-10-17

Family

ID=26595146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196510A Expired - Fee Related JP3990554B2 (en) 2000-06-30 2001-06-28 Steel sheet with excellent shape freezing property and method for producing the same

Country Status (1)

Country Link
JP (1) JP3990554B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI248977B (en) 2003-06-26 2006-02-11 Nippon Steel Corp High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
JP4276482B2 (en) * 2003-06-26 2009-06-10 新日本製鐵株式会社 High-strength hot-rolled steel sheet with excellent ultimate deformability and shape freezing property and its manufacturing method
US10161023B2 (en) 2012-03-07 2018-12-25 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping, method for production thereof, and hot stamping steel material
CN103950792A (en) * 2014-05-07 2014-07-30 国家电网公司 Detecting device for interaction of wires and paying-off pulleys in tension stringing process

Also Published As

Publication number Publication date
JP2002080933A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
US9322091B2 (en) Galvanized steel sheet
JP5015063B2 (en) Ferrite thin steel sheet for automobiles with excellent shape freezing property and its manufacturing method
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP3990553B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP4384523B2 (en) Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP3990549B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP4430444B2 (en) Low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP3898954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP4126007B2 (en) Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same
JP3569949B2 (en) Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance
JP4102284B2 (en) {100} &lt;011&gt; Cold rolled steel sheet manufacturing method with excellent shape freezing property with developed orientation
JP3532138B2 (en) Ferrite thin steel sheet excellent in shape freezing property and method for producing the same
JP3990550B2 (en) Low yield ratio type high strength steel plate with excellent shape freezing property and its manufacturing method
JP3990554B2 (en) Steel sheet with excellent shape freezing property and method for producing the same
JP4189192B2 (en) Low yield ratio type high-strength cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP3908954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP4189209B2 (en) Steel plate with excellent shape freezing property and method for producing the same
JP3911226B2 (en) Method for producing cold-rolled steel sheet with excellent shape freezing property
JP4189194B2 (en) Cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP2004052103A (en) Steel sheet superior in deep drawability, steel pipe superior in workability, and manufacturing method therefor
JPS63243226A (en) Production of cold rolled steel sheet for ultra-deep drawing having excellent resistance to brittleness by secondary operation
JPH0466653A (en) Manufacture of hot-dip galvanized steel sheet for high working excellent in surface property
JP5245948B2 (en) Cold rolled steel strip manufacturing method
JP3742559B2 (en) Steel plate excellent in workability and manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3990554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees