JP3989620B2 - Manufacturing method of a sleeve for a hot water - Google Patents

Manufacturing method of a sleeve for a hot water Download PDF

Info

Publication number
JP3989620B2
JP3989620B2 JP12425598A JP12425598A JP3989620B2 JP 3989620 B2 JP3989620 B2 JP 3989620B2 JP 12425598 A JP12425598 A JP 12425598A JP 12425598 A JP12425598 A JP 12425598A JP 3989620 B2 JP3989620 B2 JP 3989620B2
Authority
JP
Japan
Prior art keywords
hot water
sleeve
manufacturing
hot
induction port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12425598A
Other languages
Japanese (ja)
Other versions
JPH11192535A (en
Inventor
奉文 西
一夫 福西
進 奥山
Original Assignee
アシュランドジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アシュランドジャパン株式会社 filed Critical アシュランドジャパン株式会社
Priority to JP12425598A priority Critical patent/JP3989620B2/en
Publication of JPH11192535A publication Critical patent/JPH11192535A/en
Application granted granted Critical
Publication of JP3989620B2 publication Critical patent/JP3989620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳物鋳造の際に押湯を保温あるいは加熱して収容するためのスリーブを製造する方法に関する。
【0002】
【従来の技術】
鋳物製品の生産においては、鋳型(生型)に流し込んだ溶融金属の冷却工程においてその収縮により内部に引け巣が生じないように、冷却工程の間じゅう常に引け巣の体積に相当する量の溶融金属(以下、押湯という。)を補給している。余分な押湯は製品が冷えて型ばらしされた後に切断除去されるものであるため、製品の歩止まりを向上させるには、押湯は引け巣の体積をわずかにこえる程度の量が最適である。
そのため従来、製品の鋳型(生型)4の上部に、押湯を保温あるいは加熱して鋳型(生型)中に常に補給しうるように、スリーブを設けてその中に押湯を収容している。このようなスリーブとして種々の内部形状のものが提案されているが、例えば、押湯収容部1aの内部が円筒形で押湯誘導口1bにネックダウンコア3の設けられた押湯用スリーブが一般に広く知られている(図7参照)。また、押湯誘導口を備えた押湯収容部が球状の二つ割れの押湯用スリーブも公知である。
これらの押湯用スリーブは、押湯を保温あるいは加熱できるように、断熱保温材料あるいは発熱材料でつくられている。具体的には、断熱保温材料としては繊維やアルミナ粉末が用いられ、発熱材料としてはアルミニウム粉末と酸化鉄と酸化剤が耐火骨材と共に用いられ、これらを水ガラスやシェルモールド用ノボラック型又はレゾール型フェノール樹脂などの粘結剤と混練し成形して硬化させている。
【0003】
【発明が解決しようとする課題】
しかしながら、例えば水ガラスを粘結剤として使用した場合には、CO2 で通気して成形品を硬化させた後、硬化したスリーブを乾燥炉中で更に約200℃で4時間ほど乾燥させなければ、実用的な強度の押湯用スリーブが得られない。また、粘結剤としてシェルモールド用ノボラック型又はレゾール型フェノール樹脂を使用した場合にも、成形したのち乾燥炉中で約200℃で4時間ほど乾燥させなければ、実用的な強度の押湯用スリーブを得ることができない。
そのため、樹脂発泡成形体は約200℃で加熱すると変形などするため、従来の押湯用スリーブの製造には樹脂発泡成形体を使用することができなかった。
【0004】
本発明の目的は、高温で長時間乾燥する工程を行わなくても実用的な性能を有する一体的な押湯用のスリーブを簡易に製造する方法を提供することである。
【0005】
【課題を解決するための手段】
前記目的を達成するために、本発明の押湯誘導口と押湯収容部とを備えた押湯用スリーブの製造方法は、樹脂発泡成形体の全表面に耐火物粉末とウレタン系粘結剤とを含有する混合物を被覆し硬化させて押湯を内部に収容する断熱保温壁を形成し、次いで前記断熱保温壁の一部を取り除いて押湯誘導口を形成すること、を特徴とする。
【0006】
本発明の押湯誘導口と押湯収容部とを備えた押湯用スリーブの製造方法は、樹脂発泡成形体の全表面にアルミニウム粉末及び/又はマグネシウム粉末と酸化鉄と酸化剤と助燃剤と耐火物粉末とウレタン系粘結剤とを含有する混合物を被覆し硬化させて押湯を内部に収容する発熱壁を形成し、次いで前記発熱壁の一部を取り除いて押湯誘導口を形成すること、を特徴とする。
【0007】
本発明の押湯誘導口と押湯収容部とを備えた押湯用スリーブの製造方法は、樹脂発泡成形体の押湯誘導口を構成すべき表面を除く全表面に、耐火物粉末とウレタン系粘結剤とを含有する混合物を被覆し硬化させて、押湯誘導口と押湯収容部とを構成する断熱保温壁を形成すること、を特徴とする。
【0008】
本発明の押湯誘導口と押湯収容部とを備えた押湯用スリーブの製造方法は、樹脂発泡成形体の押湯誘導口を構成すべき表面を除く全表面に、アルミニウム粉末及び/又はマグネシウム粉末と酸化鉄と酸化剤と助燃剤と耐火物粉末とウレタン系粘結剤とを含有する混合物を被覆し硬化させて、押湯誘導口と押湯収容部とを構成する発熱壁を形成すること、を特徴とする。
【0009】
更に本発明は、前記の各押湯用スリーブの製造方法であって、前記押湯誘導口に更にネックダウンコアを設ける。
【0010】
【発明の実施の形態】
本発明における樹脂発泡成形体は、溶融金属の熱で溶融あるいは消失する樹脂を発泡、成形して押湯収容部と押湯誘導口とをそれぞれなす部分を備えた成形体である。このような樹脂としては、ポリスチレン、ポリメタクリル酸メチル、ポリエチレン等の熱可塑性樹脂が好適である。更に、熱可塑性樹脂中に発泡剤を内包した微小体を所望の形状、大きさの型内で発泡、膨張させ相互に融着させた樹脂発泡成形体が最適である。
【0011】
この樹脂発泡成形体の外部形状は、ドーム形、コップ形、円柱形、球形などの種々の形状であってよいが、同一体積のうちで最も熱拡散面積が小さい、すなわち、体積と表面積の比で示されるモジュラスが最も大きくなる球形(但し、押湯誘導口を構成すべき部分を除く。)が最も好ましい。溶湯金属が同じ場合には、その凝固時間はモジュラスによって定まるからである。
【0012】
樹脂発泡成形体の表面に被覆する混合物は、耐火物粉末(例えば、シラスバルーンなどのアルミナ系中空微小球、砂)とウレタン系粘結剤(例えば好適には、フェノール樹脂とイソシアネート硬化剤とからなるフェノールウレタン系粘結剤)とからなる場合には押湯を断熱保温し、これらに更にアルミニウム粉末及び/又はマグネシウム粉末(好適にはアルミニウム粉末)と酸化鉄と酸化剤(例えば硝酸ナトリウム)と助燃剤(例えばフッ化ナトリウム)とからなる場合にはスリーブ自体がテルミット反応により発熱して溶湯を加熱して、スリーブ内に押湯を収容することができる。
耐火物粉末のうちアルミナ系中空微小球、特にシラスバルーンは、実用的な強度を備えているだけでなく軽量の断熱保温壁又は発熱壁を安価に形成することができるので、更に好適である。
【0013】
本発明においては、まず、樹脂発泡成形体の(押湯誘導口を構成すべき部分を除いた)一部又は全部の表面に、前記混合物を好適には型内で被覆し、更に好適には第3級アミン等の触媒を添加あるいはガス化して通気し硬化させて、断熱保温壁又は発熱壁を形成する。樹脂発泡成形体の全表面に壁を形成した場合には、その一部を切断などして取り除き、押湯誘導口を形成する。
押湯誘導口には、製品鋳型への設置の容易化と、型ばらし後に冷えた押湯(部分)を切断しやすいように、更にネックダウンコアを接着などにより設けることが好ましい。
形成された断熱保温壁、発熱壁は通気性があり、押湯がスリーブ内に入ったとき、樹脂発泡成形体の燃焼ガスや空気は速やかにスリーブ外に排出される。
【0014】
【実施例】
以下、本発明を更に詳しく説明する。
実施例1
図1は、本発明の実施例1における樹脂発泡成形体を成形するための二つ割れ型の側断面図である。図2は、本発明の実施例1の押湯用スリーブを製造するための二つ割れ型に樹脂発泡成形体を設置した場合の側断面図である。図3は、本発明の実施例1の押湯用スリーブの側断面図である。
発泡性ポリスチレンビーズ(三菱油化バディシュ(株)製FMC−250)3.5gを図1の型6のキャビティー7に充填し115℃で加熱して、直径7cmの球形の押湯収容部を構成すべき部分(容積198.7cm3 、表面積175.9cm2 、密度0.019g/cm3 )1aと押湯誘導口を構成すべき部分1bからなる熱可塑性樹脂発泡成形体1を製造した。
次に、樹脂発泡成形体1の押湯誘導口1bを構成すべき表面に空隙が存在しないように、この熱可塑性樹脂発泡成形体1をスリーブ製造用の型8のキャビティー9に設置した(図2参照)。このキャビティー9は前記成形体1より一まわり大きく、キャビティー9の空隙に発熱壁を構成すべき混合物を充填した。この混合物は、アルミニウム粉末5gと酸化鉄1gと硝酸ナトリウム1gとフッ化ナトリウム1gとシラスバルーン(三機化工建設(株)製サンキライト)92gとをよく混合し、この中に更にフェノール樹脂1.5gとイソシアネート硬化剤1.5gとを加えて充分に混合したものである。
そして、このキャビティー9内に充填した混合物にトリエチルアミンの蒸気を常温で通気して、この充填した混合物を常温で硬化させ、押湯用スリーブを製造した。
更に、このスリーブの押湯誘導口に、中心に押湯誘導口とほぼ同じ大きさの円形の穴を設けたネックダウンコア3を接着した。このネックダウンコア3は、シラスバルーンとフェノール樹脂とイソシアネート硬化剤との混合物を型中でトリエチルアミンの蒸気を通気して硬化させたものである。
得られたネックダウンコア付き押湯用スリーブを使用して、注湯試験を行った。
発熱壁を形成する混合物の組成、及び製造した押湯用スリーブの性状及び注湯試験結果をまとめて表1に示す。
【0015】
〔注湯試験〕
容積1.26リットルの製品鋳型(生型)4の上部に、ネックダウンコア3付き押湯用スリーブを設置し、押湯が発熱壁2内を満たすように生型4内に1620℃の溶融金属(鋳鋼SCW480)を注湯して、押湯用スリーブの内部の溶融金属が1493℃以下に冷えて凝固するまでの時間を測定した(図6参照)。
【0016】
実施例2
ネックダウンコアを取り付けないこと及び発熱壁を構成すべき混合物の組成を表1に示すように変更したことを除いて、実施例1と同様にして押湯用スリーブを製造し、これを使用して注湯試験を行った。
発熱壁を形成する混合物の組成、及び製造した押湯用スリーブの性状及び注湯試験結果をまとめて表1に示す。
【0017】
実施例3
発泡性ポリスチレンビーズ(三菱油化バディシュ(株)製FMC−250)3.5gを球形キャビティーを有する型内に充填し115℃で加熱して、直径7cmの球形の熱可塑性樹脂発泡成形体1(体積179.5cm3 、表面積153.9cm2 、密度0.019g/cm3 )を製造した。
次に、この熱可塑性樹脂発泡成形体1をこれより大きい球形キャビティーを有するスリーブ製造用の型内に設置した。このキャビティーの空隙に発熱壁を構成すべき混合物を充填した。この混合物は、アルミニウム粉末15gと酸化鉄3gと硝酸ナトリウム1gとフッ化ナトリウム1gとシラスバルーン80gとをよく混合し、この中に更にフェノール樹脂1.5gとイソシアネート硬化剤1.5gとを加えて充分に混合したものである。
そして、キャビティーの空隙にトリエチルアミンの蒸気を常温で通気して、この充填した混合物を常温で硬化させ、(内部)熱可塑性樹脂発泡成形体1と(外部)発熱壁2からなる球状体を製造した。
この球状体の一部を切断し(外部)発熱壁2の一部を取り除いて、押湯誘導口(を構成すべき部分)を形成して、押湯用スリーブを製造した。図4は、製造した押湯用スリーブの側断面図である。
この押湯用スリーブを使用して注湯試験を行った。
発熱壁を形成する混合物の組成、及び製造した押湯用スリーブの性状及び注湯試験結果をまとめて表1に示す。
【0018】
実施例4
発熱壁を構成すべき混合物の組成を表1に示すように変更したことを除いて実施例3と同様にして製造した押湯用スリーブに、実施例1と同様にしてネックダウンコアを取り付けて、押湯用スリーブを製造した。図5は、製造した押湯用スリーブの側断面図である。
この押湯用スリーブを使用して注湯試験を行った。
発熱壁を形成する混合物の組成、及び製造した押湯用スリーブの性状及び注湯試験結果をまとめて表1に示す。
【0019】
実施例5
発泡性ポリスチレンビーズ(三菱油化バディシュ(株)製FMC−250)4.0gを型内の頭部が半球状の円筒形のキャビティーに充填し115℃で加熱して、直径7cm、長さ10.3cmの頭部が半球状の円柱形の熱可塑性樹脂発泡成形体1(体積198.7cm3 、表面積176.9cm2 、密度0.020g/cm3 )を製造した。
次に、樹脂発泡成形体1の押湯誘導口1bを構成すべき表面(円柱底面)に空隙が存在しないように、この熱可塑性樹脂発泡成形体1をスリーブ製造用の型の内部のキャビティーに設置した。このキャビティーは前記成形体1より一まわり大きく、キャビティーの空隙に断熱保温壁2′を構成すべき混合物を充填した。この混合物は、シラスバルーン100gとフェノール樹脂1.5gとイソシアネート硬化剤1.5gとを加えて充分に混合したものである。
そして、キャビティーの空隙にトリエチルアミンの蒸気を常温で通気して、この充填した混合物を常温で硬化させ、押湯用スリーブを製造した。
更に、このスリーブの押湯誘導口に、中心に押湯誘導口とほぼ同じ大きさの円形の穴を設けたネックダウンコアを接着した。このネックダウンコアは、シラスバルーンとフェノール樹脂とイソシアネート硬化剤との混合物を型中でトリエチルアミンの蒸気を通気して硬化させたものである。
得られたネックダウンコア付き押湯用スリーブを使用して、注湯試験を行った。
断熱保温壁を形成する混合物の組成、及び製造した押湯用スリーブの性状及び注湯試験結果をまとめて表1に示す。
【0020】
比較例1
生型4の上部(の砂の中)に、実施例1と同様にして製造した体積198.7cm3 の球形熱可塑性樹脂発泡成形体1を埋め込んで、注湯試験を行った。
注湯試験結果などをまとめて表1に示す。
【0021】
【表1】

Figure 0003989620
【0022】
【発明の効果】
以上説明した通り、本発明においては、樹脂発泡成形体の表面に、耐火物粉末などをウレタン系粘結剤で高温で長時間加熱することなく硬化させているので、変形などすることなく通気性があり実用的な強度の断熱保温壁又は発熱壁を(樹脂発泡成形体と)一体的かつ簡易に形成することができる。そして、本発明により製造される押湯用スリーブを製品の鋳型(生型)の上部に設置して使用すると、溶融金属(押湯)により樹脂発泡成形体が消失して、断熱保温壁又は発熱壁内に押湯を収容し保温又は加熱することができるので、鋳物製品に引け巣が生じないように、その体積をわずかにこえる程度の量の押湯を使用してこれを収容し生型に供給することができ経済的である。
【図面の簡単な説明】
【図1】 本発明の実施例1における樹脂発泡成形体を成形するための二つ割れ型の側断面図である。
【図2】 本発明の実施例1の押湯用スリーブを製造するための二つ割れ型に樹脂発泡成形体を設置した場合の側断面図である。
【図3】 本発明の実施例1の押湯用スリーブの側断面図である。
【図4】 本発明の実施例3の押湯用スリーブの側断面図である。
【図5】 本発明の実施例4の押湯用スリーブの側断面図である。
【図6】 本発明の実施例1の押湯用スリーブを使用した注湯試験における製品鋳型及び押湯用スリーブの側断面図である。
【図7】 従来の鋳物生産における製品鋳型及び押湯用スリーブの側断面図である。
【符号の説明】
1 熱可塑性樹脂発泡成形体
1a 押湯収容部(を構成すべき部分)
1b 押湯誘導口(を構成すべき部分)
2 発熱壁
2′ 断熱保温壁
3 ネックダウンコア[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a sleeve for holding a hot water bath while keeping it warm or casting during casting.
[0002]
[Prior art]
In the production of cast products, the amount of melting corresponding to the volume of the shrinkage cavity is always maintained during the cooling process so that the shrinkage of the molten metal poured into the mold (green mold) does not occur due to its shrinkage. Replenishing metal (hereinafter referred to as the hot water). Since the excess hot water is cut and removed after the product has cooled down and released, the amount of the hot water that exceeds the shrinkage nest volume is optimal for improving the product yield. is there.
Therefore, conventionally, a sleeve is provided on the upper part of the mold (green mold) 4 of the product so that the hot water can be kept or heated and always supplied into the mold (green mold). Yes. Various types of internal sleeves have been proposed as such sleeves. For example, there is a hot water supply sleeve in which the inside of the hot water storage portion 1a is cylindrical and the neck down core 3 is provided in the hot water supply guide port 1b. Generally known widely (see FIG. 7). Also, a hot water supply sleeve having a hot water supply portion provided with a hot water induction port and having a spherical shape is also known.
These hot water supply sleeves are made of a heat insulating material or a heat generating material so that the hot water can be kept warm or heated. Specifically, fiber or alumina powder is used as the heat insulation material, and aluminum powder, iron oxide and oxidant are used together with the refractory aggregate as the heat generating material. These are used as water glass, shell mold novolak type or resole. It is kneaded with a binder such as a phenol resin and molded to cure.
[0003]
[Problems to be solved by the invention]
However, for example, when water glass is used as a binder, the molded product must be cured by aeration with CO 2 , and then the cured sleeve must be further dried at about 200 ° C. for about 4 hours. Therefore, it is not possible to obtain a feeder sleeve with practical strength. Moreover, even when a novolak type or resol type phenol resin for shell mold is used as a binder, if it is not dried in a drying furnace at about 200 ° C. for about 4 hours after molding, it is used for a hot water with practical strength. I can't get a sleeve.
For this reason, since the resin foam molded body is deformed when heated at about 200 ° C., the resin foam molded body cannot be used in the manufacture of a conventional feeder sleeve.
[0004]
An object of the present invention is to provide a method for easily manufacturing an integrated feeder sleeve having practical performance without performing a process of drying at a high temperature for a long time.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a hot water sleeve having a hot water induction port and a hot water container according to the present invention includes a refractory powder and a urethane-based binder on the entire surface of a resin foam molded body. A heat-insulating heat retaining wall for containing the hot water is formed by coating and curing the mixture containing the hot water, and then a part of the heat insulating heat retaining wall is removed to form a hot water induction port.
[0006]
The manufacturing method of the hot water sleeve provided with the hot water induction port and the hot water container according to the present invention includes: A mixture containing a refractory powder and a urethane-based binder is coated and cured to form a heat generating wall that accommodates the hot water inside, and then a part of the heat generating wall is removed to form a hot water induction port. It is characterized by this.
[0007]
A method for manufacturing a hot water sleeve having a hot water guide port and a hot water container according to the present invention includes a refractory powder and urethane on the entire surface except the surface that should constitute the hot water guide port of the resin foam molded article. A mixture containing a system binder is coated and cured to form a heat insulating heat insulating wall that constitutes a feeder entrance and a feeder housing portion.
[0008]
A method for manufacturing a hot water sleeve having a hot water guide port and a hot water container according to the present invention includes an aluminum powder and / or an entire surface except for the surface that should constitute the hot water guide port of the resin foam molded article. A mixture containing magnesium powder, iron oxide, oxidizer, auxiliary combustor, refractory powder, and urethane-based binder is coated and cured to form a heating wall that constitutes the feeder entrance and feeder housing part. It is characterized by doing.
[0009]
Furthermore, the present invention is a method for manufacturing each of the above-mentioned feeder sleeves, further comprising a neck down core at the feeder guide port.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The resin foam molded body in the present invention is a molded body having portions that respectively form a hot-water container portion and a hot-water feeder inlet by foaming and molding a resin that melts or disappears by the heat of the molten metal. As such a resin, thermoplastic resins such as polystyrene, polymethyl methacrylate, and polyethylene are suitable. Further, a resin foam molded body in which a fine body encapsulating a foaming agent in a thermoplastic resin is foamed and expanded in a mold having a desired shape and size and fused together is optimal.
[0011]
The external shape of the resin foam molded body may be various shapes such as a dome shape, a cup shape, a cylindrical shape, a spherical shape, etc., but has the smallest thermal diffusion area within the same volume, that is, the ratio of the volume to the surface area. The most preferable spherical shape (except for the portion that should constitute the feeder entrance) is the most preferable. This is because the solidification time is determined by the modulus when the molten metal is the same.
[0012]
The mixture coated on the surface of the resin foam molded body is composed of a refractory powder (for example, alumina hollow microspheres such as Shirasu balloon, sand) and a urethane binder (for example, preferably a phenol resin and an isocyanate curing agent). A phenol-urethane-based binder), the hot water is insulated and heat-insulated, and further, aluminum powder and / or magnesium powder (preferably aluminum powder), iron oxide and oxidizing agent (for example, sodium nitrate) In the case of comprising an auxiliary combustion agent (for example, sodium fluoride), the sleeve itself generates heat by the thermite reaction to heat the molten metal, and the hot water can be accommodated in the sleeve.
Among the refractory powders, alumina-based hollow microspheres, particularly Shirasu balloons, are not only provided with practical strength, but also can form a lightweight heat insulating heat insulating wall or heat generating wall at low cost, and are more preferable.
[0013]
In the present invention, first, a part or all of the surface of the resin foam molded body (excluding the part to constitute the feeder entrance) is preferably coated with the mixture in a mold, and more preferably A catalyst such as a tertiary amine is added or gasified and aerated and cured to form a heat insulating wall or a heat generating wall. When a wall is formed on the entire surface of the resin foam molded article, a part thereof is removed by cutting or the like to form a feeder guide port.
It is preferable to further provide a neck down core by adhesion or the like in the feeder guide port so that it can be easily installed on the product mold and the feeder (part) cooled after the mold is released can be easily cut.
The formed heat insulating and heat generating walls and the heat generating wall are air permeable, and when the hot water enters the sleeve, the combustion gas and air of the resin foam molded body are quickly discharged out of the sleeve.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail.
Example 1
FIG. 1 is a side sectional view of a two-split mold for molding a resin foam molded body in Example 1 of the present invention. FIG. 2 is a side cross-sectional view of the case where the resin foam molded body is installed in a two-split mold for producing the feeder sleeve according to the first embodiment of the present invention. FIG. 3 is a side sectional view of the feeder sleeve according to the first embodiment of the present invention.
Filling the cavity 7 of the mold 6 of FIG. 1 with 3.5 g of expandable polystyrene beads (FMC-250 manufactured by Mitsubishi Oil Chemical Badesh Co., Ltd.) and heating at 115 ° C. A thermoplastic resin foam molded article 1 comprising a part (a volume 198.7 cm 3 , a surface area 175.9 cm 2 , a density 0.019 g / cm 3 ) 1a and a part 1b that should constitute a feeder inlet was manufactured.
Next, this thermoplastic resin foam molded article 1 was placed in the cavity 9 of the sleeve manufacturing mold 8 so that there was no void on the surface of the resin foam molded article 1 that should constitute the feeder entrance 1b ( (See FIG. 2). The cavity 9 was slightly larger than the molded body 1, and the gap in the cavity 9 was filled with a mixture that should constitute a heating wall. In this mixture, 5 g of aluminum powder, 1 g of iron oxide, 1 g of sodium nitrate, 1 g of sodium fluoride, and 92 g of Shirasu Balloon (Sankylite manufactured by Sanki Kako Construction Co., Ltd.) were mixed well. 5 g and 1.5 g of isocyanate curing agent are added and mixed thoroughly.
Then, triethylamine vapor was passed through the mixture filled in the cavity 9 at room temperature, and the filled mixture was cured at room temperature to produce a feeder sleeve.
Further, the neck down core 3 provided with a circular hole of the same size as that of the feeder guide port is bonded to the feeder guide port of the sleeve. The neck down core 3 is obtained by curing a mixture of a shirasu balloon, a phenol resin, and an isocyanate curing agent by passing triethylamine vapor through a mold.
Using the obtained sleeve for the hot water supply with a neck down core, a pouring test was conducted.
Table 1 summarizes the composition of the mixture forming the heat generating wall, the properties of the manufactured hot water sleeve and the pouring test results.
[0015]
[Pouring test]
At the top of the product mold (green mold) 4 with a volume of 1.26 liters, a hot water sleeve with a neck down core 3 is installed and melted at 1620 ° C. in the green mold 4 so that the hot metal fills the heat generating wall 2. Metal (cast steel SCW480) was poured, and the time until the molten metal inside the hot metal sleeve cooled to 1493 ° C. or lower and solidified was measured (see FIG. 6).
[0016]
Example 2
A feeder sleeve is manufactured and used in the same manner as in Example 1 except that the neck down core is not attached and the composition of the mixture that constitutes the heating wall is changed as shown in Table 1. A hot water pouring test was conducted.
Table 1 summarizes the composition of the mixture forming the heat generating wall, the properties of the manufactured hot water sleeve and the pouring test results.
[0017]
Example 3
Expandable polystyrene beads (FMC-250 manufactured by Mitsubishi Oil Kabadish Co., Ltd.) 3.5 g are filled into a mold having a spherical cavity and heated at 115 ° C. to form a spherical thermoplastic resin foam molded body 1 having a diameter of 7 cm. (Volume 179.5 cm 3 , surface area 153.9 cm 2 , density 0.019 g / cm 3 ) was produced.
Next, this thermoplastic resin foam molded article 1 was placed in a mold for manufacturing a sleeve having a larger spherical cavity. The cavity was filled with a mixture that would constitute a heating wall. In this mixture, 15 g of aluminum powder, 3 g of iron oxide, 1 g of sodium nitrate, 1 g of sodium fluoride, and 80 g of Shirasu balloon are mixed well, and 1.5 g of phenol resin and 1.5 g of isocyanate curing agent are further added thereto. Thoroughly mixed.
Then, triethylamine vapor is passed through the cavity of the cavity at room temperature, and the filled mixture is cured at room temperature to produce a spherical body composed of (internal) thermoplastic resin foam molded body 1 and (external) heating wall 2. did.
A part of the spherical body was cut (external), and a part of the heat generating wall 2 was removed to form a feeder entrance (portion to constitute) to produce a feeder sleeve. FIG. 4 is a side sectional view of the manufactured feeder sleeve.
A pouring test was performed using this hot-water sleeve.
Table 1 summarizes the composition of the mixture forming the heat generating wall, the properties of the manufactured hot water sleeve and the pouring test results.
[0018]
Example 4
A neck down core was attached to a feeder sleeve manufactured in the same manner as in Example 3 except that the composition of the mixture constituting the heating wall was changed as shown in Table 1. A sleeve for a hot water was manufactured. FIG. 5 is a side cross-sectional view of the manufactured feeder sleeve.
A pouring test was performed using this hot-water sleeve.
Table 1 summarizes the composition of the mixture forming the heat generating wall, the properties of the manufactured hot water sleeve and the pouring test results.
[0019]
Example 5
4.0 g of expandable polystyrene beads (FMC-250 manufactured by Mitsubishi Oil Kabadish Co., Ltd.) are filled into a cylindrical cavity with a hemispherical head in the mold, heated at 115 ° C., 7 cm in diameter and length head of 10.3cm was producing a thermoplastic resin foam molded article 1 of the hemispherical cylindrical (volume 198.7cm 3, surface area 176.9cm 2, density of 0.020g / cm 3).
Next, the thermoplastic resin foam molded body 1 is formed into a cavity inside a sleeve manufacturing mold so that there is no air gap on the surface (cylindrical bottom surface) of the resin foam molded body 1 that is to constitute the feeder guide port 1b. Installed. The cavity was slightly larger than the molded body 1, and the cavity was filled with a mixture that would constitute the heat insulation wall 2 '. In this mixture, 100 g of shirasu balloon, 1.5 g of phenol resin, and 1.5 g of isocyanate curing agent were added and mixed thoroughly.
Then, triethylamine vapor was passed through the cavity of the cavity at room temperature, and the filled mixture was cured at room temperature to produce a feeder sleeve.
Further, a neck down core having a circular hole at the center of the same size as that of the feeder guide port was bonded to the feeder guide port of the sleeve. This neck down core is obtained by curing a mixture of a shirasu balloon, a phenolic resin, and an isocyanate curing agent by passing triethylamine vapor through a mold.
Using the obtained sleeve for the hot water supply with a neck down core, a pouring test was conducted.
Table 1 summarizes the composition of the mixture forming the heat insulation wall, the properties of the manufactured hot water sleeve and the pouring test results.
[0020]
Comparative Example 1
The molten metal foam molded body 1 having a volume of 198.7 cm 3 produced in the same manner as in Example 1 was embedded in the upper part of the green mold 4 (in the sand), and a pouring test was performed.
Table 1 summarizes the results of the pouring test.
[0021]
[Table 1]
Figure 0003989620
[0022]
【The invention's effect】
As described above, in the present invention, since the refractory powder is cured on the surface of the resin foam molded body without being heated at a high temperature for a long time with a urethane-based binder, the air permeability can be obtained without deformation. Therefore, it is possible to integrally and easily form a heat insulating heat insulating wall or a heat generating wall having practical strength (with a resin foam molded body). When the hot water sleeve manufactured according to the present invention is installed and used on the upper part of the mold (green mold) of the product, the resin foam molded body disappears due to the molten metal (hot water), and the heat insulating heat insulating wall or the heat is generated. Since the hot water can be stored in the wall and kept warm or heated, it is stored in the mold using a hot water of an amount that slightly exceeds its volume so that the cast product does not shrink. Can be supplied to be economical.
[Brief description of the drawings]
FIG. 1 is a side cross-sectional view of a two-split mold for molding a resin foam molded body in Example 1 of the present invention.
FIG. 2 is a side cross-sectional view in the case where a resin foam molded body is installed in a two-split mold for manufacturing a feeder sleeve according to Embodiment 1 of the present invention.
FIG. 3 is a side sectional view of a feeder sleeve according to the first embodiment of the present invention.
FIG. 4 is a side sectional view of a feeder sleeve according to a third embodiment of the present invention.
FIG. 5 is a side sectional view of a feeder sleeve according to a fourth embodiment of the present invention.
FIG. 6 is a side sectional view of a product mold and a feeder sleeve in a pouring test using the feeder sleeve of Example 1 of the present invention.
FIG. 7 is a side sectional view of a product mold and a feeder sleeve in conventional casting production.
[Explanation of symbols]
1 Thermoplastic Resin Foam Molded Body 1a Feeding Water Housing Portion
1b Hot water induction port (part to be constructed)
2 Heat generation wall 2 'Heat insulation wall 3 Neck down core

Claims (11)

押湯誘導口と押湯収容部とを備えた押湯用スリーブの製造方法であって、
樹脂発泡成形体の全表面に耐火物粉末とウレタン系粘結剤とを含有する混合物を被覆し硬化させて押湯を内部に収容する断熱保温壁を形成し、次いで前記断熱保温壁の一部を取り除いて押湯誘導口を形成すること、を特徴とする前記押湯用スリーブの製造方法。
A method for manufacturing a hot water sleeve comprising a hot water induction port and a hot water container,
The entire surface of the resin foam molded body is coated with a mixture containing a refractory powder and a urethane-based binder and cured to form a heat insulating warming wall that accommodates the hot water inside, and then a part of the heat insulating warming wall. The above-mentioned method for manufacturing a hot water sleeve is characterized in that the hot water guiding opening is formed by removing the hot water.
押湯誘導口と押湯収容部とを備えた押湯用スリーブの製造方法であって、
樹脂発泡成形体の全表面にアルミニウム粉末及び/又はマグネシウム粉末と酸化鉄と酸化剤と助燃剤と耐火物粉末とウレタン系粘結剤とを含有する混合物を被覆し硬化させて押湯を内部に収容する発熱壁を形成し、次いで前記発熱壁の一部を取り除いて押湯誘導口を形成すること、を特徴とする前記押湯用スリーブの製造方法。
A method for manufacturing a hot water sleeve comprising a hot water induction port and a hot water container,
The entire surface of the resin foam molding is coated with a mixture containing aluminum powder and / or magnesium powder, iron oxide, oxidizing agent, auxiliary flame retardant, refractory powder and urethane binder, and cured to bring the hot water inside. A method of manufacturing a hot water sleeve, comprising: forming a heat generating wall to be accommodated, and then removing a part of the heat generating wall to form a hot water guide port.
押湯誘導口と押湯収容部とを備えた押湯用スリーブの製造方法であって、
樹脂発泡成形体の押湯誘導口を構成すべき表面を除く全表面に、耐火物粉末とウレタン系粘結剤とを含有する混合物を被覆し硬化させて、押湯誘導口と押湯収容部とを構成する断熱保温壁を形成すること、を特徴とする前記押湯用スリーブの製造方法。
A method for manufacturing a hot water sleeve comprising a hot water induction port and a hot water container,
The entire surface except the surface that should constitute the hot water induction port of the resin foam molded body is coated with a mixture containing a refractory powder and a urethane-based binder and cured, so that the hot water induction port and the hot water storage part And forming a heat insulating heat insulating wall.
押湯誘導口と押湯収容部とを備えた押湯用スリーブの製造方法であって、
樹脂発泡成形体の押湯誘導口を構成すべき表面を除く全表面に、アルミニウム粉末及び/又はマグネシウム粉末と酸化鉄と酸化剤と助燃剤と耐火物粉末とウレタン系粘結剤とを含有する混合物を被覆し硬化させて、押湯誘導口と押湯収容部とを構成する発熱壁を形成すること、を特徴とする前記押湯用スリーブの製造方法。
A method for manufacturing a hot water sleeve comprising a hot water induction port and a hot water container,
Aluminum powder and / or magnesium powder, iron oxide, oxidizer, auxiliary agent, refractory powder, and urethane-based binder are contained on the entire surface except the surface that should constitute the hot water induction port of the resin foam molded article. A method of manufacturing a feeder sleeve, comprising: coating and curing the mixture to form a heating wall constituting a feeder guide port and a feeder housing portion.
前記樹脂発泡成形体が、発泡剤を内包した熱可塑性樹脂微小体を型内で膨張させ相互に融着させた熱可塑性樹脂発泡成形体である、請求項1〜4のいずれか一項に記載の押湯用スリーブの製造方法。The said resin foaming molding is a thermoplastic resin foaming molding which expanded the thermoplastic resin microbody which included the foaming agent in the type | mold, and was mutually fuse | fused. Of manufacturing a hot water sleeve. 前記耐火物粉末がアルミナ系中空微小球である、請求項1〜5のいずれか一項に記載の押湯用スリーブの製造方法。The manufacturing method of the sleeve for feeders as described in any one of Claims 1-5 whose said refractory powder is an alumina-type hollow microsphere. 前記耐火物粉末がシラスバルーンである、請求項1〜5のいずれか一項に記載の押湯用スリーブの製造方法。The manufacturing method of the sleeve for hot-water supply as described in any one of Claims 1-5 whose said refractory powder is a shirasu balloon. 前記ウレタン系粘結剤が、フェノール樹脂とイソシアネート硬化剤とを含有するフェノールウレタン系粘結剤である、請求項1〜7のいずれか一項に記載の押湯用スリーブの製造方法。The manufacturing method of the sleeve for feeders as described in any one of Claims 1-7 whose said urethane type binder is a phenol urethane type binder containing a phenol resin and an isocyanate hardening | curing agent. 前記硬化を第3級アミンの添加あるいは通気により行う、請求項1〜8のいずれか一項に記載の押湯用スリーブの製造方法。The manufacturing method of the sleeve for hot-water supply as described in any one of Claims 1-8 which performs the said hardening by addition of a tertiary amine, or ventilation | gas_flowing. 押湯収容部を構成する前記樹脂発泡成形体の外部形状が、押湯誘導口を構成すべき部分を除いて球形である、請求項1〜9のいずれか一項に記載の押湯用スリーブの製造方法。The hot water supply sleeve according to any one of claims 1 to 9, wherein an external shape of the resin foam molded body constituting the hot water containing portion is a spherical shape excluding a portion that should constitute a hot water induction port. Manufacturing method. 請求項1〜10のいずれか一項に記載の押湯用スリーブの製造方法であって、
前記押湯誘導口に更にネックダウンコアを設ける、前記押湯用スリーブの製造方法。
It is a manufacturing method of the sleeve for hot-water supply as described in any one of Claims 1-10,
A method for manufacturing the above-mentioned hot-water supply sleeve, wherein a neck-down core is further provided at the hot-water supply induction port.
JP12425598A 1997-10-28 1998-04-17 Manufacturing method of a sleeve for a hot water Expired - Lifetime JP3989620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12425598A JP3989620B2 (en) 1997-10-28 1998-04-17 Manufacturing method of a sleeve for a hot water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-311274 1997-10-28
JP31127497 1997-10-28
JP12425598A JP3989620B2 (en) 1997-10-28 1998-04-17 Manufacturing method of a sleeve for a hot water

Publications (2)

Publication Number Publication Date
JPH11192535A JPH11192535A (en) 1999-07-21
JP3989620B2 true JP3989620B2 (en) 2007-10-10

Family

ID=26460961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12425598A Expired - Lifetime JP3989620B2 (en) 1997-10-28 1998-04-17 Manufacturing method of a sleeve for a hot water

Country Status (1)

Country Link
JP (1) JP3989620B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942233A (en) * 2015-07-22 2015-09-30 湖北亚钢金属制造有限公司 Heating and thermal insulating pouring cup and manufacturing method thereof
CN112756557A (en) * 2020-12-31 2021-05-07 四川共享铸造有限公司 Atmospheric pressure spherical sand riser sleeve and manufacturing method thereof
JP7240578B1 (en) * 2022-03-24 2023-03-16 有限会社ファンドリーテック・コンサルティング Riser with high hot water supply efficiency and casting method

Also Published As

Publication number Publication date
JPH11192535A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
ES2208920T5 (en) PROCEDURE FOR MANUFACTURE OF EMPALMES AND OTHER ELEMENTS OF MAZAROTA AND FOOD FOR COLADA MOLDS.
JP3278168B2 (en) Sleeve, its manufacturing method and application
US4919193A (en) Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core
JP3316208B2 (en) Insulating sleeves and their use
JP2019510642A (en) Use of Foamed Perlite, Free-pored Microspheres as Filler for Making Foundry Molds
JP2007268611A (en) Method for manufacturing metallic or plastic or ceramic component with open hole
JP2000176604A (en) Exothermic assembly for casting
US3718172A (en) Method of forming a thermally insulated composite article
JP3989620B2 (en) Manufacturing method of a sleeve for a hot water
JP3344966B2 (en) Method for manufacturing sleeve for feeder
US6133340A (en) Sleeves, their preparation, and use
JP4413780B2 (en) Sleeve, method for producing the same, and mixture for producing the same
JPH11277182A (en) Manufacture of sleeve for feeder
JP5944751B2 (en) Core core, sand core formed from the core core, and die casting method using the core core
US3470276A (en) Method of manufacturing porous riser insulating sleeve
JPH05138296A (en) Mold for manufacturing hollow casting
WO2000027560A1 (en) Multiple layered sleeves and their uses
CN216176416U (en) Riser with multiple thermal efficiency
CN112739476B (en) Casting core for casting mould and production method thereof
JP2916593B2 (en) Casting mold
KR100890310B1 (en) Sleeve, procedure for the manufacture thereof and mixture for the production of said sleeve
JPH0339774B2 (en)
KR20000004961A (en) Sleeve, method and usage thereof
JPH1110743A (en) Manufacture of weld-molded body and composite for manufacture of weld-molded body
JPH1024345A (en) Mold for forming lost foam pattern and manufacture thereof and manufacture of lost foam pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term