JP3989136B2 - Method for producing silica dispersion - Google Patents

Method for producing silica dispersion Download PDF

Info

Publication number
JP3989136B2
JP3989136B2 JP19266999A JP19266999A JP3989136B2 JP 3989136 B2 JP3989136 B2 JP 3989136B2 JP 19266999 A JP19266999 A JP 19266999A JP 19266999 A JP19266999 A JP 19266999A JP 3989136 B2 JP3989136 B2 JP 3989136B2
Authority
JP
Japan
Prior art keywords
silica
dispersion
less
slurry
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19266999A
Other languages
Japanese (ja)
Other versions
JP2001019421A (en
JP2001019421A5 (en
Inventor
幸雄 徳永
哲也 芦田
元 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP19266999A priority Critical patent/JP3989136B2/en
Priority to US09/610,485 priority patent/US6403162B1/en
Priority to DE10033054A priority patent/DE10033054C2/en
Publication of JP2001019421A publication Critical patent/JP2001019421A/en
Publication of JP2001019421A5 publication Critical patent/JP2001019421A5/ja
Application granted granted Critical
Publication of JP3989136B2 publication Critical patent/JP3989136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はシリカ分散液及びその製造方法に関する。詳しくは、高濃度で経時安定性の高いシリカ分散液及びその製造方法に関する。
【0002】
【従来の技術】
シリカ分散液は、シリコンに代表される半導体ウェハーを研磨するときやIC製造工程中で絶縁層などを研磨するときの研磨剤、メガネレンズなどのプラスチック用ハードコート剤、インクジェット用記録材料やOHP用コート剤、さらには、各種フィルムのアンチブロッキング剤、ガラス繊維等の接着助剤、エマルジョンやワックス等の安定剤として使用されている。
【0003】
このようなシリカ分散液としては、四塩化珪素を原料として酸水素炎中で燃焼させて作る気相法シリカ(ヒュームドシリカ)、珪酸ソーダを中和して作る沈澱法シリカやゲル法シリカといった、いわゆる湿式シリカ、あるいは、珪素のアルコキシドを原料としてアルカリ性もしくは酸性の含水有機溶媒中で加水分解して作るゾルーゲル法シリカが優れており、かかるシリカを使用したシリカ分散液が注目されている。これらのシリカ分散液は、上記シリカ微粒子を高圧ホモジナイザー、ボールミル等の分散機で分散媒(水や有機溶剤又はそれらの混合物)に分散されて作られる。
【0004】
しかしながら、これらの分散液は、保管中に凝集沈降が起こるという問題があった。特に、水を主体とする分散媒で15重量%以上のシリカ濃度の分散液で上記問題は顕著になった。更に超微粒子のシリカ、即ち平均一次粒子径が50nm以下の微粒子シリカの場合に上記問題は起こりやすかった。
【0005】
また、高濃度のシリカ分散液は、物流を考慮した場合コスト面で非常に有利である。従って、高濃度のシリカ分散液を安定して製造する方法が望まれている。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、高濃度で凝集沈降の起こりにくいシリカ分散液を提供することである。本発明の他の目的は、高濃度のシリカ分散液を安定に製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の上記目的は、以下の発明によって達成された。
水を主体とする分散媒中に平均一次粒子径が50nm以下のシリカ微粒子を添加、混合してシリカスラリーを作製した後、該シリカスラリーを分散機で分散するシリカ分散液の製造方法において、該シリカスラリーに平均分子量10万以下のカチオンポリマーを含有し、前記シリカスラリーを作製する際、17℃以下の液温で行うことを特徴とするシリカ分散液の製造方法。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に用いられる合成シリカには、湿式法によるものと気相法によるものがある。通常シリカ微粒子といえば湿式法シリカを指す場合が多い。湿式法シリカとしては、▲1▼ケイ酸ナトリウムの酸などによる複分解やイオン交換樹脂層を通して得られるシリカゾル、または▲2▼このシリカゾルを加熱熟成して得られるコロイダルシリカ、▲3▼シリカゾルをゲル化させ、その生成条件を変えることによって数ミクロンから10ミクロン位の一次粒子がシロキサン結合をした三次元的な二次粒子となったシリカゲル、更には▲4▼シリカゾル、ケイ酸ナトリウム、アルミン酸ナトリウム等を加熱生成させて得られるもののようなケイ酸を主体とする合成ケイ酸化合物等がある。
【0009】
また、気相法シリカ(ヒュームドシリカ)は、湿式法に対して乾式法とも呼ばれ、一般的には火炎加水分解法によって作られる。具体的には四塩化ケイ素を水素及び酸素と共に燃焼して作る方法が一般的に知られているが、四塩化ケイ素の代わりにメチルトリクロロシランやトリクロロシラン等のシラン類も、単独または四塩化ケイ素と混合した状態で使用することができる。気相法シリカは日本アエロジル株式会社からアエロジル、トクヤマ(株)からQSタイプとして市販されており入手することができる。
【0010】
本発明のカチオンポリマーを用いた分散液は、特に気相法シリカを用いた場合に有効である。その中でも、特に一次平均粒径が3〜15nmで、かつBET法による比表面積が200m2/g以上、更には250〜500m2/gである気相法シリカの分散液に好適である。
【0011】
本発明で云うBET法とは、気相吸着法による粉体の表面積測定法の一つであり、吸着等温線から1gの試料の持つ総表面積、即ち比表面積を求める方法である。通常吸着気体としては、窒素ガスが多く用いられ、吸着量を被吸着気体の圧、または容積の変化から測定する方法が最も多く用いられている。多分子吸着の等温線を表すのに最も著名なものは、Brunauer、Emmett、Tellerの式であってBET式と呼ばれ表面積決定に広く用いられている。BET式に基づいて吸着量を求め、吸着分子1個が表面で占める面積を掛けて、表面積が得られる。
【0012】
本発明に用いられるカチオンポリマーとしては、1〜3級アミノ基、4級アンモニウム塩基あるいはホスホニウム塩基を有するポリマー等が用いられる。中でも水溶性ポリマーが好ましく、特に平均分子量が5万以下のポリマーが好ましい。
【0013】
上記カチオンポリマーの中でも、特にポリジアリルアミン誘導体の構成単位を有するカチオンポリマーが好ましく、下記一般式(1)、(2)、(3)又は(4)で表される構造を構成単位とするカチオンポリマーである。これらの誘導体はジアリルアミン化合物の環化縮合によって得られ、シャロールDC902P(第一工業製薬)、ジェットフィックス110(里田化工)、ユニセンスCP−101〜103(センカ)、PAS−H(日東紡績社)として市販されている。
【0014】
【化1】

Figure 0003989136
【0015】
【化2】
Figure 0003989136
【0016】
【化3】
Figure 0003989136
【0017】
【化4】
Figure 0003989136
【0018】
一般式(1)、(2)、(3)及び(4)において、R1及びR2は各々、水素原子、メチル基、エチル基等のアルキル基、またはヒドロキシエチル基等の置換アルキル基を表し、Yはラジカル重合可能なモノマー(例えば、スルホニル、アクリルアミド及びその誘導体、アクリル酸エステル、メタクリル酸エステル等)を表す。また、一般式(3)及び(4)において、n/m=9/1〜2/8、l=5〜10000である。Xはアニオンを表す。
【0019】
一般式(3)又は(4)で示されるポリジアリルアミンの誘導体の具体的な例としては、特開昭60−83882号公報記載のSO2基を繰り返し単位に含むもの、特開平1−9776号公報に記載されているアクリルアミドとの共重合体等が挙げられる。本発明に用いられるポリジアリルアミン誘導体のカチオンポリマーの平均分子量は、2,000〜5万程度がより好ましい。
【0020】
上記カチオンポリマーの使用量はシリカ微粒子に対して1〜10重量%が好ましい。
【0021】
本発明のシリカ分散液は、高濃度、即ちシリカが15重量%以上、更には18重量%以上であっても、長期間に渡って分散安定性が保たれる。
【0022】
本発明のシリカ分散液に用いられる分散媒は、水を主体とするものであるが、少量の有機溶剤(低級アルコールや酢酸エチル等の低沸点溶剤)を含んでもよい。その場合、有機溶剤は全分散媒に対して20重量%以下、更には10重量%以下であることが好ましい。
【0023】
次に、本発明のシリカ分散液の製造方法を説明する。通常、シリカ分散液は、水等の分散媒にシリカ微粒子を添加し混合(予備混合)してシリカスラリーを作製し、このシリカスラリーを分散機、例えば高圧ホモジナイザーやボールミルで分散する。高圧ホモジナイザーを用いた分散は、例えば特開平10−310416号公報に記載の方法を用いることができる。また、上記シリカスラリーを高圧ホモジナイザーで処理する回数は、1〜数十回の範囲から選ばれる。
【0024】
カチオンポリマーは、シリカ微粒子を添加する前の分散媒中に添加してもよいし、予備混合中に添加してもよい。好ましくは、カチオンポリマーは、シリカ微粒子を添加する前の分散媒中に添加することが好ましい。これによって、より安定した分散液が得られる。
【0025】
本発明において、予備混合するときの液温は、17℃以下が好ましい。特に15℃以下が好ましい。これによって、高濃度のシリカスラリーが安定して作製できる。この場合、シリカ微粒子を添加する前の分散媒を17℃以下の温度にしておいてもよいし、予備混合中に冷却して17℃以下に下げてもよい。また、シリカスラリーの温度が17℃以下、さらには15℃以下の状態で分散機に注入するのが好ましい。これによって更に安定した分散液が得られる。
【0026】
予備混合は、通常のプロペラ撹拌、タービン型撹拌、ホモミキサー型撹拌、超音波撹拌等で行うことができる。
【0027】
本発明の分散液の製造方法によって、シリカ濃度が15重量%の高濃度の分散液が安定して製造できる。特に18重量%以上の高濃度に好適である。
【0028】
また、分散液中のシリカ濃度をより高濃度にするために、段階的にシリカを添加する方法を採用することができる。
【0029】
本発明のシリカ分散液は、前述したように各種用途に適用できるが、特にインクジェット記録用シートのインク受容層を構成するシリカ微粒子として用いるのに適している。
【0030】
【実施例】
実施例1
次のようにして、シリカ分散液を作製した。尚、部とは重量部を表す。
【0037】
<分散液処方>
水 350部
変性エタノール 17部
ポリジアリルアミン誘導体のカチオンポリマー 3部
(ジメチルジアリルアンモニウムクロライドホモポリマー
第一工業製薬(株)製、シャロールDC902P、平均分子量9000)
気相法シリカ 100部
(平均一次粒径7nm、BET法による比表面積300m2/g)
【0038】
分散媒の水と変性エタノールの中にカチオンポリマーを添加し、次いで気相法シリカを添加し予備混合してシリカスラリーを作製した。次にこのシリカスラリーを高圧ホモジナイザーで1回処理して、シリカ濃度が約21重量%のシリカ分散液を作製した。前記予備混合時の液温を23℃、17℃、及び13℃に変化して行った。23℃で予備混合を行ったものは、17℃で予備混合を行ったものに比べて、シリカスラリーを作るのに2倍の時間を要し、13℃で行ったものに比べて3倍の時間を要した。また、出来上がったシリカ分散液の経時安定性についても、17℃及び13℃で予備混合を行ったものは、1ヶ月以上安定であったが、23℃で予備混合を行ったものは、1ヶ月までに凝集沈降を起こした。
【0039】
【発明の効果】
本発明によれば、保存経時の安定したシリカ分散液が得られる。特にシリカ濃度が15重量%の高濃度の分散液では、経時で凝集沈降が起こりやすく、このような高濃度の分散液に好適である。また、カチオンポリマーの中でも、特に平均分子量が2000〜5万の水溶性のポリジアリルアミン誘導体の構成単位を有するカチオンポリマーが、極めて安定なシリカ分散液の作製に有用である。更に、本発明は、一次平均粒子径が3〜15nmでBET法による比表面積が200m2/g以上の気相法シリカの分散液に有効である。また、シリカスラリーを作成するときの予備混合の温度を17℃以下にすることによって、予備混合を迅速に行い、かつ経時安定性の高い分散液が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silica dispersion and a method for producing the same. Specifically, the present invention relates to a silica dispersion having a high concentration and high temporal stability and a method for producing the same.
[0002]
[Prior art]
Silica dispersions are used for polishing semiconductor wafers typified by silicon or for polishing insulating layers in IC manufacturing processes, hard coating agents for plastics such as eyeglass lenses, inkjet recording materials, and OHP. It is used as a coating agent, an antiblocking agent for various films, an adhesion aid such as glass fiber, and a stabilizer such as emulsion and wax.
[0003]
Examples of such silica dispersions include gas phase method silica (fumed silica) made by burning silicon tetrachloride as a raw material in an oxyhydrogen flame, precipitation method silica and gel method silica made by neutralizing sodium silicate, and the like. So-called wet silica or sol-gel silica prepared by hydrolysis in an alkaline or acidic water-containing organic solvent using silicon alkoxide as a raw material is excellent, and silica dispersions using such silica are attracting attention. These silica dispersions are prepared by dispersing the silica fine particles in a dispersion medium (water, an organic solvent, or a mixture thereof) using a dispersing machine such as a high-pressure homogenizer or a ball mill.
[0004]
However, these dispersions have a problem that aggregation and sedimentation occur during storage. In particular, the above problem became remarkable with a dispersion medium mainly composed of water and a dispersion having a silica concentration of 15% by weight or more. Furthermore, the above problem was likely to occur in the case of ultrafine silica, that is, fine silica having an average primary particle size of 50 nm or less.
[0005]
In addition, a high-concentration silica dispersion is very advantageous in terms of cost in consideration of physical distribution. Therefore, a method for stably producing a high concentration silica dispersion is desired.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a silica dispersion having a high concentration and less likely to cause aggregation and sedimentation. Another object of the present invention is to provide a method for stably producing a high-concentration silica dispersion.
[0007]
[Means for Solving the Problems]
The above object of the present invention has been achieved by the following invention.
In a method for producing a silica dispersion, a silica slurry is prepared by adding and mixing silica fine particles having an average primary particle size of 50 nm or less in a dispersion medium mainly composed of water, and then dispersing the silica slurry with a disperser. A method for producing a silica dispersion, wherein the silica slurry contains a cationic polymer having an average molecular weight of 100,000 or less, and the silica slurry is produced at a liquid temperature of 17 ° C. or less.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The synthetic silica used in the present invention is classified into a wet process and a vapor phase process. In general, silica fine particles often refer to wet process silica. As the wet method silica, (1) a silica sol obtained through metathesis with an acid of sodium silicate or through an ion exchange resin layer, or (2) colloidal silica obtained by heating and aging this silica sol, or (3) gelling the silica sol By changing the production conditions, silica gel in which primary particles of several microns to 10 microns are converted into three-dimensional secondary particles having siloxane bonds, and (4) silica sol, sodium silicate, sodium aluminate, etc. There are synthetic silicic acid compounds mainly composed of silicic acid, such as those obtained by heating to form a silicic acid.
[0009]
Gas phase method silica (fumed silica) is also referred to as a dry method relative to a wet method, and is generally made by a flame hydrolysis method. Specifically, a method of making silicon tetrachloride by burning with hydrogen and oxygen is generally known, but silanes such as methyltrichlorosilane and trichlorosilane can be used alone or silicon tetrachloride instead of silicon tetrachloride. Can be used in a mixed state. Vapor phase silica is commercially available as Aerosil from Nippon Aerosil Co., Ltd., and QS type from Tokuyama Co., Ltd., and can be obtained.
[0010]
The dispersion using the cationic polymer of the present invention is particularly effective when vapor phase silica is used. Among them, it is particularly suitable for a dispersion of vapor phase method silica having a primary average particle diameter of 3 to 15 nm and a specific surface area by BET method of 200 m 2 / g or more, and further 250 to 500 m 2 / g.
[0011]
The BET method referred to in the present invention is one of powder surface area measurement methods by vapor phase adsorption, and is a method for determining the total surface area, that is, the specific surface area of a 1 g sample from the adsorption isotherm. Usually, nitrogen gas is often used as the adsorbed gas, and the method of measuring the adsorption amount from the change in pressure or volume of the gas to be adsorbed is most often used. The most prominent expression for expressing the isotherm of multimolecular adsorption is the Brunauer, Emmett, and Teller formula, called the BET formula, which is widely used for determining the surface area. The adsorption amount is obtained based on the BET equation, and the surface area is obtained by multiplying the area occupied by one adsorbed molecule on the surface.
[0012]
Examples of the cationic polymer used in the present invention include polymers having a primary to tertiary amino group, a quaternary ammonium base, or a phosphonium base. Among them, a water-soluble polymer is preferable, and a polymer having an average molecular weight of 50,000 or less is particularly preferable.
[0013]
Among the above cationic polymers, cationic polymers having a structural unit of a polydiallylamine derivative are particularly preferable, and a cationic polymer having a structure represented by the following general formula (1), (2), (3) or (4) as a structural unit. It is. These derivatives are obtained by cyclocondensation of diallylamine compounds, as Charol DC902P (Daiichi Kogyo Seiyaku Co., Ltd.), Jetfix 110 (Satoda Chemical), Unisense CP-101 to 103 (Senka), PAS-H (Nittobo) It is commercially available.
[0014]
[Chemical 1]
Figure 0003989136
[0015]
[Chemical 2]
Figure 0003989136
[0016]
[Chemical 3]
Figure 0003989136
[0017]
[Formula 4]
Figure 0003989136
[0018]
In the general formulas (1), (2), (3) and (4), R 1 and R 2 each represents a hydrogen atom, an alkyl group such as a methyl group or an ethyl group, or a substituted alkyl group such as a hydroxyethyl group. Y represents a radical polymerizable monomer (for example, sulfonyl, acrylamide and derivatives thereof, acrylic ester, methacrylic ester, etc.). In the general formulas (3) and (4), n / m = 9/1 to 2/8 and l = 5 to 10,000. X represents an anion.
[0019]
Specific examples of the polydiallylamine derivative represented by the general formula (3) or (4) include those containing an SO 2 group as a repeating unit described in JP-A-60-83882, and JP-A-1-9776. Examples thereof include copolymers with acrylamide described in the publication. The average molecular weight of the cationic polymer of the polydiallylamine derivative used in the present invention is more preferably about 2,000 to 50,000.
[0020]
The amount of the cationic polymer used is preferably 1 to 10% by weight based on the silica fine particles.
[0021]
Even if the silica dispersion of the present invention has a high concentration, that is, the silica content is 15% by weight or more, further 18% by weight or more, the dispersion stability is maintained over a long period of time.
[0022]
The dispersion medium used in the silica dispersion of the present invention is mainly composed of water, but may contain a small amount of an organic solvent (a low-boiling solvent such as lower alcohol or ethyl acetate). In that case, the organic solvent is preferably 20% by weight or less, more preferably 10% by weight or less, based on the total dispersion medium.
[0023]
Next, the manufacturing method of the silica dispersion of this invention is demonstrated. Usually, the silica dispersion is prepared by adding silica fine particles to a dispersion medium such as water and mixing (preliminary mixing) to prepare a silica slurry, and the silica slurry is dispersed by a disperser such as a high-pressure homogenizer or a ball mill. For the dispersion using a high-pressure homogenizer, for example, the method described in JP-A- 10-310416 can be used. Moreover, the frequency | count of processing the said silica slurry with a high pressure homogenizer is chosen from the range of 1 to several dozen times.
[0024]
The cationic polymer may be added to the dispersion medium before adding the silica fine particles, or may be added during the preliminary mixing. Preferably, the cationic polymer is added to the dispersion medium before adding the silica fine particles. As a result, a more stable dispersion can be obtained.
[0025]
In the present invention, the liquid temperature when premixing is preferably 17 ° C. or less. In particular, 15 ° C. or less is preferable. Thereby, a high concentration silica slurry can be stably produced. In this case, the dispersion medium prior to the addition of the silica fine particles may be set to the temperature of 17 ° C. or less, it may be reduced by cooling in premixed 17 ° C. or less. Moreover, it is preferable to inject | pour into a disperser in the state whose temperature of a silica slurry is 17 degrees C or less, Furthermore, 15 degrees C or less. This provides a more stable dispersion.
[0026]
The preliminary mixing can be performed by ordinary propeller stirring, turbine stirring, homomixer stirring, ultrasonic stirring, or the like.
[0027]
According to the method for producing a dispersion of the present invention, a high-concentration dispersion having a silica concentration of 15% by weight can be produced stably. It is particularly suitable for a high concentration of 18% by weight or more.
[0028]
Moreover, in order to make the silica concentration in a dispersion liquid higher, the method of adding a silica in steps can be employ | adopted.
[0029]
The silica dispersion of the present invention can be applied to various uses as described above, and is particularly suitable for use as silica fine particles constituting the ink receiving layer of an ink jet recording sheet.
[0030]
【Example】
Example 1
A silica dispersion was prepared as follows. In addition, a part represents a weight part.
[0037]
<Dispersion formulation>
Water 350 parts Denatured ethanol 17 parts Polydiallylamine derivative cationic polymer 3 parts (Dimethyldiallylammonium chloride homopolymer, Daiichi Kogyo Seiyaku Co., Ltd., Charol DC902P, average molecular weight 9000)
100 parts of fumed silica (average primary particle size 7 nm, specific surface area by the BET method: 300m 2 / g)
[0038]
A cationic polymer was added to water and denatured ethanol as a dispersion medium, and then vapor phase silica was added and premixed to prepare a silica slurry. Next, this silica slurry was treated once with a high-pressure homogenizer to prepare a silica dispersion having a silica concentration of about 21% by weight. The liquid temperature during the preliminary mixing was changed to 23 ° C, 17 ° C, and 13 ° C. What was premixed at 23 ° C required twice as much time to make a silica slurry compared to what was premixed at 17 ° C and three times that made at 13 ° C It took time. In addition, with respect to the stability over time of the finished silica dispersion, those preliminarily mixed at 17 ° C and 13 ° C were stable for one month or more, but those preliminarily mixed at 23 ° C were one month. Until then.
[0039]
【The invention's effect】
According to the present invention, a silica dispersion that is stable over time can be obtained. In particular, a high-concentration dispersion with a silica concentration of 15% by weight tends to cause aggregation and sedimentation over time, and is suitable for such a high-concentration dispersion. Among the cationic polymers, a cationic polymer having a structural unit of a water-soluble polydiallylamine derivative having an average molecular weight of 2000 to 50,000 is particularly useful for preparing an extremely stable silica dispersion. Furthermore, the present invention is effective for a dispersion of gas phase method silica having a primary average particle diameter of 3 to 15 nm and a specific surface area by a BET method of 200 m 2 / g or more. In addition, by setting the temperature of the premixing at the time of preparing the silica slurry to 17 ° C. or less, a premixing can be performed quickly and a dispersion with high temporal stability can be obtained.

Claims (1)

水を主体とする分散媒中に平均1次粒子径50nm以下のシリカ微粒子を添加、混合してシリカスラリーを作製した後、該シリカスラリーを分散機で分散するシリカ分散液の製造方法において、該シリカスラリーに平均分子量10万以下のカチオンポリマーを含有し、前記シリカスラリーを作製する際、17℃以下の液温で行うことを特徴とするシリカ分散液の製造方法。In a method for producing a silica dispersion, a silica slurry is prepared by adding and mixing silica fine particles having an average primary particle diameter of 50 nm or less in a dispersion medium mainly composed of water, and then dispersing the silica slurry with a disperser. A method for producing a silica dispersion, wherein the silica slurry contains a cationic polymer having an average molecular weight of 100,000 or less, and the silica slurry is produced at a liquid temperature of 17 ° C. or less.
JP19266999A 1999-07-07 1999-07-07 Method for producing silica dispersion Expired - Fee Related JP3989136B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19266999A JP3989136B2 (en) 1999-07-07 1999-07-07 Method for producing silica dispersion
US09/610,485 US6403162B1 (en) 1999-07-07 2000-07-05 Silica dispersion, method for preparing the same and method for making ink-jet recording material using the same
DE10033054A DE10033054C2 (en) 1999-07-07 2000-07-07 Silica dispersion, process for its preparation and process for producing an ink jet recording material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19266999A JP3989136B2 (en) 1999-07-07 1999-07-07 Method for producing silica dispersion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007034427A Division JP2007197316A (en) 2007-02-15 2007-02-15 Method for preparing silica dispersion

Publications (3)

Publication Number Publication Date
JP2001019421A JP2001019421A (en) 2001-01-23
JP2001019421A5 JP2001019421A5 (en) 2004-10-07
JP3989136B2 true JP3989136B2 (en) 2007-10-10

Family

ID=16295084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19266999A Expired - Fee Related JP3989136B2 (en) 1999-07-07 1999-07-07 Method for producing silica dispersion

Country Status (1)

Country Link
JP (1) JP3989136B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6644405B2 (en) 2002-03-21 2003-11-11 Halliburton Energy Services, Inc. Storable water-microsphere suspensions for use in well cements and methods
US20030181542A1 (en) 2002-03-21 2003-09-25 Vijn Jan Pieter Storable water-silica suspensions and methods
US6919109B2 (en) * 2002-04-01 2005-07-19 Fuji Photo Film Co., Ltd. Fine particle dispersion, coating solution for accepting layer for coloring agent for ink-jet recording sheet, ink-jet recording sheet using the dispersion, and method for producing fine particle dispersion
JP4044813B2 (en) * 2002-09-18 2008-02-06 電気化学工業株式会社 Method for producing ultrafine silica dispersed slurry
US6983800B2 (en) 2003-10-29 2006-01-10 Halliburton Energy Services, Inc. Methods, cement compositions and oil suspensions of powder
JP4540432B2 (en) * 2004-09-06 2010-09-08 株式会社トクヤマ Cationic resin-modified silica dispersion
GB0526231D0 (en) * 2005-12-22 2006-02-01 Eastman Kodak Co Dispersant for reducing viscosity of solids
JP5414580B2 (en) * 2010-03-12 2014-02-12 富士フイルム株式会社 Method for producing silica dispersion and method for producing ink jet recording medium
JP6459489B2 (en) 2014-03-11 2019-01-30 三菱マテリアル株式会社 Silica porous membrane forming liquid composition and silica porous membrane formed from the liquid composition

Also Published As

Publication number Publication date
JP2001019421A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JP4756040B2 (en) Particulate silica
JP2803134B2 (en) Elongated silica sol and method for producing the same
TWI239865B (en) Dispersion, coating composition and recording medium
JPH08506611A (en) Surfactant modified silica
JP2003238826A (en) Stable water-based dispersion containing particle of silicon dioxide/mixed oxide including aluminum oxide and titanium oxide obtained by flame hydrolysis, manufacturing method thereof, brushing paint to form ink absorbent layer, manufacturing method thereof, ink absorbent medium, and manufacturing method thereof
KR100772258B1 (en) Stabilized, aqueous silicon dioxide dispersion
JP3989136B2 (en) Method for producing silica dispersion
US6638982B2 (en) Method of preparing a fumed metal oxide dispersion
JP2005154222A (en) Particulate silica
JPWO2003055800A1 (en) Inorganic oxide
JP5334884B2 (en) Paint composition
JP2001097710A (en) Surface-modified silica fine particles for low viscosity slurry and its use
JP4959201B2 (en) Cationic resin-modified silica dispersion
JP2007197316A (en) Method for preparing silica dispersion
JP3879489B2 (en) Silica fine particle aggregate dispersion and method for producing the same
JP2001207078A (en) Cationic resin modified silica dispersion
JP3992938B2 (en) Method for producing cationic resin-modified silica dispersion
JPH04214022A (en) Production of flat silica sol
JP2004091313A (en) Easily dispersible precipitated silica cake and manufacturing method therefor
JP2005255457A (en) Silica minute particle dispersion and its manufacturing method
JP4540432B2 (en) Cationic resin-modified silica dispersion
JP2004299161A (en) Producing method for silica dispersion liquid, and inkjet recording material
JP3922902B2 (en) Cationic resin-modified silica dispersion and production method thereof
JP3781656B2 (en) Preservation method of cationic resin-modified silica dispersion
JP3854879B2 (en) Method for producing cationic silica fine particle aggregate dispersion and recording sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees