JP3988629B2 - Electronic equipment - Google Patents

Electronic equipment Download PDF

Info

Publication number
JP3988629B2
JP3988629B2 JP2002337366A JP2002337366A JP3988629B2 JP 3988629 B2 JP3988629 B2 JP 3988629B2 JP 2002337366 A JP2002337366 A JP 2002337366A JP 2002337366 A JP2002337366 A JP 2002337366A JP 3988629 B2 JP3988629 B2 JP 3988629B2
Authority
JP
Japan
Prior art keywords
metal
core metal
solder
connection pad
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002337366A
Other languages
Japanese (ja)
Other versions
JP2004172426A (en
Inventor
剛秀 横塚
正英 原田
志郎 山下
内山  薫
州志 江口
雅彦 浅野
弘二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002337366A priority Critical patent/JP3988629B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to KR1020057009038A priority patent/KR100661044B1/en
Priority to CNB038253135A priority patent/CN100378968C/en
Priority to PCT/JP2003/007862 priority patent/WO2004047168A1/en
Priority to AU2003244322A priority patent/AU2003244322A1/en
Priority to EP03811481.5A priority patent/EP1571706B1/en
Priority to US10/535,857 priority patent/US7554039B2/en
Publication of JP2004172426A publication Critical patent/JP2004172426A/en
Application granted granted Critical
Publication of JP3988629B2 publication Critical patent/JP3988629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Combinations Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器のモジュール基板およびモジュール構造に関する。
【0002】
【従来の技術】
電子基板を備えた電子装置は、電子部品による発熱に起因した不良が生じないようにする必要がある。そのため、出荷前には熱サイクル試験を行うことにしている。特に、ECU等の車載用電子制御装置では、エンジンのオンオフや環境温度の変化により車体内の温度が大きく変化し、広い温度領域での熱サイクル(通常、−40度〜120度:自動車用電子機器の環境試験通則JASOD001)に耐える必要がある。今般、ECUをよりエンジン近くに配置する傾向があり、さらに、この温度範囲の上限がより高くなる傾向がある。このような熱サイクルにさらされると、ECU内の電子部品の性能が安定しなくなったり、電子部品の搭載基板と電子部品との間の接続不良が生じやすくなる。すなわち、電子装置には高い放熱性が要求され、特にECU等の車載用電子装置は一般の電子部品よりも優れた放熱性が求められている。
【0003】
一方MCM構造とは、複数のLSIがインタポーザ(中間基板)に搭載され、さらにインタポーザがはんだバンプ等により、電子基板に搭載された構造を言う。このようなMCM構造(ここでは必ずしも複数のLSIを有さない、インタポーザを有する構造も含めて、単にMCM構造とよぶことにする。)では、LSIの発する熱が電子基板に逃げにくい構造であるため、LSIの発熱が大きい場合には、いかに効率よく放熱できるかが重要である。この放熱性の問題を解決できるとMCM構造の車載用電子制御装置を実現することができる。放熱構造としては例えば、LSI上面にヒートシンクを設ける構造もあるが、製品構造上困難な場合があることや、信頼性上問題が生じやすい。
【0004】
放熱性を向上させるために、インタポーザにメタルコア基板を用いる構造は数多く提案されている。例えば、特許文献1によれば、メタルコア基板の表裏それぞれの一部に金属コアが露出した部分を形成し、表面露出部にLSIチップを搭載し、裏面の露出部分から空気中への放熱性を高めることができる。また、特許文献2には、基板表面に関しては上記発明と同様であるが、裏面に関しては、コアメタルから基板表面のはんだ接続用パッドまでサーマルビアを形成し、はんだ接続部を介して電子基板への放熱性を向上することができると記載されている。
【0005】
【特許文献1】
特開平5-175407
【特許文献2】
特開2000-228452
【0006】
【発明が解決しようとする課題】
前記特許文献1の発明では、基板裏面の金属コアが露出した部分から空気中への放熱性を期待しているが、例えばアンダーフィルやゲルが存在するような空気の流動がほとんどないような製品構造ではこの効果をほとんど期待できない。また、特許文献2では、コアメタルからはんだ接続用パッドへ放熱用にサーマルビアを形成しているが、サーマルビアの形成にコストがかかること、および一般にプリント配線基板で形成できるサーマルビアは銅めっきによる中空・薄板であるため、放熱性に劣る。
【0007】
【課題を解決するための手段】
低コストで放熱性に優れた、MCMのような中間基板(インタポーザ)を有する構造を得るために、メタルコア中間基板裏面に、絶縁樹脂のないコアメタル露出部を設け、放熱用BGAはんだ接続用のパッドを直接コアメタルに形成する。電子基板(マザーボード)への接続は、電気的な接続部も放熱部も、すべて同じサイズのはんだボールにてBGA接続することが可能である。この方法によれば、ビアホール形成と同時にコアメタル露出部を形成でき、他の電気的接続用のパッド形成と同時にコアメタル上のパッドを形成できるため、コストは上がらない。また、サーマルビアを形成せずに直接コアメタルからはんだを介してマザーボードへ放熱できるため、優れた放熱性を得ることができる。
【0008】
【発明の実施の形態】
以下に実施の例を詳細に説明する。
【0009】
第一の実施例を、図1および図2を参照して、以下に説明する。図1は、高放熱MCM構造を得るためのインタポーザ構造の例である。インタポーザ基板は、金属をコアとし、コアメタル11両面に絶縁層13および配線層15を形成したメタルコア基板である。基板片面には、高発熱LSIを搭載するために、絶縁樹脂にざぐりを設け、コアメタルが露出した部分を形成してある。基板の反対面には、電気的にマザーボードと接続するためのはんだ接続用パッド19を絶縁樹脂上に形成すると同時に、所望のサイズのざぐりを形成し、放熱はんだ接続用のパッド21を直接コアメタルに形成している。
【0010】
第二の実施例を図2を用いて説明する。図2は、図1に示したインタポーザ構造を得るための製造プロセスの例である。まず、コアとなる金属11として0.2mmt×300mm×500mmの銅板を用意する。この銅板は、複数の基板を後に切り出して使用するため、サイズは大きくなっている。もちろん基板製造上取り扱いやすいサイズで良い。金属の種類としては、アルミニウムや鉄−Ni合金等でも良いが、熱伝導性の良い銅が好ましい。スルーホール形成用の穴(0.8mmφ)と、必要に応じて、後に基板サイズで切り出し易くするために、基板個片外形にスリットを、エッチングにより形成した。エッチング液は、塩化第2鉄とした(図2-(a))。
【0011】
次に、絶縁樹脂層および内層配線層として、プリプレグ13(ガラスクロス入りのエポキシ樹脂、厚さ0.1mmt)と銅薄25(厚さ0.012mmt)をメタル表裏に積層配置して、プレスで接着する。プリプレグと銅箔の代わりに、樹脂付き銅箔RCF(Resin Coated Cupper Foil)を使用しても良い(図2-(b))。
【0012】
配線として不要な部分の銅箔はエッチングにより除去した。コアメタルと内層配線を電気的に接続する必要がある場合には、内層ビア形成用に、コアメタルが露出するようにレーザーで直径0.15mmφのざぐりを形成する。レーザーは炭酸レーザー、YAGレーザー等何でも良いが、炭酸レーザーで行うと低コストで加工できる。合わせて、基板表裏の内層どうしを電気的に接続するためのスルーホール17用の貫通穴をドリルで形成した。この貫通穴の形成もレーザーで加工することも可能であるが、プリプレグ使用の場合にはガラスクロスがあるため、ドリル加工が適している。次に、内層スルーホール、内層ビア、内層配線用に、厚さ0.015mm程度の銅めっきを施した(図2-(c))。
【0013】
上記の絶縁樹脂層および内層配線層の形成プロセス再度繰り返すことにより、表層回路を形成した。表層と内層を電気的に接続するためのビアホール形成と同時に、LSI搭載用の5mm□のざぐりとコアメタル上パッド形成用の0.6mmφのざぐりを、炭酸レーザーにより形成した。配線およびビアホール部分には前述と同様の厚さの銅めっきを施し、さらに配線腐食防止とはんだ接続のために無電解ニッケルめっき(厚さ0.005mm程度)と無電解金めっき(厚さ0.001mm程度)を施した。これによって、電気的接続用の0.6mmφのBGAはんだ接続パッド19と、コアメタル直上の放熱用の0.6mmφのはんだ接続パッド21を、同時に形成することができた。パッドピッチは、すべて1.5mmとした。放熱用ざぐり部分は絶縁樹脂が除去されており、従って絶縁樹脂分の厚さ(0.2mm程度)だけ、はんだ接続高さが高くなる。はんだ接続性に関しては、コアメタル直上に形成するパッド径は、電気的接続用BGAパッド径よりも大きくないことが望ましい。また、パッドピッチに関しては、放熱性をより向上させるためには、放熱用はんだ接続パッドのピッチは小さい方が良い。通常パッドピッチは、ショートしないようにある程度の安全率を考慮したパッドピッチとすることが多いが、放熱はんだ部分は仮にショートしても良いので、ピッチをかなり小さくすることが出来る。このことによって、接続部総面積を大きくして、放熱性を向上することができる。さらに、部品搭載用に必要な部分を残して、ソルダーレジストをパターンで形成した(図2-(d)〜(e))。上記のメタルコア基板は、配線層数が表裏各2の場合であるが、本発明は層数に依存するものではなく、表裏の配線層数を増やすためには、図2(b)〜(c)の工程を繰り返せば良い。
【0014】
第三の実施例を図3を用いて説明する。上記のように作成した基板をインタポーザとして、高発熱なLSI27を搭載し、さらにマザーボード33と接続した構造の例である。LSIは、高熱伝導のAgペーストで、メタルコア基板のコアメタル露出部分に接続した。接続ははんだで行うと、より放熱性を向上できる。インタポーザ下面のパッドには、直径0.75mmφのSn3Ag0.5Cuはんだボール31を搭載し、融点を超える240℃でリフローし、ボール形成を行った。これをマザーボード上に位置合わせし、240℃でリフローし、接続した。LSIの発する熱をマザーボードへ効率よく逃がすことができる。
【0015】
第四の実施例を図4を用いて説明する。マザーボードを金属板をベースとした片面配線基板35(メタルベース基板)とし、前述の高放熱基板と同様に絶縁樹脂にざぐり穴およびはんだ接続用のパッドを設けて、その露出したメタルベース直上のパッドとはんだ接続した構造である。この構造では、LSIの発する熱をマザーボードの金属ベースに放散することができるため、さらに良い放熱性を得ることが出来る。
【0016】
第五の実施例を図5を用いて説明する。マザーボードを両面配線のメタルコア基板37としたこと以外は、第四の実施例と同様である。
【0017】
第六および七の実施例を図6および7を用いて説明する。マザーボードのインタポーザ搭載面の反対面のコアメタルを一部露出させると、より放熱性を高くすることができる。この構造では、例えばインタポーザとマザーボードの間にアンダーフィルやゲルを入れる構造においても、高い放熱性を得ることができる。
【0018】
コアメタルの熱伝導率は大きいので、上記いずれの実施例においても、チップ搭載用ざぐりは基板の中心付近にある必要はなく、またコアメタルに直接形成した放熱用パッドはチップ搭載部分の真下にある必要もない。
【0019】
第八の実施例を図8を用いて説明する。LSI27を搭載したメタルコアインタポーザ47が、本発明によりマザーボードとはんだ接続され、それをアルミニウム製の筐体41に接着剤で固定したECUの例である。概略鳥瞰図を図12に示す。
【0020】
実施例九および十を示す図9および図10のように、マザーボードのざぐり部と筐体の間に、高熱伝導の部材45を挟み込むと、さらに放熱性を向上させることができる。高熱伝導の部材とは、マザーボードとアルミニウムの筐体を接着している接着剤よりも熱伝導率の大きな部材であり、例えばはんだ、銅やアルミニウム等の金属板、高熱伝導の樹脂や接着剤である。特にはんだを用いる場合には、筐体にはんだ接続用のパッドを形成して接続しても良いし、必ずしも筐体にはパッドを形成する必要はなく、マザーボードのコアメタルにはんだ供給しておいて、筐体には押しつけて、接触だけの接続でも良い。金属板を挟み込む場合には、金属板両面に接着剤を塗布して接続しても良いし、単に接触させるだけでも良い。当該部分以外のマザーボードと筐体の接続は、通常の接着剤か高熱伝導の接着剤を用いて行う。筐体は通常は軽いアルミニウムが用いられるが、本発明はその材質に依存しない。
【0021】
実施例十一は、図11に示すように、放熱はんだ接続用のパッドをコアメタルに直接形成し、放熱はんだ接続した部分が、チップ直下から外れた位置にある例である。また、電気的なはんだ接続部分がチップ直下の領域にあってもかまわない。本実施例に示したように、チップの基板上の位置に関わらず、放熱用のはんだ接続部や電気的な接続部を、配線設計や放熱設計によって自由に配置することができる。
【0022】
実施例三〜七に示した構造を実現する製造プロセスの例を、実施例十二として説明する。まず、インタポーザ基板の製造方法は、実施例二に示したので省略する。製造したメタルコア基板の、高発熱LSI搭載用のざぐり部分および基板表面の他の部品搭載用の所望の部分にAgペーストを塗布し、電子部品を搭載し、適切な硬化条件(例えば150℃、1hr)にてAgペーストを硬化させ接着する。高発熱LSIの電極とメタルコアインタポーザの電極をワイヤボンディングで接続する。必要に応じてインタポーザの部品搭載面を樹脂でモールドすると、取り扱い性が向上する。インタポーザの反対面側には、フラックス塗布後、電極上にはんだボールを搭載する。このとき、放熱用のコアメタル直上のパッドへもはんだボールを搭載する。Sn3Ag0.5Cuはんだを用いて、最高温度240℃、はんだ溶融時間およそ20秒でリフローし、ボール形成する。他のはんだを用いても良く、その場合にははんだ種類に応じたリフロー条件にてボール形成を行う。マザーボード側には、マスク厚さ0.1mmのはんだ印刷用マスクを使用し、はんだペーストを印刷法にて形成する。印刷したペースト状のはんだ上に、先のボール形成済みのインタポーザを位置合わせして搭載し、再度リフローし、はんだ接続を行う。必ずしもこのはんだ印刷を行う必要はないが、行うと、印刷したはんだの粘性によって、インタポーザの位置ずれを防止することができる。
【0023】
実施例5〜7に記載したようなマザーボードがメタルコア基板である場合には、それらを実施例2に記載の方法にて製造した後、上述と同様の方法で接続を行う。実施例4に記載したようなマザーボードがメタルベース基板である場合も同様である。
【0024】
【発明の効果】
本発明によれば、低コストで放熱性に優れた電子装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に関わる基板構造を表す断面図
【図2】本発明に関わる基板の製造プロセスを表す断面図
【図3】本発明に関わる実装構造を表す断面図
【図4】本発明に関わる実装構造を表す断面図
【図5】本発明に関わる実装構造を表す断面図
【図6】本発明に関わる実装構造を表す断面図
【図7】本発明に関わる実装構造を表す断面図
【図8】本発明に関わる実装構造を表す断面図
【図9】本発明に関わる実装構造を表す断面図
【図10】本発明に関わる実装構造を表す断面図
【図11】本発明に関わる実装構造を表す断面図
【図12】本発明に関わる実装構造を表す鳥瞰図
【符号の説明】
11…コアメタル、13…絶縁層、15…配線、17…スルーホール、19…はんだ接続用パッド(電気的接続用)、21…はんだ接続用パッド(放熱接続用)、23…ソルダーレジスト、25…銅箔、27…LSIチップ、29…ワイヤボンディング、31…はんだ、33…マザーボード、35…メタルベース基板、37…メタルコア基板、39…放熱用ざぐり、41…筐体、43…接着剤、45…高熱伝導部材、47…メタルコア基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a module substrate and a module structure of an electronic device.
[0002]
[Prior art]
An electronic device provided with an electronic substrate must be free from defects due to heat generated by electronic components. Therefore, a heat cycle test is performed before shipment. In particular, in an in-vehicle electronic control device such as an ECU, the temperature in the vehicle body changes greatly due to the on / off of the engine or a change in environmental temperature, and a thermal cycle in a wide temperature range (usually −40 degrees to 120 degrees: automotive electronics). It is necessary to withstand the JASOD001 standard for environmental testing of equipment. Nowadays, the ECU tends to be arranged closer to the engine, and the upper limit of this temperature range tends to be higher. When exposed to such a heat cycle, the performance of the electronic component in the ECU becomes unstable, or a connection failure between the electronic component mounting substrate and the electronic component is likely to occur. That is, high heat dissipation is required for electronic devices, and in particular, in-vehicle electronic devices such as ECUs are required to have heat dissipation superior to general electronic components.
[0003]
On the other hand, the MCM structure is a structure in which a plurality of LSIs are mounted on an interposer (intermediate substrate), and the interposer is mounted on an electronic substrate by solder bumps or the like. In such an MCM structure (here, a structure including an interposer that does not necessarily include a plurality of LSIs is simply referred to as an MCM structure), the heat generated by the LSI is difficult to escape to the electronic substrate. Therefore, it is important how efficiently heat can be radiated when the heat generation of the LSI is large. If this heat dissipation problem can be solved, an on-vehicle electronic control device having an MCM structure can be realized. As a heat dissipation structure, for example, there is a structure in which a heat sink is provided on the upper surface of the LSI.
[0004]
In order to improve heat dissipation, many structures using a metal core substrate for an interposer have been proposed. For example, according to Patent Document 1, a portion where the metal core is exposed is formed on each part of the front and back surfaces of the metal core substrate, an LSI chip is mounted on the exposed surface portion, and heat dissipation from the exposed portion on the back surface to the air is achieved. Can be increased. In Patent Document 2, the surface of the substrate is the same as the above invention, but the back surface is formed with thermal vias from the core metal to the solder connection pads on the surface of the substrate and connected to the electronic substrate via the solder connection portion. It is described that the heat dissipation can be improved.
[0005]
[Patent Document 1]
JP 5-175407
[Patent Document 2]
JP2000-228452
[0006]
[Problems to be solved by the invention]
The invention of Patent Document 1 expects heat dissipation from the exposed portion of the metal core on the back side of the substrate to the air. For example, a product in which there is almost no air flow such as underfill or gel is present. The structure can hardly expect this effect. In Patent Document 2, thermal vias are formed for heat dissipation from the core metal to the solder connection pads. However, it is costly to form thermal vias, and thermal vias that can be generally formed on a printed wiring board are formed by copper plating. Since it is hollow and thin, heat dissipation is inferior.
[0007]
[Means for Solving the Problems]
In order to obtain a structure having an intermediate substrate (interposer) like MCM that is low cost and excellent in heat dissipation, a core metal exposed portion without insulating resin is provided on the back surface of the metal core intermediate substrate, and a pad for connecting BGA solder for heat dissipation Is directly formed on the core metal. As for the connection to the electronic board (mother board), both the electrical connection portion and the heat dissipation portion can be BGA connected with solder balls of the same size. According to this method, the core metal exposed portion can be formed simultaneously with the formation of the via hole, and the pad on the core metal can be formed simultaneously with the formation of other pads for electrical connection. Therefore, the cost does not increase. Further, since heat can be radiated from the core metal directly to the mother board via solder without forming a thermal via, excellent heat dissipation can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An example of implementation will be described in detail below.
[0009]
A first embodiment will be described below with reference to FIGS. 1 and 2. FIG. 1 is an example of an interposer structure for obtaining a high heat dissipation MCM structure. The interposer substrate is a metal core substrate in which a metal is used as a core, and an insulating layer 13 and a wiring layer 15 are formed on both surfaces of the core metal 11. On one side of the substrate, in order to mount a high heat generation LSI, a counterbore is provided in the insulating resin to form a portion where the core metal is exposed. On the opposite surface of the substrate, a solder connection pad 19 for electrically connecting to the mother board is formed on the insulating resin, and at the same time, a counterbore of a desired size is formed, and the heat dissipation solder connection pad 21 is directly formed on the core metal. Forming.
[0010]
A second embodiment will be described with reference to FIG. FIG. 2 is an example of a manufacturing process for obtaining the interposer structure shown in FIG. First, a copper plate of 0.2 mmt × 300 mm × 500 mm is prepared as the metal 11 serving as the core. The copper plate has a large size because a plurality of substrates are cut out later and used. Of course, it may be a size that is easy to handle in manufacturing the substrate. The metal type may be aluminum or iron-Ni alloy, but copper having good thermal conductivity is preferable. A hole for forming a through hole (0.8 mmφ) and, if necessary, a slit was formed in the outer shape of the substrate piece by etching so that it could be easily cut out later with a substrate size. The etchant was ferric chloride (FIG. 2- (a)).
[0011]
Next, as an insulating resin layer and an inner wiring layer, prepreg 13 (epoxy resin with glass cloth, thickness 0.1 mmt) and copper thin 25 (thickness 0.012 mmt) are laminated on the front and back of the metal, and bonded by pressing. . Instead of the prepreg and the copper foil, a resin-coated copper foil RCF (Resin Coated Cupper Foil) may be used (FIG. 2- (b)).
[0012]
The copper foil unnecessary for the wiring was removed by etching. When it is necessary to electrically connect the core metal and the inner layer wiring, a counterbore having a diameter of 0.15 mmφ is formed with a laser so as to expose the core metal for forming the inner layer via. The laser can be anything such as a carbonic acid laser or a YAG laser, but if it is a carbonic acid laser, it can be processed at low cost. In addition, a through hole for the through hole 17 for electrically connecting the inner layers on the front and back of the substrate was formed by a drill. This through hole can be formed by laser processing, but when using a prepreg, since there is a glass cloth, drilling is suitable. Next, copper plating with a thickness of about 0.015 mm was applied to the inner layer through hole, inner layer via, and inner layer wiring (FIG. 2- (c)).
[0013]
A surface layer circuit was formed by repeating again the formation process of the insulating resin layer and the inner wiring layer. Simultaneously with the formation of via holes for electrically connecting the surface layer and the inner layer, a 5 mm square counterbore for LSI mounting and a 0.6 mmφ counterbore for core metal pad formation were formed by a carbonic acid laser. Copper plating with the same thickness as above is applied to the wiring and via holes, and electroless nickel plating (thickness: 0.005mm) and electroless gold plating (thickness: 0.001mm) to prevent wiring corrosion and solder connection ). As a result, a 0.6 mmφ BGA solder connection pad 19 for electrical connection and a 0.6 mmφ solder connection pad 21 for heat dissipation immediately above the core metal could be formed simultaneously. The pad pitch was all 1.5 mm. The insulating resin is removed from the counterbore for heat dissipation, and therefore the solder connection height is increased by the thickness of the insulating resin (about 0.2 mm). Regarding the solder connectivity, it is desirable that the pad diameter formed immediately above the core metal is not larger than the BGA pad diameter for electrical connection. Further, regarding the pad pitch, in order to further improve the heat dissipation, it is better that the pitch of the heat dissipation solder connection pads is small. Usually, the pad pitch is often a pad pitch considering a certain safety factor so as not to be short-circuited. However, since the heat dissipation solder portion may be short-circuited, the pitch can be considerably reduced. As a result, the total area of the connection portion can be increased and the heat dissipation can be improved. Furthermore, a solder resist was formed in a pattern, leaving a portion necessary for component mounting (FIGS. 2- (d) to (e)). In the above metal core substrate, the number of wiring layers is two each on the front and back sides, but the present invention does not depend on the number of layers, and in order to increase the number of wiring layers on the front and back sides, FIG. ) May be repeated.
[0014]
A third embodiment will be described with reference to FIG. This is an example of a structure in which a high heat generation LSI 27 is mounted and connected to a mother board 33 using the substrate created as described above as an interposer. The LSI was connected to the exposed portion of the core metal of the metal core substrate with Ag paste having high thermal conductivity. If the connection is made with solder, the heat dissipation can be improved. A Sn3Ag0.5Cu solder ball 31 having a diameter of 0.75 mmφ was mounted on the pad on the lower surface of the interposer and reflowed at 240 ° C. exceeding the melting point to form a ball. This was aligned on the motherboard, reflowed at 240 ° C. and connected. The heat generated by the LSI can be efficiently released to the motherboard.
[0015]
A fourth embodiment will be described with reference to FIG. The motherboard is a single-sided wiring board 35 (metal base board) based on a metal plate. Like the high heat dissipation board, a countersink and a solder connection pad are provided in the insulating resin, and the pad directly above the exposed metal base. It is a structure with solder connection. In this structure, the heat generated by the LSI can be dissipated to the metal base of the motherboard, so that better heat dissipation can be obtained.
[0016]
A fifth embodiment will be described with reference to FIG. The fourth embodiment is the same as the fourth embodiment except that the motherboard is a double-sided metal core substrate 37.
[0017]
Sixth and seventh embodiments will be described with reference to FIGS. Exposing part of the core metal on the opposite side of the motherboard's interposer mounting surface can improve heat dissipation. In this structure, for example, even in a structure in which an underfill or gel is inserted between the interposer and the motherboard, high heat dissipation can be obtained.
[0018]
Since the thermal conductivity of the core metal is large, in any of the above embodiments, the chip mounting counterbore need not be near the center of the substrate, and the heat dissipation pad formed directly on the core metal must be directly under the chip mounting portion. Nor.
[0019]
An eighth embodiment will be described with reference to FIG. The metal core interposer 47 on which the LSI 27 is mounted is an example of an ECU that is solder-connected to a mother board according to the present invention and is fixed to an aluminum casing 41 with an adhesive. A schematic bird's-eye view is shown in FIG.
[0020]
As shown in FIGS. 9 and 10 showing the ninth and tenth embodiments, heat dissipation can be further improved by sandwiching a high thermal conductivity member 45 between the spotted portion of the motherboard and the housing. The high thermal conductivity member is a member having a higher thermal conductivity than the adhesive that bonds the motherboard and the aluminum casing. For example, a metal plate such as solder, copper or aluminum, or a high thermal conductivity resin or adhesive. is there. In particular, when solder is used, a solder connection pad may be formed and connected to the housing, and it is not always necessary to form a pad on the housing, and solder must be supplied to the core metal of the motherboard. It is also possible to connect to the case by pressing it against the housing. When the metal plate is sandwiched, an adhesive may be applied to both surfaces of the metal plate and connected, or simply contacted. Connection between the mother board and the casing other than the part is performed using a normal adhesive or a high thermal conductive adhesive. The casing is usually made of light aluminum, but the present invention does not depend on the material.
[0021]
Example 11 is an example in which, as shown in FIG. 11, a pad for connecting a heat dissipating solder is formed directly on the core metal, and the part where the heat dissipating solder is connected is located at a position off from directly below the chip. Further, the electrical solder connection portion may be in a region directly under the chip. As shown in the present embodiment, regardless of the position of the chip on the substrate, the heat radiating solder connection portion and the electrical connection portion can be freely arranged by the wiring design or the heat radiating design.
[0022]
An example of a manufacturing process for realizing the structure shown in Examples 3 to 7 will be described as Example 12. First, the method for manufacturing the interposer substrate has been described in the second embodiment, and will be omitted. On the manufactured metal core substrate, Ag paste is applied to a spotted portion for mounting a high heat generation LSI and a desired portion for mounting other components on the surface of the substrate, electronic components are mounted, and appropriate curing conditions (for example, 150 ° C., 1 hr) ) To cure and bond the Ag paste. The electrode of the high heat generation LSI and the electrode of the metal core interposer are connected by wire bonding. If the part mounting surface of the interposer is molded with resin as necessary, the handling property is improved. On the opposite side of the interposer, solder balls are mounted on the electrodes after flux application. At this time, solder balls are also mounted on pads directly above the core metal for heat dissipation. Using Sn3Ag0.5Cu solder, reflow is performed at a maximum temperature of 240 ° C. and a solder melting time of about 20 seconds to form a ball. Other solders may be used. In that case, balls are formed under reflow conditions according to the solder type. On the motherboard side, a solder printing mask having a mask thickness of 0.1 mm is used, and a solder paste is formed by a printing method. On the printed paste-like solder, the ball-formed interposer is positioned and mounted, reflowed again, and soldered. Although it is not always necessary to perform this solder printing, if the solder printing is performed, the interposer can be prevented from being displaced due to the viscosity of the printed solder.
[0023]
When the mother board as described in Examples 5-7 is a metal core board, after manufacturing them by the method described in Example 2, they are connected by the same method as described above. The same applies when the mother board as described in the fourth embodiment is a metal base substrate.
[0024]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the electronic device excellent in heat dissipation with low cost can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a substrate structure according to the present invention. FIG. 2 is a cross-sectional view showing a substrate manufacturing process according to the invention. FIG. 3 is a cross-sectional view showing a mounting structure according to the invention. FIG. 5 is a sectional view showing a mounting structure according to the present invention. FIG. 6 is a sectional view showing a mounting structure according to the present invention. FIG. 7 is a sectional view showing a mounting structure according to the present invention. 8 is a cross-sectional view showing a mounting structure according to the present invention. FIG. 9 is a cross-sectional view showing a mounting structure according to the present invention. FIG. 10 is a cross-sectional view showing a mounting structure according to the present invention. FIG. 12 is a cross-sectional view showing a mounting structure. FIG. 12 is a bird's-eye view showing a mounting structure according to the present invention.
DESCRIPTION OF SYMBOLS 11 ... Core metal, 13 ... Insulating layer, 15 ... Wiring, 17 ... Through-hole, 19 ... Solder connection pad (for electrical connection), 21 ... Solder connection pad (for heat dissipation connection), 23 ... Solder resist, 25 ... Copper foil, 27 ... LSI chip, 29 ... Wire bonding, 31 ... Solder, 33 ... Motherboard, 35 ... Metal base substrate, 37 ... Metal core substrate, 39 ... Counterbore for heat radiation, 41 ... Housing, 43 ... Adhesive, 45 ... High thermal conductivity member, 47 ... Metal core substrate

Claims (5)

コアメタル、並びにその両面の各々に形成された絶縁層及び配線層を有し、且つ該コアメタルの該両面の一方側を電子部品が搭載される第1面とし、且つ該コアメタルの該両面の他方側を第2面とするインタポーザ基板、及び
金属板を含めて構成され、且つその片側の面に前記インタポーザ基板が搭載され、且つ該片側の面と該インタポーザ基板の前記第2面との間に信号伝達用の接続と放熱用の接続が形成されているマザーボードを備え、
前記インタポーザ基板の前記第2面には、前記絶縁層の除去により前記コアメタルの他方の面を露出するコアメタル露出領域が形成され、該コアメタル露出領域の内部には第1接続用パッドが該コアメタルの該他方の面に形成され、且つ該第2面の該コアメタル露出領域の両側には該絶縁層上に第2接続用パッドが形成され、
前記第1接続用パッドと前記マザーボードの前記片側の面とのはんだ接続は、前記コアメタル露出領域の内部で該第1接続用パッドに接し、且つ前記第2接続用パッドと該マザーボードの該片側の面とのはんだ接続より該マザーボードの該片側の面に対して高く形成され、
前記インタポーザ基板の前記第2面において、前記第1接続用パッドのパッド径は、前記第2接続用パッドのパッド径より大きくない
ことを特徴とする電子装置。
The core metal has an insulating layer and a wiring layer formed on each of both surfaces thereof, and one side of the both sides of the core metal is a first surface on which an electronic component is mounted, and the other side of the both sides of the core metal An interposer substrate having a second surface and a metal plate, and the interposer substrate is mounted on one surface of the interposer substrate, and a signal is provided between the one surface and the second surface of the interposer substrate. It has a motherboard with a connection for transmission and a connection for heat dissipation,
Wherein the interposer second surface of the substrate, the core metal exposed area exposed to the other surface of the core metal by removing the insulating layer is formed, the core metal exposed area in the interior of the first connection pad core metal of said other surface made form in the, and on both sides of the core metal exposed region of said second surface a second connection pad is formed on the insulating layer,
The solder connection between the first connection pad and the one side surface of the motherboard is in contact with the first connection pad inside the core metal exposed region, and the second connection pad and the one side of the motherboard. Formed higher than the surface of the one side of the motherboard than the solder connection with the surface,
The electronic device according to claim 2, wherein a pad diameter of the first connection pad is not larger than a pad diameter of the second connection pad on the second surface of the interposer substrate .
前記マザーボードは、前記金属板をベースメタルとし且つ前記片側の面において該金属板上に絶縁樹脂と配線とを形成して成る片面配線基板であり、
該マザーボードの該片側の面には該絶縁樹脂のざぐり穴により該金属板を露出するベースメタル露出領域が形成され、
該ベースメタル露出領域に形成されたはんだ接続用のパッドは、前記インタポーザ基板の前記第2面に形成された前記第1接続用パッドとはんだ接続されて前記放熱用の接続を形成することを特徴とする請求項1に記載の電子装置。
The mother board is a single-sided wiring board in which the metal plate is a base metal and an insulating resin and wiring are formed on the metal plate on the one side surface;
A base metal exposed region that exposes the metal plate by a counterbore of the insulating resin is formed on the one side surface of the motherboard,
The solder connection pad formed in the base metal exposed region is solder-connected to the first connection pad formed on the second surface of the interposer substrate to form the heat dissipation connection. The electronic device according to claim 1.
前記マザーボードは、前記金属板をコアメタルとし且つ前記片側の面とその反対面の双方において該金属板上に絶縁樹脂と配線とを夫々形成して成るメタルコア基板であり、
該マザーボードの該片側の面には該絶縁樹脂のざぐり穴により該金属板を露出する第1コアメタル露出領域が形成され、
該第1コアメタル露出領域に形成されたはんだ接続用のパッドは、前記インタポーザ基板の前記第2面に形成された前記第1接続用パッドとはんだ接続されて前記放熱用の接続を形成することを特徴とする請求項1に記載の電子装置。
The motherboard is a metal core substrate in which the metal plate is a core metal and an insulating resin and a wiring are formed on the metal plate on both the one side and the opposite side, respectively.
A first core metal exposed region that exposes the metal plate through a counterbore of the insulating resin is formed on the one side surface of the motherboard,
The solder connection pad formed in the exposed region of the first core metal is soldered to the first connection pad formed on the second surface of the interposer substrate to form the heat dissipation connection. The electronic device according to claim 1, wherein
前記マザーボードの前記反対面には放熱用のざぐり穴が形成され、該ざぐり穴により前記金属板の一部を露出する第2コアメタル露出領域が形成されることを特徴とする請求項3に記載の電子装置。  4. The heat sinking hole is formed on the opposite surface of the mother board, and a second core metal exposed region exposing a part of the metal plate is formed by the hole. Electronic equipment. 前記マザーボードは前記インタポーザ基板の非搭載面である前記反対面で接着剤により筐体に接着され、且つ該反対面に形成された前記第2コアメタル露出領域と該筐体との間には該接着剤よりも熱伝導率の大きな部材が充填されていることを特徴とする請求項4に記載の電子装置。  The mother board is bonded to the casing by an adhesive on the opposite surface, which is a non-mounting surface of the interposer substrate, and the bonding between the second core metal exposed region formed on the opposite surface and the casing is performed. The electronic device according to claim 4, wherein a member having a thermal conductivity higher than that of the agent is filled.
JP2002337366A 2002-11-21 2002-11-21 Electronic equipment Expired - Fee Related JP3988629B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002337366A JP3988629B2 (en) 2002-11-21 2002-11-21 Electronic equipment
CNB038253135A CN100378968C (en) 2002-11-21 2003-06-20 Electronic device
PCT/JP2003/007862 WO2004047168A1 (en) 2002-11-21 2003-06-20 Electronic device
AU2003244322A AU2003244322A1 (en) 2002-11-21 2003-06-20 Electronic device
KR1020057009038A KR100661044B1 (en) 2002-11-21 2003-06-20 Electronic device
EP03811481.5A EP1571706B1 (en) 2002-11-21 2003-06-20 Electronic device
US10/535,857 US7554039B2 (en) 2002-11-21 2003-06-20 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337366A JP3988629B2 (en) 2002-11-21 2002-11-21 Electronic equipment

Publications (2)

Publication Number Publication Date
JP2004172426A JP2004172426A (en) 2004-06-17
JP3988629B2 true JP3988629B2 (en) 2007-10-10

Family

ID=32700896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337366A Expired - Fee Related JP3988629B2 (en) 2002-11-21 2002-11-21 Electronic equipment

Country Status (1)

Country Link
JP (1) JP3988629B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016775A (en) * 2006-07-10 2008-01-24 Denki Kagaku Kogyo Kk Circuit board, and hybrid integrated circuit
JP5289921B2 (en) * 2008-12-12 2013-09-11 トヨタ自動車株式会社 Semiconductor device and method for manufacturing semiconductor device
JP6587795B2 (en) * 2014-10-02 2019-10-09 太陽誘電株式会社 Circuit module

Also Published As

Publication number Publication date
JP2004172426A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP3849573B2 (en) Electronic equipment
US7425762B2 (en) Electronic apparatus
JP4669392B2 (en) Metal core multilayer printed wiring board
KR100661044B1 (en) Electronic device
US7985926B2 (en) Printed circuit board and electronic component device
JP4976840B2 (en) Printed wiring board, printed wiring board manufacturing method, and electronic device
JP2008226945A (en) Semiconductor device and its manufacturing method
JPH0917919A (en) Semiconductor device
WO2013047520A1 (en) Component embedded substrate mounting body, method for manufacturing same and component embedded substrate
JP4218434B2 (en) Electronic equipment
JP4848752B2 (en) Printed wiring board having component mounting pins and electronic device using the same
JP3988629B2 (en) Electronic equipment
JP2008091377A (en) Printed wiring board and its manufacturing method
JP2005039241A (en) Intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure composed of semiconductor element, intermediate substrate, and substrate
JP3938017B2 (en) Electronic equipment
JP2012104792A (en) Manufacturing method for semiconductor package substrate
JP2001168226A (en) Semiconductor package and semiconductor device
JP3091051B2 (en) Substrate for mounting electronic components
JP2018207118A (en) Circuit module
JP2005039240A (en) Intermediate substrate, intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure composed of semiconductor element, intermediate substrate, and substrate
JPH08191128A (en) Electronic device
US20220223509A1 (en) Package substrate with partially recessed capacitor
JP2005039239A (en) Intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure composed of semiconductor element, intermediate substrate, and substrate
JP2001274203A (en) Bimetal substrate and bga structure
WO2011158524A1 (en) Surface mounting method for electronic components and printed circuit boards manufactured using said method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3988629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees