JP3987291B2 - Electrode device - Google Patents

Electrode device Download PDF

Info

Publication number
JP3987291B2
JP3987291B2 JP2001049141A JP2001049141A JP3987291B2 JP 3987291 B2 JP3987291 B2 JP 3987291B2 JP 2001049141 A JP2001049141 A JP 2001049141A JP 2001049141 A JP2001049141 A JP 2001049141A JP 3987291 B2 JP3987291 B2 JP 3987291B2
Authority
JP
Japan
Prior art keywords
electrode
disk
gas
voltage
atmospheric pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001049141A
Other languages
Japanese (ja)
Other versions
JP2002249877A (en
Inventor
靖 西田
武 長澤
登 湯上
弘昭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001049141A priority Critical patent/JP3987291B2/en
Publication of JP2002249877A publication Critical patent/JP2002249877A/en
Application granted granted Critical
Publication of JP3987291B2 publication Critical patent/JP3987291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電極装置に関し、特に、大気圧近辺で安定的にプラズマを発生することができ、有機ガス等を分解することができるフローティング電極装置に関する。
【0002】
【技術的背景】
従来から、低気圧(10−2〜10−3Torr)で、メタンガスなどをマイクロ波励起プラズマで分解し、ダイヤモンド膜やDLC(Diamond-like carbon)膜を形成する技術は、マイクロ波励起プラズマCVDとして良く知られている。
しかし、大気圧に近いメタン・エチレンなどの有機ガスを水素と炭素に分解しようとするときには、マイクロ波励起では、安定なプラズマの形成が難しいとか大電力が必要になるなどの問題がある。
【0003】
【発明が解決しようとする課題】
本発明の目的は、大気圧近辺で安定にプラズマを発生させて、有機ガス等を分解することができる電極装置を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明は、絶縁体の円盤と、前記円盤上に、同心円状に配置した複数の電極と、前記円盤および電極を回転させる駆動部と、前記円盤の外周にあり、直径方向の2つの電極に対して電圧を印加する1対のブラシと、前記ブラシに印加する電圧を発生する電源とを備え、大気圧近傍の気体中において、前記2つの電極間に、回転により異なる経路で放電を起こし、プラズマを形成することを特徴とする電極装置である。
前記電源ではパルスを発生しており、該パルスは、高電圧スパイクに続く低電圧プラトーを有する波形を有しており、このパルスを用いることにより、大気圧近傍の有機ガスを分解することができる。
【0005】
【発明の実施の形態】
本発明の実施形態を、図面を参照して詳細に説明する。
図1にプラズマを発生させるための回転浮遊多極放電装置の構成を示す。図1において、回転浮遊多極放電装置の1実施形態として、絶縁体円盤114に3φねじ(ビス 長さ:30mm)116を4.5mm間隔に同心円状に埋め込んだ構成で、電極110を構成している。
このような構成の電極110を、大気圧近辺のメタンやエチレンなどの有機ガスの雰囲気に設置し、電極110を中心軸112により2〜10rpmで回転し、外周の2つのねじに対して、ブラシ118を介して電圧を印加する。すると、2つのブラシ118を結ぶ経路A−Bのねじ間で放電が起こり、プラズマが形成される。放電を起こす経路は円形絶縁体が回転しているために常に変更される。
形成されたプラズマは安定しており、この安定なプラズマは、各ねじ116が絶縁体の円盤114に埋め込まれ、電気的には相互に絶縁されたフローティング状態にすることにより得られている。
【0006】
図2に、プラズマが形成されている様子を示す写真を示す。この写真をとるための放電条件は、大気圧の空気の放電であり、印加電圧は6.6KVである。印加電圧は、図1に示されているように、交流100ボルトの電源からスライダック124、インダクション・コイル126で高電圧として電極(ねじ)に印加している。図2の写真は、図1の電極を上下逆転して放電した様子を示しており、中心軸112により円形絶縁体の一部は遮られている。
図2の写真から分かるように、円形絶縁体上の全てのねじの周囲にプラズマが形成されている。これは絶縁体が移転しているため、放電を起こす経路が常に変更されるためである。この様に多くのねじの周囲でプラズマが形成されるため、有機ガス等を分解する場合に効率よく行うことができる。
有機ガスを分解し、水素と炭素の成分に分けるためには、図3に示すようなパルスをブラシ118間に印加する。図3において、1000ボルト程度で、100μsecほどの鋭いパルスを加えると、ガス分解を起こすことができる。引き続き、200ボルト、0.5msec程度の電圧を印加する。この様な高電圧スパイクに続く低電圧プラトーを有する波形のパルスを用いることにより、炭素成分を膜状に堆積させることができる。
【0007】
【実施例】
図1の回転電極を上下逆に設置して、入口および出口を有する径150φの気密円筒で覆い、ガスを封入した。そして、回転電極を回転させながら、所定の時間、図3に示すようなパルス電圧を印加した後に、内部のガスを分析した。
(実施例1)
気密円筒内に1気圧の空気:メタンを約10:1の割合で混合した気体を流入する。これは分解効率と空気が存在することによる効果を調べる目的で、空気を混入させたものである。本来は空気がない状態で分解を行う。
分解状態の測定は次のように行う。
(1)気密円筒にガス採取用の小さな管を挿入し、小さな真空フラスコ内にガスを採取する。
(2)採取したガスをガスクロマトグラフィーを用いて質量分析する。
図4に採取したガスのガスクロマトグラフィーを用いた計測結果を示す。図4の横軸:質量および縦軸:各質量の強度を示す。
図4(a)は、放電前の分析結果を示している。この図から、メタン(m/z=16)と空気成分(m/z≒16:窒素、32:酸素)の存在が明らかに示されている。
図4(b)は回転電極を回転させながら、放電時間10分の場合を示す。この図から、メタンは、ほぼ分解されている。また、空気成分も化学反応を起こして減少している。なお、m/z=41〜42の成分は正確には分からないが、二酸化炭素が重合された可能性がある。発生した水素は微量なため検出されていない。
【0008】
(実施例2)
気密円筒内に、1気圧、1リットルのメタンガスを封入した。そして、回転電極を回転させながら、30分間、図3に示すようなパルス電圧を印加した後に、内部のガスを分析した。その結果、水素:992ml,メタン:8mlであった。円筒内壁には、黒色物体が堆積した。この黒色物体は炭素成分であるが、その同素体が何であるかについては確認していない。
【0009】
(実施例3)
上述と同じ条件で、封入ガスを窒素ベースの2.7体積%一酸化炭素に変えて、放電による分解処理を行った。その結果、分解処理後の一酸化炭素は0.6体積%に減少した。
【0010】
【発明の効果】
上述のように、本発明の電極装置を用いることにより、大気圧近辺の有機ガス雰囲気で、安定なプラズマを形成でき、ガスの分解を行うことが、マイクロ波励起プラズマに比べ容易にできる。また、マイクロ波を発生することに比べ、本発明の電極装置へのプラズマを発生させるための電力は少ない。
【図面の簡単な説明】
【図1】回転浮遊多極放電装置の構成を示す図である。
【図2】回転浮遊多極放電装置でプラズマが発生していることを示す写真である。
【図3】回転浮遊多極放電装置で有機ガスを分解するために印加するパルスの波形を示す図である。
【図4】メタンと空気の混合ガスを分解した結果を示す図である。
【符号の説明】
110 電極
112 中心軸
114 絶縁体円盤
118 ブラシ
122 交流電源
124 スライダック
126 インダクション・コイル
128 抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode device, and more particularly to a floating electrode device that can stably generate plasma near atmospheric pressure and can decompose organic gas and the like.
[0002]
[Technical background]
Conventionally, a technique of decomposing methane gas or the like with microwave-excited plasma at low pressure (10-2 to 10-3 Torr) to form a diamond film or a DLC (Diamond-like carbon) film is known as microwave-excited plasma CVD. Well known.
However, when an organic gas such as methane / ethylene close to atmospheric pressure is to be decomposed into hydrogen and carbon, there are problems such as that it is difficult to form a stable plasma and that a large amount of power is required by microwave excitation.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrode device capable of stably generating plasma near atmospheric pressure and decomposing organic gas or the like.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes an insulator disk, a plurality of electrodes arranged concentrically on the disk, a drive unit for rotating the disk and the electrodes, and an outer periphery of the disk. A pair of brushes for applying a voltage to two electrodes in the diametrical direction and a power source for generating a voltage to be applied to the brush , and rotating between the two electrodes in a gas near atmospheric pressure In this electrode device, discharge is caused by different paths to form plasma.
The power supply generates a pulse, and the pulse has a waveform having a low voltage plateau following a high voltage spike. By using this pulse, an organic gas near atmospheric pressure can be decomposed. .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows the configuration of a rotating floating multipolar discharge device for generating plasma. In FIG. 1, as one embodiment of the rotary floating multipolar discharge device, an electrode 110 is configured by concentrically embedding 3φ screws (screw length: 30 mm) 116 in an insulator disk 114 at intervals of 4.5 mm. ing.
The electrode 110 having such a configuration is placed in an atmosphere of an organic gas such as methane or ethylene near atmospheric pressure, the electrode 110 is rotated at 2 to 10 rpm by the central axis 112, and a brush is applied to two screws on the outer periphery. A voltage is applied via 118. Then, discharge occurs between the screws in the path AB connecting the two brushes 118, and plasma is formed. The path that causes the discharge is always changed because the circular insulator is rotating.
The formed plasma is stable, and this stable plasma is obtained by embedding each screw 116 in an insulator disk 114 to be in a floating state electrically insulated from each other.
[0006]
FIG. 2 shows a photograph showing how plasma is formed. The discharge condition for taking this photograph is discharge of air at atmospheric pressure, and the applied voltage is 6.6 KV. As shown in FIG. 1, the applied voltage is applied to the electrode (screw) as a high voltage from the AC 100 volt power source by the slidac 124 and the induction coil 126. The photograph of FIG. 2 shows a state where the electrode of FIG. 1 is turned upside down and discharged, and a part of the circular insulator is blocked by the central axis 112.
As can be seen from the photograph in FIG. 2, plasma is formed around all the screws on the circular insulator. This is because the path for causing discharge is always changed because the insulator has moved. Since plasma is formed around many screws in this way, it can be efficiently performed when organic gas or the like is decomposed.
In order to decompose the organic gas and divide it into hydrogen and carbon components, a pulse as shown in FIG. In FIG. 3, gas decomposition can be caused by applying a sharp pulse of about 100 μsec at about 1000 volts. Subsequently, a voltage of about 200 volts and about 0.5 msec is applied. By using a pulse having a waveform having a low voltage plateau following such a high voltage spike, the carbon component can be deposited in the form of a film.
[0007]
【Example】
The rotating electrode of FIG. 1 was installed upside down, covered with an airtight cylinder with a diameter of 150φ having an inlet and an outlet, and gas was sealed. Then, a pulse voltage as shown in FIG. 3 was applied for a predetermined time while rotating the rotating electrode, and then the internal gas was analyzed.
Example 1
A gas mixed with 1 atm of air: methane at a ratio of about 10: 1 flows into the hermetic cylinder. This is a mixture of air for the purpose of examining the effect of the decomposition efficiency and the presence of air. Decomposition is performed in the absence of air.
The decomposition state is measured as follows.
(1) Insert a small tube for collecting gas into an airtight cylinder and collect gas in a small vacuum flask.
(2) The collected gas is subjected to mass spectrometry using gas chromatography.
FIG. 4 shows the measurement results of the collected gas using gas chromatography. In FIG. 4, the horizontal axis represents the mass and the vertical axis represents the intensity of each mass.
FIG. 4A shows the analysis result before discharge. From this figure, the presence of methane (m / z = 16) and air components (m / z≈16: nitrogen, 32: oxygen) is clearly shown.
FIG. 4B shows a case where the discharge time is 10 minutes while rotating the rotating electrode. From this figure, methane is almost decomposed. In addition, the air component is reduced due to a chemical reaction. In addition, although the component of m / z = 41-42 is not known correctly, there is a possibility that carbon dioxide was polymerized. The generated hydrogen is not detected because it is very small.
[0008]
(Example 2)
One atmosphere and 1 liter of methane gas were sealed in an airtight cylinder. Then, a pulse voltage as shown in FIG. 3 was applied for 30 minutes while rotating the rotating electrode, and then the internal gas was analyzed. As a result, the hydrogen was 992 ml and the methane was 8 ml. A black object was deposited on the inner wall of the cylinder. This black object is a carbon component, but it has not been confirmed what its allotrope is.
[0009]
(Example 3)
Under the same conditions as described above, the enclosed gas was changed to 2.7% by volume of carbon monoxide based on nitrogen, and a decomposition treatment by discharge was performed. As a result, the carbon monoxide after the decomposition treatment was reduced to 0.6% by volume.
[0010]
【The invention's effect】
As described above, by using the electrode device of the present invention, stable plasma can be formed in an organic gas atmosphere near atmospheric pressure, and gas can be decomposed more easily than microwave-excited plasma. In addition, compared with generating microwaves, there is less power for generating plasma to the electrode device of the present invention.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a rotary floating multipolar discharge device.
FIG. 2 is a photograph showing that plasma is generated in a rotating floating multipolar discharge device.
FIG. 3 is a diagram showing a waveform of a pulse applied to decompose an organic gas in a rotary floating multipolar discharge device.
FIG. 4 is a diagram showing a result of decomposing a mixed gas of methane and air.
[Explanation of symbols]
110 Electrode 112 Center shaft 114 Insulator disk 118 Brush 122 AC power supply 124 Slidac 126 Induction coil 128 Resistance

Claims (2)

絶縁体の円盤と、
前記円盤上に、同心円状に配置した複数の電極と、
前記円盤および電極を回転させる駆動部と、
前記円盤の外周にあり、直径方向の2つの電極に対して電圧を印加する1対のブラシと、
前記ブラシに印加する電圧を発生する電源とを備え、
大気圧近傍の気体中において、前記2つの電極間に、回転により異なる経路で放電を起こし、プラズマを形成することを特徴とする電極装置。
An insulator disk,
A plurality of electrodes arranged concentrically on the disk, and
A drive unit for rotating the disk and the electrode;
A pair of brushes on the outer periphery of the disk for applying a voltage to two diametrical electrodes ;
A power source for generating a voltage to be applied to the brush,
An electrode apparatus characterized in that, in a gas near atmospheric pressure , discharge is caused between the two electrodes by different paths by rotation to form plasma.
請求項1に記載された電極装置において、
前記電源ではパルスを発生しており、
該パルスは、高電圧スパイクに続く低電圧プラトーを有する波形を有し、
大気圧近傍の有機ガスを分解することを特徴とする電極装置。
The electrode device according to claim 1,
The power supply generates pulses,
The pulse has a waveform with a low voltage plateau following a high voltage spike;
An electrode device characterized by decomposing an organic gas near atmospheric pressure.
JP2001049141A 2001-02-23 2001-02-23 Electrode device Expired - Lifetime JP3987291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049141A JP3987291B2 (en) 2001-02-23 2001-02-23 Electrode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049141A JP3987291B2 (en) 2001-02-23 2001-02-23 Electrode device

Publications (2)

Publication Number Publication Date
JP2002249877A JP2002249877A (en) 2002-09-06
JP3987291B2 true JP3987291B2 (en) 2007-10-03

Family

ID=18910289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049141A Expired - Lifetime JP3987291B2 (en) 2001-02-23 2001-02-23 Electrode device

Country Status (1)

Country Link
JP (1) JP3987291B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331407A (en) * 2003-04-30 2004-11-25 Takeshi Nagasawa Apparatus and method of producing hydrogen
KR100630807B1 (en) 2004-04-03 2006-10-02 사단법인 한국가속기 및 플라즈마 연구협회 Large area electric discharge plasma generator
JP2006353046A (en) * 2005-06-20 2006-12-28 Utsunomiya Univ Lightning surge protector
JP2009538989A (en) * 2006-05-30 2009-11-12 フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. Method and apparatus for deposition using pulsed atmospheric pressure glow discharge
JP5782591B2 (en) * 2009-09-17 2015-09-24 イマジニアリング株式会社 Gas processing apparatus and internal combustion engine
JP5407003B1 (en) * 2013-06-25 2014-02-05 Saisei合同会社 Methane gas cracker
CN106961779B (en) * 2017-05-11 2024-02-02 江苏菲沃泰纳米科技股份有限公司 Plasma initiation polymerization device with fixed rotation electrode group
CN107434279A (en) * 2017-08-29 2017-12-05 刘铁林 Carbon allotrope compound field-effect high energy particle generating means
KR102207607B1 (en) * 2018-11-30 2021-01-26 한국과학기술연구원 DC power plasma CVD diamond growth apparatus

Also Published As

Publication number Publication date
JP2002249877A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
JP3987291B2 (en) Electrode device
US11959846B2 (en) In situ chemical transformation and ionization of inorganic perchlorates on surfaces
McCarty et al. Decomposition of formic acid on Ni (110): I. Flash decomposition from the clean surface and flash desorption of reaction products
Massines et al. Comparison between air filamentary and helium glow dielectric barrier discharges for the polypropylene surface treatment
Shao et al. Research on surface modification of polytetrafluoroethylene coupled with argon dielectric barrier discharge plasma jet characteristics
WO2011089912A1 (en) Mass spectrometry device
JP2004047696A5 (en)
CN1726391A (en) Gas analysis method and ionisation detector for carrying out said method
EP3867944A1 (en) Dielectric barrier discharge ionization, analytical instrument and ionization method
Thai et al. Interaction and transfer of charged particles from an alternating current glow discharge in liquids: Application to silver nanoparticle synthesis
CN111988903A (en) Gas-phase packed bed discharge plasma generating device
CN111739783A (en) Atmospheric pressure electric arc ion source for small mass spectrometer and detection method thereof
Majumdar et al. Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition
CN109545648B (en) Composite ionization device
Seto et al. Decomposition of toluene with surface-discharge microplasma device
WO2008153199A1 (en) Ionization analysis method and device
JP3078466B2 (en) Atmospheric pressure plasma generating apparatus and atmospheric pressure plasma generating method using the apparatus
Pekárek et al. Non‐Thermal Plasma and TiO2‐Assisted n‐Heptane Decomposition
CN111929193A (en) Dielectric barrier discharge low-temperature plasma thermal balance and working method thereof
Shakir et al. rf-generated ambient-afterglow plasma
JP4229849B2 (en) Acicular carbon film manufacturing method, acicular carbon film and field emission structure
JP3462949B2 (en) Negative charge oxygen atom generation method
Chen et al. Novel atmospheric pressure plasma utilizing symmetric dielectric barrier discharge for mass spectrometry applications
Carrivain et al. Inspection of contamination in nitrogen plasmas by monitoring the temporal evolution of the UV bands of NO-γ and of the fourth positive system of N2
TWI793727B (en) Power supply device and surface treatment machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3