JP3986667B2 - Polyethylene terephthalate resin bottle manufacturing method - Google Patents

Polyethylene terephthalate resin bottle manufacturing method Download PDF

Info

Publication number
JP3986667B2
JP3986667B2 JP16825398A JP16825398A JP3986667B2 JP 3986667 B2 JP3986667 B2 JP 3986667B2 JP 16825398 A JP16825398 A JP 16825398A JP 16825398 A JP16825398 A JP 16825398A JP 3986667 B2 JP3986667 B2 JP 3986667B2
Authority
JP
Japan
Prior art keywords
bottle
neck
heated
shape
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16825398A
Other languages
Japanese (ja)
Other versions
JP2000000876A (en
Inventor
克正 冨澤
浩二 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAICAN CO.,LTD.
Original Assignee
HOKKAICAN CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAICAN CO.,LTD. filed Critical HOKKAICAN CO.,LTD.
Priority to JP16825398A priority Critical patent/JP3986667B2/en
Publication of JP2000000876A publication Critical patent/JP2000000876A/en
Application granted granted Critical
Publication of JP3986667B2 publication Critical patent/JP3986667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0861Other specified values, e.g. values or ranges
    • B29C2949/0862Crystallinity

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエチレンテレフタレート樹脂製ボトルの製造方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレート樹脂(以下、PET樹脂と略記する)からなるボトルは、耐熱性、機械的強度、ガスバリア性、軽量性、透明性等の諸物性に優れているので、近年、果汁飲料、茶類、スポーツ飲料、炭酸飲料等のボトルとして広く利用されている。従来、前記PET樹脂製ボトルは、例えば図6(a)示のように首部21の外周面にねじ部22とサポートリング23とを備え、首部21の下方に形成された円筒状の胴部24とを備える有底筒状のPET樹脂製プリフォーム25から製造されている。従来のPET樹脂製ボトルは、図6(a)示のプリフォーム25をブロー成形することにより、図6(b)示のように首部21と、首部21直下の首下部26と、首下部26に連なり外方に大きく膨出した肩部27と、肩部27の下方に連なる胴部28と、さらに胴部28の下方に連なる底部29とからなる。
【0003】
前記PET樹脂製ボトルの優れた諸物性は、PET樹脂が前記ブロー成形により2軸延伸されて配向結晶化することによって得られる。しかし、通常のブロー成形は前記プリフォーム25の首部21を把持して行われるために、ボトル形成後にも図6(b)示の首部21は未延伸で非晶状態のままであり、また前記首部21直下の首下部26は延伸が不十分で結晶化の程度が低いままになっている。
【0004】
非晶状態のPET樹脂は、一般に耐熱性及び機械的強度が低く、そのガラス転移温度(約70℃)以上では軟化して変形しやすくなってしまう。例えば、前記果汁飲料等をPETボトルに充填するときには、殺菌のために該果汁飲料を80〜90℃、例えば85℃に加熱して、充填後さらに該温度に10分間保持する高温充填によるホットパック処理が行われているが、このような処理を行うと前記非晶状態の首部21が熱により軟化して変形することがある。また、結晶化度が低い首下部26も前記非晶状態の首部21と同様の傾向を示し、前記ホットパック処理等の際に熱変形を起こすことがある。
【0005】
そこで、前記PETボトルの前記非晶状態の首部21または結晶化度の低い首下部26の耐熱性及び機械的強度を改善するために、種々の方法が提案されている。
【0006】
まず、特公昭59−33101号公報には、白化結晶化させた首部を備え首部の下方の一部に未白化部を備えたPETボトルの製造方法が記載されている。PET樹脂は、加熱して白化結晶化させることにより化学的に安定化して耐熱性が付与されるので、これにより前記首部の熱変形やクレージングを防止することができる。しかし、かかるPETボトルは首部下方に未白化部があるため耐熱性が不十分である。
【0007】
また、特公平2−36455号公報には、首部直下の部分が胴部の他の部分より薄肉に形成されると共に、首部のみを加熱処理して白化結晶化せしめたプリフォームを、最終的なボトルの外面形状を備える金型に収容して2軸延伸ブロー成形するPETボトルの製造方法が開示されている。前記公報記載の製造方法によれば、前記のようにプリフォームの首部のみを白化結晶化させて、2軸延伸ブロー成形することにより、胴部と首部との間に位置する首下部及び肩部の全域が胴部と略同厚になるように延伸されるので、これにより、前記首下部及び肩部の全域が配向結晶化され、優れた耐熱性、耐クレージング性が付与されるとされている。
【0008】
しかしながら、前記公報記載の製造方法では、白化首部の直下の延伸部は首部に比べて相対的に薄肉となり、機械的強度が劣り、更に延伸された肩部、胴部の耐熱性が前記のホットパック処理に対応するほど十分とはならない。一般的に、プリフォームの首部を白化結晶化させる際に、他の部分を遮蔽したとしても、前記首部の加熱に伴う伝熱により首部直下の部分も加熱され、首部のみを白化させることは困難であり、通常は下方が弱白化されることが避けられない。そして、このように首部直下の部分が弱白化されたプリフォームを前記最終的なボトルの外面形状を備える金型に収容して、一段階で2軸延伸ブロー成形すると、前記弱白化された部分は延伸が不十分になり、結晶化度が低いまま残される。この結果、図6(b)示のような形状に形成されたボトルの首下部26では十分な耐熱性及び機械的強度が得られず、前記高温充填によるホットパック処理を行うと該首下部11が熱変形を起こすことがあるとの不都合がある。
【0009】
そこで、首部を白化結晶化させたプリフォームを最終的なボトルの外面形状を備える金型に収容して2軸延伸ブロー成形した後、図6(b)示のような形状に形成されたボトルの肩部27及び胴部28を加温された金型の内面に接触させた状態で保持してヒートセットを施し、耐熱性を向上させる製造方法が一般に実用化されている。前記製造方法によれば、前記ヒートセットにより前記肩部27及び胴部28が応力緩和されると共に結晶化度が高められ、耐熱性が付与されると考えられている。しかし、前記肩部27と首部21との境界に位置する首下部26では前記ヒートセットの効果が十分に得られず、前記のように延伸され、ヒートセットされた肩部27に比して耐熱性及び機械的強度に劣るので、高温充填によるホットパック処理等の際にこの首下部26が熱変形し首部21が歪む等の原因となることがある。
【0010】
また、前記の加温された金型内でヒートセットする製造方法によると、製造時間が長くなり、生産性が低減されるという問題もある。
【0011】
一方、白化結晶化等により首部の耐熱性を向上させたプリフォームをブロー成形して一次ボトルを形成し、前記一次ボトルを熱風オーブン内等で加熱して自由収縮させて二次ボトルを形成すると共に結晶化度を増大させた後、前記二次ボトルを再度ブロー成形して最終的なボトル形状とする2段階のブロー成形を行う製造方法も実用化されている。しかしながら、前記2段階のブロー成形を行う製造方法においても、首下部は延伸が不十分で結晶化度が低く、十分な耐熱性及び機械的強度を得ることができない。
【0012】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、首部と共に首下部にも、ホットパック処理が可能な優れた耐熱性と機械的強度とを付与することができるポリエチレンテレフタレート樹脂製ボトルの製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
かかる目的を達成するために、本発明の製造方法は、白化結晶化された首部と、該首部の下方に形成された円筒状の胴部とを備える有底筒状体であって該首部と該胴部との間に該胴部より薄肉の弱白化部を備えるポリエチレンテレフタレート樹脂製プリフォームを延伸温度に加熱する工程と、加熱されたプリフォームを第1のブロー成形に付し、前記弱白化部及び該弱白化部に連なる前記胴部を延伸し、該胴部を外方に膨出させて最終的なボトル形状より大きな形状の一次ボトルを形成する工程と、前記一次ボトルを加熱し、前記弱白化部を軟化させると共に前記工程で外方に膨出した部分を自由収縮させ、最終的なボトル形状より小さな形状であって、前記弱白化部と前記自由収縮した部分との境界部の内外面に凹状段部を備え、前記自由収縮した部分の結晶化度が増大されていて、しかも全体が延伸温度に加熱されている二次ボトルを形成する工程と、前記二次ボトルが延伸温度に加熱されている状態で、最終的なボトルの外面形状を備える加温された金型に収容して第2のブロー成形に付し、前記弱白化部と前記自由収縮した部分とを再延伸し、前記境界部外面側の凹状段部が消失した首下部を形成すると共に、該首下部、肩部及び胴部を前記金型内面に接触させた状態でヒートセットして最終的なボトル形状に成形する工程とからなることを特徴とする。
【0014】
本発明の製造方法によれば、予め白化結晶化された首部と、該首部の下方に形成された胴部との間に該胴部より薄肉の弱白化部を備えているプリフォームを製造し、これを延伸温度に加熱して第1のブロー成形に付すことにより、主として前記胴部が延伸されて外方に膨出し最終的なボトル形状より大きな形状の一次ボトルを形成するとともに、前記薄肉に形成された弱白化部も延伸を受ける。このとき、前記一次ボトルは前記プリフォームの首部以外をなるべく厚さにむらのないように厚肉部をできるだけ少なくするために、最終的なボトル形状より大きな形状とすることが必要である。
【0015】
次に、前記一次ボトルを加熱すると、前記弱白化部が加熱により軟化する。またこれと同時に、前記工程で外方に膨出した部分は応力緩和により自由収縮し、加熱により結晶化度が増大する。この結果、最終的なボトル形状より小さな形状であり、しかも前記弱白化部と前記自由収縮した部分との境界部の内外面に凹状段部を備える二次ボトルが形成される。
【0016】
前記二次ボトルは、最終的なボトルの外面形状を備える金型に収容可能で、しかも該金型内で第2のブロー成形に付すことにより、さらに延伸配向をかけることができるように、最終的なボトル形状より小さな形状とすることが必要である。また、前記一次ボトルの加熱は、前記二次ボトルにおいて前記弱白化部と前記自由収縮した部分との境界部の内外面に凹状段部が形成されるように行う必要がある。前記凹状段部は、前記弱白化部が加熱された結果として生じる応力緩和と、前記外方に膨出した部分の結晶化の進行の結果として形成されるものである。前記凹状段部が形成されないときには、加熱が不十分で前記結晶化が進行しておらず、また一次ボトルの収縮も不十分で、形成された二次ボトルが最終的なボトルの外面形状を備える金型に収容できないことがある。さらに、前記凹状段部が形成されないときには、前記二次ボトルを前記金型内で第2のブロー成形に付して得られる最終的なボトルの各部で十分な耐熱性が得られないことがある。
【0017】
前記二次ボトルは前記加熱により全体が延伸温度に加熱され、この状態で最終的なボトルの外面形状を備える金型に収容して第2のブロー成形に付される。このとき、前記弱白化部は、前記のように加熱されて軟化しているので、前記第2のブロー成形により再延伸される。その際、前記自由収縮した部分との境界部外面の凹状段部が消失するように再延伸された首下部が形成される。また、前記自由収縮した部分は前記第2のブロー成形により再延伸され、前記首下部に連なり外方に膨出した肩部、その下方に連なる胴部、さらにその下方に連なる底部が形成される。
【0018】
前記首下部は、前記第2のブロー成形の結果、前記のように再延伸されているので、前記自由収縮した部分の再延伸により形成された肩部及び胴部と共に、前記金型の内面に接触した状態となる。そこで、前記金型を加温しておくことにより、前記首下部、肩部及び胴部を該金型内面に接触させた状態でヒートセットすることができ、前記各部の結晶化をさらに進行させることができる。
【0019】
この結果、本発明の製造方法によれば、予め白化結晶化により耐熱性及び機械的強度が付与されている首部と共に、前記首下部にも優れた耐熱性及び機械的強度が付与されたPETボトルを得ることができる。
【0020】
尚、前記第1のブロー成形は、延伸温度に加熱したプリフォームを金型内で延伸ブローしてもよく、金型を使用しない所謂フリーブローにより行ってもよい。ただし、一次ボトルの形状は、プリフォームの形状、加熱温度、その温度分布、ブロー圧力等の諸条件の変動によって変化するので、最終ボトル形状が凹凸の多い複雑な形状の場合は、一次ボトルの段階である程度の形状管理をしておいた方が有利であり、前記形状管理のために金型を用いることが好ましい。
【0021】
前記一次ボトルの加熱は、熱風または赤外線に代表される輻射加熱により行うことができる。比較的透明な非結晶のPET樹脂を加熱する手段として、赤外線は樹脂の内部まで浸透するため効率が良く、樹脂表面からの熱伝導だけに頼る熱風方式に比べ有利である。しかし、赤外線は熱源と被加熱面との角度により被加熱面に与えられる熱量が大きく変化するので、立体的で複雑な形状を有するボトルの胴部や肩部を加熱するときには著しく不均一に加熱される部分ができないように配慮するとともに、加熱を必要としない部分には遮蔽を施す必要がある。
【0022】
前記一次ボトルの加熱は、従来の加温金型内にボトルを保持する熱処理のようにボトル内部を加圧状態にして長時間保持する必要がないので、加熱処理に要する金型数を削減できることで設備に要するコストを低減し、生産性を向上できる点でより優れたものとなる。
【0023】
また、本発明の製造方法では、前記のようにして得られた最終ボトルにおいて、延伸された部分の結晶化度が30%以上であることを特徴とする。前記結晶化度が30%未満であると、耐熱性が不十分になり、高温処理時に圧力がかかると変形する虞がある。また、前記結晶化度は、十分な耐熱性を得るために、40%以上とすることが好ましい。
【0024】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1(a)乃至図1(d)は本実施形態の製造方法を示す説明図であり、図2乃至図5はそれぞれ図1(a)乃至図1(d)の要部拡大図である。
【0025】
本実施形態の製造方法では、まず、PET樹脂の押出成形により、図1(a)示のように、首部1の外周面にねじ部2とサポートリング3とを備え、首部1の下方に形成された円筒状の胴部4とを備える有底筒状のプリフォーム6を形成した。プリフォーム6は図2示のように、首部1と胴部4との境界部に胴部4より薄肉の部分5を備えている。
【0026】
次に、プリフォーム6を加熱して、首部1の上端からサポートリング3の直下までの部分を白化結晶化させると共に、白化部5aと胴部4との間を低結晶化させて、首部1の下方に胴部4より薄肉の弱白化部5bを形成した。首部1を白化結晶化させると共に弱白化部5bを形成する前記加熱は、公知の方法により行うことができる。
【0027】
次に、プリフォーム6を赤外線ヒータを用いてその外面から延伸温度に加熱し、首部1を把持して図示しない金型に装着し、第1のブロー成形に付した。この結果、図1(b)示のように、主として胴部4が延伸されて外方に膨出し、図1(b)に仮想線示する最終的なボトル形状7より大きな形状の一次ボトル8を形成した。一次ボトル8において、胴部4は、図3に示すように、弱白化部5bの末端部から急激に延伸されているが、前記薄肉に形成された弱白化部5bもわずかに延伸を受けている。
【0028】
次に、一次ボトル8の首部1を開口状態で把持して回転させながら、オーブン中で赤外線ヒータを用いて加熱して、弱白化部5bを軟化させると共に、外方に膨出した胴部4を応力緩和により自由収縮させた。前記自由収縮の結果、図1(c)に示すように、最終的なボトル形状7より小さな形状の二次ボトル9が得られた。二次ボトル9では、図4に示すように、弱白化部5bと前記自由収縮した胴部4境界部の内外面に凹状段部10a,10bが形成されている。また、このとき自由収縮した部分は前記一次ボトル成形時(図3)よりも厚肉となる。
【0029】
二次ボトル9は、前記応力緩和により前記自由収縮した胴部4の配向歪みが緩和されると共に、前記加熱により胴部4は結晶化度が30%以上に高められ強靱なシート状になっていた。また、二次ボトル9は、前記加熱により全体が延伸温度に加熱されていた。
【0030】
そこで、次に、二次ボトル9が前記延伸温度に保持されている間に、二次ボトル9を図示しない加温金型に装着して高圧エアを吹き込み、第2のブロー成形を行った。
【0031】
前記第2のブロー成形により、前記のように加熱され軟化されている二次ボトル9の弱白化部5bは再延伸されて図1(d)示の首下部11が形成された。また、前記のように加熱されている二次ボトル9の胴部4も再延伸され、図1(d)示の肩部12、胴部13及び底部14が形成された。
【0032】
前記首下部11、肩部12及び胴部13は、前記延伸により前記加温金型の内面に接触した状態でヒートセットされ、図1(d)に示す最終的ボトル15が得られた。
【0033】
ボトル15では、弱白化部5bが再延伸され、胴部13の延伸倍率に比較して首下部11は大きく延伸されており、図5に示すように、首下部11(二次ボトル9の弱白化部5b)と肩部12(二次ボトル9の胴部4)との境界部の外面側の凹状段部10bが消失していた。
【0034】
この結果、ボトル15は首下部11、肩部12及び胴部13の結晶化度が30%以上に増大して、前記白化結晶化された首部1と共に十分な耐熱性及び強度が付与されており、高温充填によるホットパック処理によっても熱変形を起こすことがなかった。
【図面の簡単な説明】
【図1】図1(a)乃至図1(d)は本実施形態の製造方法を示す説明図。
【図2】図1(a)の要部拡大図。
【図3】図1(b)の要部拡大図。
【図4】図1(c)の要部拡大図。
【図5】図1(d)の要部拡大図。
【図6】従来の製造方法を示す説明図。
【符号の説明】
1…首部、 4…胴部、 5…弱白化部、 6…プリフォーム、 8…一次ボトル、 9…二次ボトル、 10a,10b…凹状段部、 11…首下部、 12…肩部、 13…胴部、 14…底部、 15…最終的ボトル。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polyethylene terephthalate resin bottle.
[0002]
[Prior art]
Bottles made of polyethylene terephthalate resin (hereinafter abbreviated as PET resin) are excellent in various physical properties such as heat resistance, mechanical strength, gas barrier properties, light weight, transparency, etc. In recent years, fruit juices, teas, Widely used as bottles for sports drinks and carbonated drinks. Conventionally, the PET resin bottle is provided with a threaded portion 22 and a support ring 23 on the outer peripheral surface of a neck portion 21 as shown in FIG. 6A, for example, and a cylindrical body portion 24 formed below the neck portion 21. Is manufactured from a bottomed cylindrical PET resin preform 25. A conventional PET resin bottle is obtained by blow-molding a preform 25 shown in FIG. 6A, thereby forming a neck portion 21, a neck lower portion 26 immediately below the neck portion 21, and a neck lower portion 26 as shown in FIG. 6B. , A shoulder portion 27 bulging outwardly, a body portion 28 continuing below the shoulder portion 27, and a bottom portion 29 continuing below the body portion 28.
[0003]
The excellent physical properties of the PET resin bottle can be obtained by subjecting the PET resin to biaxial stretching by the blow molding and orientation crystallization. However, since normal blow molding is performed by gripping the neck portion 21 of the preform 25, the neck portion 21 shown in FIG. 6B remains unstretched and in an amorphous state even after the bottle is formed. The neck lower portion 26 immediately below the neck portion 21 is not sufficiently stretched and the degree of crystallization remains low.
[0004]
Amorphous PET resin generally has low heat resistance and mechanical strength, and is softened and easily deformed above its glass transition temperature (about 70 ° C.). For example, when filling a fruit juice drink or the like into a PET bottle, the fruit juice drink is heated to 80 to 90 ° C., for example, 85 ° C. for sterilization, and then kept at that temperature for 10 minutes after filling. Although the treatment is performed, the amorphous neck portion 21 may be softened and deformed by heat when such treatment is performed. Further, the neck portion 26 having a low degree of crystallinity also exhibits the same tendency as the amorphous neck portion 21 and may undergo thermal deformation during the hot pack process or the like.
[0005]
Therefore, various methods have been proposed to improve the heat resistance and mechanical strength of the amorphous neck portion 21 or the neck portion 26 having a low crystallinity of the PET bottle.
[0006]
First, Japanese Examined Patent Publication No. 59-33101 describes a method for producing a PET bottle having a whitened and crystallized neck portion and a non-whitened portion in a part below the neck portion. The PET resin is chemically stabilized and imparted heat resistance by heating to whiten and crystallize, whereby thermal deformation and crazing of the neck can be prevented. However, such PET bottles have insufficient heat resistance due to the unwhitened part below the neck.
[0007]
Japanese Patent Publication No. 2-36455 discloses a preform in which a portion immediately below the neck is formed thinner than the other portions of the trunk, and a preform in which only the neck is heat-treated to be whitened and crystallized is finally obtained. A method for producing a PET bottle that is accommodated in a mold having the outer shape of the bottle and biaxially stretch blow-molded is disclosed. According to the manufacturing method described in the publication, as described above, only the neck portion of the preform is whitened and crystallized, and biaxial stretch blow molding is performed, so that the lower neck portion and the shoulder portion located between the trunk portion and the neck portion. Therefore, the entire region of the neck lower part and the shoulder part is oriented and crystallized to give excellent heat resistance and crazing resistance. Yes.
[0008]
However, in the manufacturing method described in the above publication, the stretched portion immediately below the whitened neck is relatively thin compared to the neck, the mechanical strength is inferior, and the heat resistance of the stretched shoulder and torso is the above-mentioned hot. Not enough to support pack processing. Generally, when whitening and crystallizing the neck of the preform, even if the other part is shielded, the part directly under the neck is heated by the heat transfer accompanying the heating of the neck, and it is difficult to whiten only the neck. In general, it is inevitable that the lower part is weakened. Then, when the preform with the portion just under the neck lightened in this way is housed in a mold having the final shape of the outer surface of the bottle, and the biaxial stretch blow molding is performed in one step, the lightened portion Stretches insufficiently and remains low in crystallinity. As a result, the neck lower portion 26 of the bottle formed in the shape as shown in FIG. 6 (b) cannot obtain sufficient heat resistance and mechanical strength, and when the hot pack processing by the high temperature filling is performed, the neck lower portion 11 Has the disadvantage that it may undergo thermal deformation.
[0009]
Therefore, the preform formed by whitening and crystallizing the neck portion is accommodated in a mold having the final shape of the outer surface of the bottle and subjected to biaxial stretch blow molding, and then the bottle formed into a shape as shown in FIG. In general, a manufacturing method for improving heat resistance by holding the shoulder portion 27 and the body portion 28 in contact with the inner surface of a heated mold and performing heat setting has been put into practical use. According to the manufacturing method, it is considered that the shoulder portion 27 and the body portion 28 are stress-relieved by the heat setting, the crystallinity is increased, and heat resistance is imparted. However, the neck lower portion 26 located at the boundary between the shoulder portion 27 and the neck portion 21 does not sufficiently obtain the effect of the heat setting, and is heat resistant as compared with the shoulder portion 27 that has been stretched and heat-set as described above. Since it is inferior in property and mechanical strength, the neck lower portion 26 may be thermally deformed and the neck portion 21 may be distorted during hot pack processing by high temperature filling.
[0010]
In addition, according to the manufacturing method in which heat setting is performed in the heated mold, there is a problem that the manufacturing time becomes long and the productivity is reduced.
[0011]
On the other hand, a preform with improved heat resistance of the neck by whitening crystallization or the like is blow-molded to form a primary bottle, and the primary bottle is heated in a hot air oven or the like to freely shrink to form a secondary bottle. At the same time, a manufacturing method has been put into practical use in which after the degree of crystallinity is increased, the secondary bottle is blow-molded again to form a final bottle shape. However, even in the production method in which the two-stage blow molding is performed, the lower part of the neck is insufficiently stretched and the crystallinity is low, and sufficient heat resistance and mechanical strength cannot be obtained.
[0012]
[Problems to be solved by the invention]
The present invention provides a method for producing a polyethylene terephthalate resin bottle capable of eliminating such inconveniences and imparting excellent heat resistance and mechanical strength capable of hot-packing to the neck and the lower part of the neck. For the purpose.
[0013]
[Means for Solving the Problems]
In order to achieve such an object, the manufacturing method of the present invention is a bottomed cylindrical body comprising a whitened and crystallized neck and a cylindrical body formed below the neck. A step of heating a polyethylene terephthalate resin preform having a weakened whitening portion thinner than the barrel portion to the stretching temperature, and subjecting the heated preform to a first blow molding, Stretching the body portion connected to the whitening portion and the weakening portion, and bulging the body portion outward to form a primary bottle having a shape larger than the final bottle shape; and heating the primary bottle , Softening the weakened portion and free shrinking the portion bulging outward in the step, and having a shape smaller than the final bottle shape, the boundary between the weakened portion and the free shrunken portion A concave step on the inner and outer surfaces of the Reduced portion crystallinity is being increased, yet forming a secondary bottle whole is heated to the stretching temperature, in a state where the secondary bottle is heated to the stretching temperature, final A concave step on the outer surface side of the boundary portion is accommodated in a heated mold having an outer shape of a simple bottle and subjected to second blow molding, and the weakened portion and the freely contracted portion are re-stretched. And forming a final bottle shape by forming a neck lower part where the part has disappeared and heat-setting the neck lower part, shoulder part and body part in contact with the inner surface of the mold. And
[0014]
According to the manufacturing method of the present invention, a preform having a weakened whitening portion thinner than the body portion is produced between a neck portion that has been whitened and crystallized in advance and a body portion formed below the neck portion. By heating this to the stretching temperature and subjecting it to the first blow molding, the body portion is mainly stretched to bulge outward to form a primary bottle having a shape larger than the final bottle shape, and the thin wall The weakened part formed in the film is also stretched. At this time, the primary bottle needs to have a shape larger than the final bottle shape in order to reduce the thick portion as much as possible so that the thickness other than the neck portion of the preform is as uniform as possible.
[0015]
Next, when the primary bottle is heated, the weakened portion is softened by heating. At the same time, the portion bulging outward in the above-described step freely shrinks due to stress relaxation, and the crystallinity increases by heating. As a result, a secondary bottle having a shape smaller than the final bottle shape and having a concave step on the inner and outer surfaces of the boundary between the weakened portion and the free-shrinked portion is formed.
[0016]
The secondary bottle can be accommodated in a mold having the final shape of the outer surface of the bottle, and further subjected to a second blow molding in the mold, so that the stretched orientation can be further applied. It is necessary to make the shape smaller than a typical bottle shape. In addition, the heating of the primary bottle needs to be performed so that a concave step is formed on the inner and outer surfaces of the boundary between the weakened portion and the free-shrinked portion in the secondary bottle. The concave step portion is formed as a result of stress relaxation that occurs as a result of heating the weakened whitening portion and crystallization of the outwardly bulged portion. When the concave step is not formed, heating is insufficient and the crystallization is not progressing, and the primary bottle is not sufficiently contracted, and the formed secondary bottle has the final bottle outer shape. Sometimes it cannot be stored in the mold. Furthermore, when the concave step portion is not formed, sufficient heat resistance may not be obtained in each part of the final bottle obtained by subjecting the secondary bottle to the second blow molding in the mold. .
[0017]
The secondary bottle is entirely heated to the stretching temperature by the heating, and in this state, the secondary bottle is accommodated in a mold having an outer shape of the final bottle and subjected to second blow molding. At this time, since the whitening portion is heated and softened as described above, it is re-stretched by the second blow molding. At that time, a neck lower portion is formed which is re-stretched so that the concave stepped portion on the outer surface of the boundary portion with the freely contracted portion disappears. The free-shrinked portion is re-stretched by the second blow molding to form a shoulder portion that continues to the lower neck portion and bulges outward, a trunk portion that continues to the lower portion, and a bottom portion that continues to the lower portion. .
[0018]
Since the lower neck is re-stretched as described above as a result of the second blow molding, it is formed on the inner surface of the mold together with the shoulder and the trunk formed by re-stretching the free-shrinked portion. It comes into contact. Therefore, by heating the mold, heat setting can be performed in a state where the neck lower part, the shoulder part, and the body part are in contact with the inner surface of the mold, and the crystallization of each part further proceeds. be able to.
[0019]
As a result, according to the production method of the present invention, a PET bottle provided with excellent heat resistance and mechanical strength at the neck lower portion as well as a neck portion previously provided with heat resistance and mechanical strength by whitening crystallization. Can be obtained.
[0020]
Note that the first blow molding may be performed by so-called free blow in which a preform heated to a stretching temperature may be stretched and blown in a mold. However, since the shape of the primary bottle changes due to variations in various conditions such as the shape of the preform, heating temperature, temperature distribution, blow pressure, etc., if the final bottle shape is a complex shape with many irregularities, the shape of the primary bottle It is advantageous to manage the shape to some extent at the stage, and it is preferable to use a mold for the shape management.
[0021]
The primary bottle can be heated by radiant heating represented by hot air or infrared rays. As a means for heating a relatively transparent non-crystalline PET resin, infrared rays penetrate into the inside of the resin, so that the efficiency is high, and this is advantageous compared to the hot air method relying only on heat conduction from the resin surface. However, since the amount of heat given to the heated surface varies greatly depending on the angle between the heat source and the heated surface, infrared rays are heated extremely unevenly when heating the body and shoulder of a three-dimensional and complicated bottle. It is necessary to take care not to make the part to be heated, and to shield the part that does not require heating.
[0022]
The heating of the primary bottle can reduce the number of molds required for the heat treatment because there is no need to hold the bottle inside in a pressurized state for a long time unlike the heat treatment for holding the bottle in the conventional heating mold. Thus, the cost of the equipment can be reduced and the productivity can be improved.
[0023]
The production method of the present invention is characterized in that, in the final bottle obtained as described above, the crystallinity of the stretched portion is 30% or more. If the crystallinity is less than 30%, the heat resistance becomes insufficient, and if pressure is applied during high-temperature treatment, there is a risk of deformation. The crystallinity is preferably 40% or more in order to obtain sufficient heat resistance.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1A to FIG. 1D are explanatory views showing the manufacturing method of the present embodiment, and FIG. 2 to FIG. 5 are enlarged views of main parts of FIG. 1A to FIG. .
[0025]
In the manufacturing method of the present embodiment, first, as shown in FIG. 1A, a screw portion 2 and a support ring 3 are provided on the outer peripheral surface of the neck portion 1 by extrusion molding of a PET resin, and formed below the neck portion 1. The bottomed cylindrical preform 6 provided with the cylindrical body 4 thus formed was formed. As shown in FIG. 2, the preform 6 includes a portion 5 thinner than the body 4 at the boundary between the neck 1 and the body 4.
[0026]
Next, the preform 6 is heated to whiten and crystallize the portion from the upper end of the neck 1 to just below the support ring 3, and lower the crystallization between the whitened portion 5 a and the body portion 4. A weakened whitening portion 5b that is thinner than the body portion 4 is formed below the lower portion. The heating for causing the neck portion 1 to whiten and crystallize and form the weakened white portion 5b can be performed by a known method.
[0027]
Next, the preform 6 was heated to the stretching temperature from the outer surface thereof using an infrared heater, the neck portion 1 was gripped and attached to a mold (not shown), and subjected to first blow molding. As a result, as shown in FIG. 1 (b), the body 4 is mainly stretched and bulges outward, and the primary bottle 8 having a shape larger than the final bottle shape 7 shown in phantom in FIG. 1 (b). Formed. In the primary bottle 8, as shown in FIG. 3, the body portion 4 is abruptly extended from the end of the weakened portion 5b, but the weakened portion 5b formed in the thin wall is also slightly stretched. Yes.
[0028]
Next, while gripping and rotating the neck portion 1 of the primary bottle 8 in an open state, it is heated using an infrared heater in an oven to soften the weakened whitening portion 5b and to swell outward. Was freely shrunk by stress relaxation. As a result of the free shrinkage, a secondary bottle 9 having a shape smaller than the final bottle shape 7 was obtained as shown in FIG. In the secondary bottle 9, as shown in FIG. 4, concave step portions 10a and 10b are formed on the inner and outer surfaces of the boundary portion of the weakened portion 5b and the freely contracted body portion 4. At this time, the free-shrinked portion becomes thicker than that during the primary bottle molding (FIG. 3).
[0029]
The secondary bottle 9 is relaxed in the orientation distortion of the free-shrinking body 4 by the stress relaxation, and the body 4 is increased in crystallinity to 30% or more by the heating to form a tough sheet. It was. Further, the entire secondary bottle 9 was heated to the stretching temperature by the heating.
[0030]
Therefore, next, while the secondary bottle 9 was maintained at the stretching temperature, the secondary bottle 9 was mounted on a heating mold (not shown) and high-pressure air was blown to perform second blow molding.
[0031]
By the second blow molding, the weakened portion 5b of the secondary bottle 9 heated and softened as described above was re-stretched to form the lower neck portion 11 shown in FIG. 1 (d). Moreover, the trunk | drum 4 of the secondary bottle 9 heated as mentioned above was also re-stretched, and the shoulder part 12, the trunk | drum 13, and the bottom part 14 of FIG.1 (d) were formed.
[0032]
The neck lower part 11, the shoulder part 12, and the trunk | drum 13 were heat set in the state which contacted the inner surface of the said heating metal mold | die by the said extending | stretching, and the final bottle 15 shown in FIG.1 (d) was obtained.
[0033]
In the bottle 15, the weakened portion 5 b is re-stretched, and the neck lower portion 11 is greatly stretched compared to the stretch ratio of the body portion 13. As shown in FIG. 5, the neck lower portion 11 (the weakness of the secondary bottle 9 is The concave step portion 10b on the outer surface side of the boundary portion between the whitening portion 5b) and the shoulder portion 12 (the body portion 4 of the secondary bottle 9) has disappeared.
[0034]
As a result, the bottle 15 has a degree of crystallinity of the lower neck portion 11, the shoulder portion 12, and the body portion 13 increased to 30% or more, and is given sufficient heat resistance and strength together with the whitened and crystallized neck portion 1. Also, hot deformation by hot filling did not cause thermal deformation.
[Brief description of the drawings]
FIG. 1A to FIG. 1D are explanatory views showing a manufacturing method of the present embodiment.
FIG. 2 is an enlarged view of a main part of FIG.
FIG. 3 is an enlarged view of a main part of FIG.
FIG. 4 is an enlarged view of a main part of FIG.
FIG. 5 is an enlarged view of a main part of FIG.
FIG. 6 is an explanatory view showing a conventional manufacturing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Neck part, 4 ... Torso part, 5 ... Lightening part, 6 ... Preform, 8 ... Primary bottle, 9 ... Secondary bottle, 10a, 10b ... Concave step part, 11 ... Lower neck part, 12 ... Shoulder part, 13 ... body, 14 ... bottom, 15 ... final bottle.

Claims (2)

白化結晶化された首部と、該首部の下方に形成された円筒状の胴部とを備える有底筒状体であって該首部と該胴部との間に該胴部より薄肉の弱白化部を備えるポリエチレンテレフタレート樹脂製プリフォームを延伸温度に加熱する工程と、
加熱されたプリフォームを第1のブロー成形に付し、前記弱白化部及び該弱白化部に連なる前記胴部を延伸し、該胴部を外方に膨出させて最終的なボトル形状より大きな形状の一次ボトルを形成する工程と、
前記一次ボトルを加熱し、前記弱白化部を軟化させると共に前記工程で外方に膨出した部分を自由収縮させ、最終的なボトル形状より小さな形状であって、前記弱白化部と前記自由収縮した部分との境界部の内外面に凹状段部を備え、前記自由収縮した部分の結晶化度が増大されていて、しかも全体が延伸温度に加熱されている二次ボトルを形成する工程と、
前記二次ボトルが延伸温度に加熱されている状態で、最終的なボトルの外面形状を備える加温された金型に収容して第2のブロー成形に付し、前記弱白化部と前記自由収縮した部分とを再延伸し、前記境界部外面側の凹状段部が消失した首下部を形成すると共に、該首下部、肩部及び胴部を前記金型内面に接触させた状態でヒートセットして最終的なボトル形状に成形する工程とからなることを特徴とするポリエチレンテレフタレート樹脂製ボトルの製造方法。
A bottomed cylindrical body comprising a whitened and crystallized neck and a cylindrical body formed below the neck, wherein the whitening is lighter than the body and between the neck and the body A step of heating a polyethylene terephthalate resin preform comprising a portion to a stretching temperature;
The heated preform is subjected to a first blow molding, the weakened portion and the body portion connected to the weakened portion are stretched, and the body portion is bulged outwardly to form a final bottle shape. Forming a large primary bottle;
The primary bottle is heated to soften the weakened portion and to freely shrink a portion bulging outward in the process, and is smaller than a final bottle shape, and the weakened portion and the free shrinkage Forming a secondary bottle having a concave step on the inner and outer surfaces of the boundary with the portion, the crystallinity of the free-shrinked portion is increased, and the whole is heated to the stretching temperature;
In a state where the secondary bottle is heated to the stretching temperature, the final bottle accommodated in the outer surface shape warmed mold having subjected to the second blow molding, the said weak whitening unit The free-shrinked portion is re-stretched to form a neck lower portion in which the concave stepped portion on the outer surface side of the boundary portion disappears, and the neck lower portion, the shoulder portion, and the body portion are heated in a state of being in contact with the inner surface of the mold. A method for producing a bottle made of polyethylene terephthalate resin, comprising the steps of setting and molding into a final bottle shape.
延伸された部分の結晶化度が30%以上であることを特徴とする請求項1記載のポリエチレンテレフタレート樹脂製ボトルの製造方法。  The method for producing a polyethylene terephthalate resin bottle according to claim 1, wherein the stretched portion has a crystallinity of 30% or more.
JP16825398A 1998-06-16 1998-06-16 Polyethylene terephthalate resin bottle manufacturing method Expired - Fee Related JP3986667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16825398A JP3986667B2 (en) 1998-06-16 1998-06-16 Polyethylene terephthalate resin bottle manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16825398A JP3986667B2 (en) 1998-06-16 1998-06-16 Polyethylene terephthalate resin bottle manufacturing method

Publications (2)

Publication Number Publication Date
JP2000000876A JP2000000876A (en) 2000-01-07
JP3986667B2 true JP3986667B2 (en) 2007-10-03

Family

ID=15864594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16825398A Expired - Fee Related JP3986667B2 (en) 1998-06-16 1998-06-16 Polyethylene terephthalate resin bottle manufacturing method

Country Status (1)

Country Link
JP (1) JP3986667B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761189B2 (en) * 2005-04-28 2011-08-31 東洋製罐株式会社 Polyester resin container excellent in retort compatibility and its manufacturing method
JP4597035B2 (en) * 2005-10-28 2010-12-15 株式会社吉野工業所 Polyester bottle with heat resistance
CN101808801B (en) * 2007-06-26 2013-06-19 东洋制罐株式会社 Polyester bottle with resistance to heat and pressure and process for producing the same
US9227357B2 (en) 2011-03-29 2016-01-05 Amcor Limited Method of forming a container

Also Published As

Publication number Publication date
JP2000000876A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
JP3047732B2 (en) Manufacturing method of biaxially stretched blow container
EP0511720B1 (en) Method for producing a hot fillable, collapse resistant polyester container
JP3760045B2 (en) Molding method of heat-resistant container
EP0322651B2 (en) Preform for, and method of forming hot fill container
US6568156B2 (en) Method of providing a thermally-processed commodity within a plastic container
US4927680A (en) Preform and method of forming container therefrom
EP0494098A1 (en) Method of blow moulding container
GB2024087A (en) Blow moulding polyester container
JPH06293085A (en) Production of thermoplastic container
AU2001271734A1 (en) Method of providing a thermally-processed commodity within a plastic container
US4564495A (en) Method of producing a container
US5445784A (en) Method of blow-molding biaxially-oriented polyethylene terephthalate resin bottle-shaped container
JP3922727B2 (en) Improved multi-layer container and preform
JP3986667B2 (en) Polyethylene terephthalate resin bottle manufacturing method
JPH05200839A (en) Production of heat and pressure-resistant bottle
JP2534482B2 (en) Method for producing polyethylene terephthalate resin bottle
JPH10146880A (en) Production of bottle made of polyethylene terephthalate resin
JP2777790B2 (en) Biaxial stretch blow molding method
JP2002067130A (en) Method for manufacturing heat resistant neck bent container
JP2886292B2 (en) Saturated polyester resin bottle and method for producing the same
JPH10146879A (en) Production of bottle made of polyethylene terephthalate resin
JPH0622860B2 (en) Biaxial stretching blow molding method
JP2003103607A (en) Bottom structure of heat-resistant bottle
JP3371137B2 (en) Biaxial stretch blow molded bottle
JPH04126206A (en) Preliminary molding of crystal plastic and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees