JP3985616B2 - Battery pack using stacked battery - Google Patents

Battery pack using stacked battery Download PDF

Info

Publication number
JP3985616B2
JP3985616B2 JP2002207415A JP2002207415A JP3985616B2 JP 3985616 B2 JP3985616 B2 JP 3985616B2 JP 2002207415 A JP2002207415 A JP 2002207415A JP 2002207415 A JP2002207415 A JP 2002207415A JP 3985616 B2 JP3985616 B2 JP 3985616B2
Authority
JP
Japan
Prior art keywords
battery
stacked
laminated
sealed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002207415A
Other languages
Japanese (ja)
Other versions
JP2004055169A (en
Inventor
暁 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002207415A priority Critical patent/JP3985616B2/en
Publication of JP2004055169A publication Critical patent/JP2004055169A/en
Application granted granted Critical
Publication of JP3985616B2 publication Critical patent/JP3985616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、正極板と負極板との間にセパレータを介在させて発電要素とした積層型電池を用いた組電池に関する。
【0002】
【従来の技術】
近年、自動車の排ガスによる大気汚染が世界的な問題となっている中で、電気を動力源とする電気自動車や、エンジンとモータを組み合わせて走行するハイブリッドカーが注目を集めており、これらに搭載する高エネルギ密度、高出力密度となる高出力型電池の開発が産業上重要な位置を占めている。
【0003】
このような高出力型電池としては例えばリチウムイオン電池があり、この場合、正極板と負極板との間にセパレータを介在させて巻回した円筒型電池や、平板状の正極板と負極板とをセパレータを介在させつつ積層した積層型電池がある。
【0004】
後者の積層型電池では、扁平状で矩形状となった発電要素の両面を、外装材となる一対のラミネートフィルムにより挟み、その周縁部を熱溶着により接合して発電要素とともに電解液を密封している(特開平11−224652号公報参照)。
【0005】
ところで、このようにラミネートフィルムで外装した積層型電池は、電池性能の劣化を防止するために、熱溶着した封止部分の密封性を高めてこの封止部分からの電解液の漏液や水分の浸入を抑制する必要があり、従来の積層型電池では、その電池単体を1個ずつ前記外装材を覆う外部ケースに収納している。
【0006】
【発明が解決しようとする課題】
ところが、積層電池として大電流あるいは大容量を得るために、積層型電池を複数積層して組電池化する場合があり、このように組電池化した場合、積層型電池を外部ケースに収納した状態で複数積層することになる。
【0007】
このため、組電池化した場合の積層型電池は個々に外部ケースを備えることになり、この外部ケースが余分なスペースを占有して組電池化した場合の体積効率が悪化し、組電池の大型化を招く。
【0008】
そこで、本発明は、積層型電池個々の封止部分の密封性を確保しつつ、組電池化した場合の全体をコンパクト化することを目的とする。
【0009】
【課題を解決するための手段】
本発明の積層型電池を用いた組電池は、正極板と負極板との間にセパレータを介在しつつ積層した発電要素の両面をラミネートフィルムで構成した外装材で覆い、その周縁部同士を内部に電解液を封入しつつ接合して密封した積層型電池を備え、この積層型電池を複数積層して構成し、前記複数積層した積層型電池を全体的に収納する外部ケースを設ける一方、互いに隣接する前記各積層型電池の外装材の封止部分相互間に、この封止部分に対して前記積層型電池の積層方向に加圧力を付加する加圧部材を設けた積層型電池を用いた組電池において、前記加圧部材は、放熱用空洞部を備えている
本発明の他の積層型電池を用いた組電池は、正極板と負極板との間にセパレータを介在しつつ積層した発電要素の両面をラミネートフィルムで構成した外装材で覆い、その周縁部同士を内部に電解液を封入しつつ接合して密封した積層型電池を備え、この積層型電池を複数積層して構成し、前記複数積層した積層型電池を全体的に収納する外部ケースを設ける一方、互いに隣接する前記各積層型電池の外装材の封止部分相互間に、この封止部分に対して前記積層型電池の積層方向に加圧力を付加する加圧部材を設けた積層型電池を用いた組電池において、複数積層した前記積層型電池を、この積層方向と直交する方向に複数並列配置し、この並列配置した各積層型電池の互いに隣接する前記外装材の封止部分を互いに重ね合わせ、この重ね合わせ部分に前記加圧部材を配置している。
本発明のさらに他の積層型電池を用いた組電池は、正極板と負極板との間にセパレータを介在しつつ積層した発電要素の両面をラミネートフィルムで構成した外装材で覆い、その周縁部同士を内部に電解液を封入しつつ接合して密封した積層型電池を備え、この積層型電池を複数積層して構成し、前記複数積層した積層型電池を全体的に収納する外部ケースを設ける一方、互いに隣接する前記各積層型電池の外装材の封止部分相互間に、この封止部分に対して前記積層型電池の積層方向に加圧力を付加する加圧部材を設けた積層型電池を用いた組電池において、前記ラミネートフィルムは、前記発電要素の片面を覆う部分に発電要素を収納する収納凹部を設ける一方、他面を覆う部分を平坦に形成して前記収納凹部の開口部分を覆い、前記各積層型電池の積層方向に隣接したラミネートフィルムの前記平坦側を互いに面方向に突き合わせて、それぞれの封止部分を互いに突き合わせ、この突き合わせ部分に前記加圧部材を配置している。
【0010】
【発明の効果】
本発明の積層型電池を用いた組電池によれば、複数積層した積層型電池を全体的に外部ケースに収納したので、個々の積層型電池は外装材で密封した裸状態であるため、外部ケース内で積層した積層型電池の容積効率が高まり、ひいては外部ケースを含めた組電池全体をコンパクト化することができる。
【0011】
また、複数積層した積層型電池の外装材の封止部分は、加圧部材によって加圧力を付加するようにしたので、それぞれ封止部分は加圧部材の加圧力で密閉性が増大し、この封止部分からの漏液や水分の浸入を効果的に抑制して、電池性能の劣化を長期に亘って防止することができる。
さらに、加圧部材に放熱用空洞部を形成したので、この放熱用空洞部を介して積層型電池の発生熱をより効果的に放熱できるとともに、軽量化も達成できる。
本発明の他の積層型電池を用いた組電池によれば、並列配置した各積層型電池の互いに隣接する外装材の封止部分を互いに重ね合わせたので、外部ケース内に収納する積層型電池の容積効率を高め、組電池の並列方向のコンパクト化を促進することができる。
本発明のさらに他の積層型電池を用いた組電池によれば、積層型電池は、積層方向に隣接したラミネートフィルムの平坦側を互いに面方向に突き合わせてそれぞれの封止部分を互いに突き合わせ、この突き合わせ部分に加圧部材を配置したので、突き合わせた封止部分を両面の加圧部材で同時に加圧することができる。これにより、加圧部材の数を削減できるとともに、外部ケースに収納する積層型電池の容積効率を高め、組電池のコンパクト化を図ることができる。
【0012】
【発明の実施の形態】
以下、本発明を図に基づいて詳細に説明する。
【0013】
図1ないし図5は、本発明の積層型電池を用いた組電池の第1実施形態を示している。図1は積層型電池の単体を示す平面図、図2は図1の拡大したA−A断面図、図3は外部ケースを透視して示す組電池の斜視図、図4は図3の要部を拡大したB−B断面図、図5は図3の拡大したC−C断面図である。
【0014】
この第1実施形態の組電池1を構成する積層型電池10は、図1,図2に示すように発電要素としての長方形状の積層電極11を、外装材としての長方形状の第1,第2ラミネートフィルム12,13の中央部間に配置し、これら第1,第2ラミネートフィルム12,13によって積層電極11の両面(図1中、表裏方向)を挟むようにして覆ってある。
【0015】
前記積層電極11は、図2に示すように、一方の第1ラミネートフィルム12に形成した収納凹部16に電解液とともに収納する。そして、この収納凹部16を覆うように平坦に形成した他方の第2ラミネートフィルム13を配置して、これら両方の第1,第2ラミネートフィルム12,13の周縁部12a,13aを熱溶着して接合することにより密封してある。
【0016】
前記積層電極11は、図2に示すように複数枚の正極板11A,11A…および負極板11B,11B…を、それぞれセパレータ11C,11C…を介在しつつ順次積層して構成してある。各正極板11A,11A…および各負極板11B,11B…は、正極リード11Dおよび負極リード11Eを介して正極タブ14および負極タブ15に接続し、これら正極タブ14および負極タブ15を第1,第2ラミネートフィルム12,13の対向する短辺側の封止部分17から外方に引き出している。
【0017】
そして、前記ラミネートフィルム12,13によって積層電極11を密封した積層型電池10は、図3に示すように複数を上下方向Xに積層(本実施形態では4段)するとともに、この積層した積層型電池10の長辺側を互いに隣接させた状態で積層方向と直交する左右方向Yに並列配置(本実施形態では6列)して組電池1を構成している。
【0018】
このように複数の積層型電池10,10…を4段・6列に積層した組電池1を全体的に外部ケース18に収納し、この外部ケース18内で各積層型電池10,10…を直列および/または並列に適宜接続している。なお、図3中で符号18aおよび18bは、外部に接続する正極端子および負極端子である。
【0019】
外部ケース18はアルミ板などで形成して所定の剛性を確保してあり、また、4段・6列に積層した積層型電池10,10…の上下端と外部ケース18との間にゴムシート19を介装して絶縁性を確保してある。
【0020】
前記組電池1を構成する積層型電池10としては、例えばリチウムイオン二次電池があり、この場合、正極板11A,11A,……を形成している正極の正極活物質として、リチウムニッケル複合酸化物、具体的には一般式LiNi1-xMxO2(但し、0.01≦x≦0.5であり、MはFe,Co,Mn,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの少なくとも一つである。)で表せる化合物を含有する。
【0021】
また、正極はリチウムニッケル複合酸化物以外の正極活物質を含有することも可能である。リチウムニッケル複合酸化物以外の正極活物質としては、例えば一般式LiyMn2-zM'zO4(但し、0.9≦y≦1.2、0.01≦z≦0.5であり、M'はFe,Co,Ni,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの少なくとも一つである。)で表される化合物であるリチウムマンガン複合酸化物が挙げられる。また、一般式LiCo1-xMxO2(但し、0.01≦x≦0.5であり、MはFe,Ni,Mn,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの少なくとも一つである。)で表せる化合物であるリチウムコバルト複合酸化物を含有してもよい。
【0022】
リチウムニッケル複合酸化物、リチウムマンガン複合酸化物およびリチウムコバルト複合酸化物は、例えばリチウム、ニッケル、マンガン、コバルトなどの炭酸塩を組成に応じて混合し、酸素存在雰囲気中において600℃〜1000℃の温度範囲で焼成することにより得られる。なお、出発原料は炭酸塩に限定されず、水酸化物、酸化物、硝酸塩、有機酸塩等からも同様に合成可能である。
【0023】
なお、リチウムニッケル複合酸化物やリチウムマンガン複合酸化物などの正極活物質の平均粒径は、30μm以下であることが好ましい。
【0024】
また、負極板11B,11B,……を形成している負極活物質としては、比表面積が0.05m2/g以上、2m2/g以下の範囲であるものを使用する。この範囲とすることにより、負極表面上におけるSEI(Solid Electrolyte Interface:固体電解質界面)の形成を充分に抑制することができる。
【0025】
負極活物質の比表面積が0.05m2/g未満である場合、リチウムの出入り可能な場所が小さすぎるため、充電時において負極活物質中にドープされたリチウムが放電時において負極活物質中から充分に脱ドープされず、充放電効率が低下する。一方、負極活物質の比表面積が2m2/gを越える場合、負極表面上におけるSEI形成を制御することができない。
【0026】
負極活物質としては、対リチウム電位が2.0V以下の範囲でリチウムをドープ・脱ドープすることが可能な材料であれば何れも使用可能であり、具体的には難黒鉛化性炭素材料、人造黒鉛、天然黒鉛、熱分解黒鉛類、ピッチコークスやニードルコークスや石油コークスなどのコークス類、グラファイト、ガラス状炭素類、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラックなどの炭素質材料を使用することが可能である。
【0027】
また、リチウムと合金を形成可能な金属、およびその合金も使用可能であり、具体的には、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化スズ等の比較的低電位でリチウムをドープ・脱ドープする酸化物やその窒化物、3B族典型元素の他、SiやSnなどの元素、または例えばMxSi、MxSn(但し、式中MはSi又はSnを除く1つ以上の金属元素を表す。)で表されるSiやSnの合金などを使用することができる。これらの中でも、特にSiまたはSi合金を使用することが好ましい。
【0028】
さらに、電解液としては、電解質塩を非水溶媒に溶解して調製される液状のものの他、電解質塩を非水溶媒に溶解した溶液を高分子マトリクス中に保持させたポリマーゲル電解質であってもよい。
【0029】
非水電解質としてはポリマーゲル電解質を用いる場合、使用する高分子材料として、ポリフッ化ビニリデン、ポリアクリロニトリルなどが挙げられる。
【0030】
非水溶媒としては、この種の非水電解質二次電池においてこれまで使用されている非水溶媒であれば何でも使用可能であり、例えばプロピレンカーボネート、エチレンカーボネート、1,2-ジメトキシエタン、ジエチルカーボネート、ジメチルカーボネート、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリルなどが挙げられる。なお、これらの非水溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
【0031】
特に、非水溶媒は不飽和カーボネートを含有することが好ましく、具体的には、ビニレンカーボネート、エチレンエチリデンカーボネート、エチレンイソプロプロピリデンカーボネート、プロピリデンカーボネートなどを含有することが好ましい。また、これらの中でも、ビニレンカーボネートを含有することが最も好ましい。非水溶媒として不飽和カーボネートを含有することにより、負極活物質に生成するSEIの性状(保護膜の機能)に起因する効果が得られ、耐過放電特性がより向上すると考えられる。
【0032】
また、この不飽和カーボネートは電解質中に0.05重量%以上、5重量%以下の割合で含有されることが好ましく、特に0.5重量%以上、3重量%以下の割合で含有されることが最も好ましい。不飽和カーボネートの含有量を上記範囲とすることで、初期放電容量が高く、エネルギ密度の高い非水二次電池となる。
【0033】
電解質塩としては、イオン伝導性を示すリチウム塩であれば特に限定されることはなく、例えばLiClO4、LiAsF6、LiPF6、LiBF4、LiB(C6H5)4、LiCl、LiBr、CH3SO3Li、CF3SO3Liなどが使用可能である。これらの電解質塩は、1種類を単独で用いてもよく、2種類以上を混合して用いることも可能である。
【0034】
前記組電池1を構成した複数の積層型電池10,10…は、図4,図5に示すように、積層方向である上下方向Xに隣接した積層型電池10の平坦な第2ラミネートフィルム13同士を互いに面方向に突き合わせ、それぞれの長辺側の封止部分17を互いに突き合わせて突き合わせ部分P0としている。
【0035】
なお、この第1実施形態では、第2ラミネートフィルム13同士を突き合わせる積層型電池10は、上下に4段に積層した中央側2段のみであり、その他の上下両端部に配置した積層型電池10は、第2ラミネートフィルム13を外方に向けて配置してある。
【0036】
したがって、4段に積層した積層型電池10,10…の上方2段および下方2段は、第1ラミネートフィルム12の外方に突出する収納凹部16の頂面同士を突き合わせた状態となっている。
【0037】
このとき、第1ラミネートフィルム12の突き合わせ面は接着することが好ましいが、接着しない場合でも外部ケース18によって位置ずれを防止することができる。
【0038】
ここで、本実施形態では図4,図5に示すように、前記第1,第2ラミネートフィルム12,13の封止部分17相互間に、前記外部ケース18に支持した状態で加圧力を付加する加圧部材20を設けてある。
【0039】
加圧部材20は、前記封止部分17の短辺側および長辺側を含む全周に沿って配置してある。また、この第1実施形態での加圧部材20は、左右方向(並列方向)Yに6列配列した一連の積層型電池10全体で連続する梯子状に形成し、図4に示すように並列方向に隣接する積層型電池10相互間で共有している。
【0040】
もちろん、加圧部材20は、各積層型電池10毎に独立させたものでもよく、この場合、加圧部材20を封止部分17の外周形状に沿って連続した矩形状として形成してもよく、または、各辺毎に独立させて形成してもよい。
【0041】
このとき、積層した中央側2段の積層型電池10では、平坦状に形成した第2ラミネートフィルム13同士を互いに面方向に突き合わせ、それぞれの長辺側の封止部分17を互いに突き合わせてあるが、この突き合わせた封止部分17,17の両面に前記加圧部材20を配置している。
【0042】
そして、このように前記中央側2段の封止部分17の両面に配置した加圧部材20は、上下両端部の積層型電池10の封止部分17との間に、弾性的に圧縮された状態で配置される。
【0043】
したがって、上下両端部の封止部分17と中央側2段の封止部分17との間に圧縮状態で配置した加圧部材20には、図4,図5中で上下方向に伸張しようとする復元力が発生する。この復元力は、上下両端部の封止部分17が外部ケース18の上,下壁18c,18dで支持された状態で、各封止部分17を閉じる方向に作用する加圧力となる。
【0044】
つまり、前記加圧部材20の加圧力は、これの反力を外部ケース18で受け止めた状態で、上下4段に積層した積層型電池10のそれぞれの封止部分17を密閉する方向に作用する。
【0045】
なお、実際は外部ケース18内に、下端部の積層型電池10、加圧部材20、中央側2段の積層型電池10,10、加圧部材20、上端部の積層型電池10の順に入れ、外部ケース18の上壁18cとなる蓋体を圧力を付加しつつ閉止することにより、加圧部材20に加圧力を発生させるようにしている。
【0046】
また、前記加圧部材20による封止部分17への加圧力は、第1,第2ラミネートフィルム12,13の積層電極11を収納した内部圧力、つまり収納凹部16内に封入した電解液の圧力よりも大きくなるように設定してある。
【0047】
前記加圧部材20としては、所定の弾発力、つまり、封止部分17に充分な加圧力を付加することができる程度の弾発力を有する弾性部材、例えば合成樹脂、合成樹脂と金属とを交互に積層した積層体、または板ばねやスプリングを間に挟んだ金属板などによって構成することができる。
【0048】
また、前記加圧部材20は、熱伝導率の大きな部材で形成することが望ましく、この場合は金属を素材として選択するのが好ましいが、熱伝導率の高い合成樹脂を用いることもできる。
【0049】
以上の構成により、第1実施形態の積層型電池10を用いた組電池1は、複数積層した積層型電池10,10…を全体的に外部ケース18に収納して構成してあり、個々の積層型電池10,10…は第1,第2ラミネートフィルム12,13で単に密封した裸状態であるため、外部ケース18内で積層した積層型電池10,10…の容積効率を高め、ひいては外部ケース18を含めた組電池1全体をコンパクト化することができる。
【0050】
したがって、限られた空間、例えば自動車などへの積層型電池10の搭載効率を高めて、大電流や大容量の組電池1を提供できるようになる。
【0051】
また、積層した積層型電池10,10…の第1,第2ラミネートフィルム12,13の封止部分17は、加圧部材20によって外部ケース18に支持、つまり反力を受けた状態で加圧力が付加されているので、それぞれの封止部分17は加圧部材20の加圧力によって密閉性が増大し、この封止部分17から電解液の漏液や水分の浸入を効果的に抑制でき、電池性能の劣化を長期に亘って防止することができる。
【0052】
さらに、この第1実施形態の組電池1では、加圧部材20による封止部分17への加圧力を、第1,第2ラミネートフィルム12,13の積層電極11を収納した内部圧力よりも大きく設定してあるので、収納凹部16に封入した電解液が封止部分17から漏液するのを確実に防止することができる。
【0053】
また、加圧部材20は、所定の弾発力、つまり、封止部分17に充分な加圧力を付加することができる程度の弾発力を有する弾性部材で形成したので、長期間経過しても加圧力が低下するのを抑制でき、長期間に亘って入力される振動や温度・湿度などの環境の変化による密封性の低下を防止し、漏液や水分の浸入による電池性能の劣化を長期に亘って防止することができる。
【0054】
さらに、加圧部材20を、熱伝導率の大きな金属や合成樹脂などで形成したので、個々の積層型電池10で発生した熱を加圧部材20を介して外部ケース18側へと逃がし、そして、この外部ケース18から外方に放出することができるため、組電池1内部の放熱性を高めることができる。
【0055】
さらにまた、積層型電池10は、中央側2段の積層型電池10のように積層方向に隣接した第1,第2ラミネートフィルム12,13の平坦側、つまり第2ラミネートフィルム13を互いに面方向に突き合わせてそれぞれの封止部分17を互いに突き合わせ、この突き合わせ部分P0に加圧部材20を配置したので、突き合わせた封止部分17を両面の加圧部材20で同時に加圧することができる。これにより、加圧部材20の数を削減できるとともに、外部ケース18に収納する積層型電池10の容積効率を高め、組電池1のコンパクト化を図ることができる。
【0056】
図6は本発明の第2実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。
【0057】
図6は積層した積層型電池の封止部分に加圧部材を配置した状態を示す要部の拡大した断面図で、この第2実施形態の積層型電池を用いた組電池1aは、加圧部材20aに放熱用空洞部21を設けている。
【0058】
放熱用空洞部21は加圧部材20aの内部に形成してあり、その放熱用空洞部21の形状および数は、加圧部材20aによって封止部分17を加圧する機能を損なわない範囲で任意に形成することができる。この実施形態では、中央部上下に肉厚の加圧力伝達部分22を残した状態で、この加圧力伝達部分22の両側に上下2箇所づつ計4箇所の断面矩形状の放熱用空洞部21を形成してある。
【0059】
そして、この放熱用空洞部21は、外部ケース18(図3参照)の幅方向一面から対向面までを連続して貫通している。
【0060】
また、この第2実施形態では、左右方向Y(図3参照)に隣接する積層型電池10の封止部分17を互いに重ね合わせ、この重ね合わせ部分P1,P2に前記加圧部材20aを配置している。
【0061】
なお、P1は4段に積層した中央側2段の封止部分17の重ね合わせ部分で、P2は上下両端部の封止部分17の重ね合わせ部分である。
【0062】
この第2実施形態にあっても、前記第1実施形態と同様に上下に4段積層の中央側2段の積層型電池10では、第2ラミネートフィルム13同士を互いに面方向に突き合わせて、それぞれの長辺側の封止部分17を互いに突き合わせてある。
【0063】
そして、中央側2段の積層型電池10の重ね合わせ部分P1は、左右方向Yに隣接する一方の重なった封止部分17の上下両面を、他方の重なった封止部分17の先端部を上下に分離して挟み込んである。
【0064】
したがって、この第2実施形態の積層型電池10を用いた組電池1aでは、加圧部材20aに放熱用空洞部21を形成したので、この放熱用空洞部21を介して積層型電池10の発生熱をより効果的に放熱できるとともに、軽量化も達成できる。
【0065】
また、前記放熱用空洞部21は、外部ケース18の幅方向一面から対向面までを連続して貫通したので、積層型電池10の発生熱を効率良く外部ケース18に伝達し、ひいては、この外部ケース18からの放熱効果を高めて、外部ケース18内に収納した積層型電池10群の冷却を促進することができる。
【0066】
なお、さらに冷却効率を向上するために放熱用空洞部21に冷却液などを流してもよい。
【0067】
さらに、左右方向Yに隣接した積層型電池10の封止部分17を重ね合わせ部分P1,P2で互いに重ね合わせたので、外部ケース18内に収納する積層型電池10の容積効率を高め、組電池1aの並列方向Yのコンパクト化を促進することができる。
【0068】
ところで、本発明の積層型電池を用いた組電池は、第1,第2実施形態に例を取って説明したが、これに限ることなく本発明の要旨を逸脱しない範囲で各種実施形態を採用することができる。例えば、第1実施形態の組電池1では、積層型電池10を4段積層し、かつ、6列並列する場合を示したが、積層型電池10の積層段数や左右方向の配列数はこれに限ることなく、必要とする電流や容量に応じて任意に選択することができる。
【0069】
また、図1,図2に示した積層型電池10では、対向する短辺部分から正極タブ14と負極タブ15をそれぞれ反対方向に引き出したが、この引き出し方向は特に限定されるものではなく、例えば、同一の辺からこれら両電極タブ14,15を平行に引き出したものにあっても本発明を適用することができる。
【0070】
さらに、積層型電池10としてはリチウムイオン二次電池に限ることなく、同様の構成となる他の電池にあっても本発明を適用することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における積層型電池の単体を示す平面図である。
【図2】図1の拡大したA−A断面図である。
【図3】本発明の第1実施形態における外部ケースを透視して示す組電池の斜視図である。
【図4】図3の要部を拡大したB−B断面図である。
【図5】図3の拡大したC−C断面図である。
【図6】本発明の第2実施形態における積層した積層型電池の封止部分に加圧部材を配置した状態を示す要部の拡大した断面図である。
【符号の説明】
1,1a 組電池
10 積層型電池
11 積層電極(発電要素)
11A 正極板
11B 負極板
11C セパレータ
12 第1ラミネートフィルム(外装材)
13 第2ラミネートフィルム(外装材)
12a,13a 周縁部
16 収納凹部
17 封止部分
18 外部ケース
20,20a 加圧部材
21 放熱用空洞部
P0 突き合わせ部分
P1,P2 重ね合わせ部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembled battery using a stacked battery in which a separator is interposed between a positive electrode plate and a negative electrode plate to serve as a power generation element.
[0002]
[Prior art]
In recent years, air pollution caused by exhaust gas from automobiles has become a global problem, and electric cars powered by electricity and hybrid cars that run in combination with an engine and motor are attracting attention. Development of high-power batteries with high energy density and high power density occupies an important industrial position.
[0003]
Examples of such a high-power battery include a lithium ion battery. In this case, a cylindrical battery wound with a separator interposed between a positive electrode plate and a negative electrode plate, a flat positive electrode plate and a negative electrode plate, There is a laminated battery in which the separator is laminated with a separator interposed.
[0004]
In the latter stacked battery, both sides of a flat and rectangular power generation element are sandwiched between a pair of laminate films as exterior materials, and the periphery is joined by thermal welding to seal the electrolyte together with the power generation element. (See JP-A-11-224652).
[0005]
By the way, in order to prevent deterioration of the battery performance, the laminated battery packaged with the laminate film as described above improves the sealing performance of the heat-sealed sealing portion and causes leakage of electrolyte solution and moisture from the sealing portion. In the conventional laminated battery, the single batteries are stored one by one in an outer case that covers the exterior material.
[0006]
[Problems to be solved by the invention]
However, in order to obtain a large current or a large capacity as a laminated battery, there are cases where a plurality of laminated batteries are laminated to form an assembled battery. When such an assembled battery is obtained, the laminated battery is housed in an external case. A plurality of layers are stacked.
[0007]
For this reason, the stacked battery when assembled into a battery is provided with an outer case individually, and the volume efficiency when the outer case occupies extra space to form an assembled battery deteriorates, and the large size of the assembled battery Invite
[0008]
Therefore, an object of the present invention is to make the whole battery pack compact when it is assembled, while ensuring the sealing performance of the individual sealed portions of the stacked battery.
[0009]
[Means for Solving the Problems]
The assembled battery using the laminated battery of the present invention covers both sides of a power generating element laminated with a separator interposed between a positive electrode plate and a negative electrode plate with an exterior material composed of a laminate film, and the peripheral portions thereof are internal. while the electrolytic solution was joined while enclosing with a stack type battery and sealed, the laminate type battery configured by stacking a plurality of pre-Symbol stacked battery in which a plurality stacked providing an external case for totally housing, A laminated battery provided with a pressure member that applies pressure to the sealing part in the stacking direction of the laminated battery between the sealing parts of the packaging materials of the laminated batteries adjacent to each other is used. In the assembled battery, the pressure member has a heat radiation cavity .
An assembled battery using another laminated battery of the present invention covers both sides of a power generation element laminated with a separator interposed between a positive electrode plate and a negative electrode plate with an exterior material composed of a laminate film, and the peripheral portions thereof A laminated battery in which an electrolyte solution is sealed and bonded and sealed, and a plurality of the laminated batteries are stacked, and an outer case is provided that accommodates the plurality of stacked batteries as a whole. A stacked battery in which a pressurizing member for applying pressure to the sealed portion in the stacking direction of the stacked battery is provided between the sealed portions of the packaging materials of the stacked batteries adjacent to each other. In the assembled battery used, a plurality of the stacked batteries are arranged in parallel in a direction orthogonal to the stacking direction, and the sealing portions of the exterior materials adjacent to each other of the stacked batteries arranged in parallel are stacked on each other. This overlap Wherein are arranged the pressure member to cause portions.
An assembled battery using still another laminated battery according to the present invention covers both sides of a power generation element laminated with a separator interposed between a positive electrode plate and a negative electrode plate with an exterior material composed of a laminate film, and its peripheral portion Provided with a laminated battery in which electrolytes are sealed while being sealed together and sealed, and a plurality of laminated batteries are laminated, and an outer case is provided to accommodate the laminated batteries as a whole. On the other hand, a laminated battery in which a pressure member for applying pressure to the sealed portion in the stacking direction of the laminated battery is provided between the sealed parts of the outer packaging materials of the stacked batteries adjacent to each other. In the assembled battery using the above, the laminate film is provided with a storage recess for storing the power generation element in a portion covering one side of the power generation element, while the portion covering the other surface is formed flat to form an opening portion of the storage recess. Covering each of the above Against the flat side of the laminated film adjacent to the stacking direction of the layer type battery in the plane direction to each other, butting the respective sealing portions to each other and placing the pressure member to the abutting portion.
[0010]
【The invention's effect】
According to the assembled battery using the stacked battery of the present invention, since the stacked battery is stacked in the outer case as a whole, each stacked battery is in a bare state sealed with an exterior material. The volumetric efficiency of the stacked battery stacked in the case is increased, and as a result, the entire assembled battery including the outer case can be made compact.
[0011]
In addition, since the sealing portion of the outer packaging material of the stacked battery that is laminated is applied with pressure by the pressurizing member, the sealing of each sealing portion is increased by the pressurizing force of the pressurizing member. It is possible to effectively prevent leakage and moisture intrusion from the sealed portion and prevent deterioration of battery performance over a long period of time.
Furthermore, since the heat radiation cavity is formed in the pressure member, the heat generated by the stacked battery can be radiated more effectively through this heat radiation cavity, and the weight can be reduced.
According to the assembled battery using the other laminated battery of the present invention, since the sealing parts of the exterior materials adjacent to each other of the laminated batteries arranged in parallel are overlapped with each other, the laminated battery stored in the outer case The volumetric efficiency of the battery can be increased, and the battery pack can be made compact in the parallel direction.
According to the assembled battery using the other laminated battery of the present invention, the laminated battery has the flat surfaces of the laminated films adjacent in the laminating direction butting each other in the surface direction, and the respective sealed portions are butted together. Since the pressurizing member is disposed at the abutting portion, the abutting sealing portion can be simultaneously pressurized by the pressure members on both sides. As a result, the number of pressure members can be reduced, the volume efficiency of the stacked battery housed in the outer case can be increased, and the battery pack can be made compact.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0013]
1 to 5 show a first embodiment of an assembled battery using the laminated battery of the present invention. 1 is a plan view showing a single unit of a stacked battery, FIG. 2 is an enlarged cross-sectional view taken along the line AA of FIG. 1, FIG. 3 is a perspective view of the assembled battery seen through the outer case, and FIG. FIG. 5 is an enlarged CC cross-sectional view of FIG. 3.
[0014]
A laminated battery 10 constituting the assembled battery 1 of the first embodiment includes a rectangular laminated electrode 11 as a power generation element as shown in FIGS. 2 is disposed between the central portions of the laminate films 12 and 13 and is covered by the first and second laminate films 12 and 13 so as to sandwich both surfaces (front and back directions in FIG. 1) of the laminated electrode 11.
[0015]
As shown in FIG. 2, the laminated electrode 11 is housed together with an electrolyte in a housing recess 16 formed in one first laminate film 12. And the other 2nd laminate film 13 formed flat so that this accommodation recessed part 16 may be covered is arrange | positioned, and the peripheral parts 12a and 13a of both these 1st, 2nd laminate films 12 and 13 are heat-welded. Sealed by bonding.
[0016]
As shown in FIG. 2, the laminated electrode 11 is formed by sequentially laminating a plurality of positive plates 11A, 11A... And negative plates 11B, 11B. Each of the positive plates 11A, 11A... And each of the negative plates 11B, 11B... Is connected to the positive tab 14 and the negative tab 15 via the positive lead 11D and the negative lead 11E. The second laminated films 12 and 13 are drawn outwardly from the sealing portion 17 on the short side facing each other.
[0017]
In the laminated battery 10 in which the laminated electrode 11 is sealed by the laminated films 12 and 13, a plurality of laminated batteries 10 are laminated in the vertical direction X as shown in FIG. The assembled battery 1 is configured by arranging in parallel in the left-right direction Y perpendicular to the stacking direction with the long sides of the batteries 10 adjacent to each other (six rows in this embodiment).
[0018]
In this way, the assembled battery 1 in which a plurality of stacked batteries 10, 10... Are stacked in four rows and six rows is accommodated entirely in the outer case 18, and each stacked battery 10, 10,. They are connected appropriately in series and / or in parallel. In FIG. 3, reference numerals 18a and 18b denote a positive terminal and a negative terminal connected to the outside.
[0019]
The outer case 18 is formed of an aluminum plate or the like to ensure a predetermined rigidity, and a rubber sheet is provided between the upper and lower ends of the stacked batteries 10, 10. 19 is interposed to ensure insulation.
[0020]
As the laminated battery 10 constituting the assembled battery 1, for example, there is a lithium ion secondary battery. In this case, as the positive electrode active material of the positive electrode forming the positive plates 11A, 11A,. Material, specifically LiNi 1-x MxO 2 (where 0.01 ≦ x ≦ 0.5, where M is Fe, Co, Mn, Cu, Zn, Al, Sn, B, Ga, Cr, V, Ti , Mg, Ca, or Sr.).
[0021]
The positive electrode can also contain a positive electrode active material other than the lithium nickel composite oxide. As the positive electrode active material other than the lithium nickel composite oxide, for example, a general formula LiyMn 2-z M′zO 4 (where 0.9 ≦ y ≦ 1.2, 0.01 ≦ z ≦ 0.5, and M ′ is Fe, Co, Ni, And at least one of Cu, Zn, Al, Sn, B, Ga, Cr, V, Ti, Mg, Ca, and Sr.). In addition, the general formula LiCo 1-x MxO 2 (where 0.01 ≦ x ≦ 0.5, M is Fe, Ni, Mn, Cu, Zn, Al, Sn, B, Ga, Cr, V, Ti, Mg, Ca , And at least one of Sr.) may be included.
[0022]
Lithium nickel composite oxide, lithium manganese composite oxide and lithium cobalt composite oxide are mixed with carbonates such as lithium, nickel, manganese, cobalt, etc., depending on the composition. It is obtained by firing in the temperature range. The starting material is not limited to carbonates, and can be synthesized in the same manner from hydroxides, oxides, nitrates, organic acid salts, and the like.
[0023]
The average particle size of the positive electrode active material such as lithium nickel composite oxide or lithium manganese composite oxide is preferably 30 μm or less.
[0024]
As the negative electrode active material forming the negative electrode plate 11B, 11B, a ... a specific surface area to use a 0.05 m 2 / g or more, a range of 2m 2 / g. By setting it as this range, formation of SEI (Solid Electrolyte Interface) on the negative electrode surface can be sufficiently suppressed.
[0025]
When the specific surface area of the negative electrode active material is less than 0.05 m 2 / g, the place where lithium can enter and exit is too small, so that the lithium doped in the negative electrode active material during charging is sufficient from the negative electrode active material during discharge. Therefore, the charge and discharge efficiency is reduced. On the other hand, when the specific surface area of the negative electrode active material exceeds 2 m 2 / g, SEI formation on the negative electrode surface cannot be controlled.
[0026]
Any material can be used as the negative electrode active material as long as the material can be doped / undoped with lithium in a range where the potential with respect to lithium is 2.0 V or less. Specifically, a non-graphitizable carbon material, an artificial material can be used. Graphite, natural graphite, pyrolytic graphite, coke such as pitch coke, needle coke and petroleum coke, graphite, glassy carbon, phenolic resin, furan resin, etc. It is possible to use carbonaceous materials such as fired bodies, carbon fibers, activated carbon, and carbon black.
[0027]
Metals capable of forming alloys with lithium and alloys thereof can also be used. Specifically, iron is doped with lithium at a relatively low potential such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, and tin oxide. In addition to oxides to be dedoped, nitrides thereof, group 3B typical elements, elements such as Si and Sn, or, for example, MxSi, MxSn (where M represents one or more metal elements excluding Si or Sn. Si and Sn alloys represented by () can be used. Among these, it is particularly preferable to use Si or Si alloy.
[0028]
Further, as the electrolytic solution, in addition to a liquid one prepared by dissolving an electrolyte salt in a non-aqueous solvent, a polymer gel electrolyte in which a solution obtained by dissolving an electrolyte salt in a non-aqueous solvent is held in a polymer matrix. Also good.
[0029]
When a polymer gel electrolyte is used as the non-aqueous electrolyte, examples of the polymer material to be used include polyvinylidene fluoride and polyacrylonitrile.
[0030]
As the non-aqueous solvent, any non-aqueous solvent used so far in this type of non-aqueous electrolyte secondary battery can be used, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, diethyl carbonate. Dimethyl carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile and the like. In addition, these non-aqueous solvents may be used individually by 1 type, and may mix and use 2 or more types.
[0031]
In particular, the non-aqueous solvent preferably contains an unsaturated carbonate, and specifically, preferably contains vinylene carbonate, ethylene ethylidene carbonate, ethylene isopropylidene carbonate, propylidene carbonate, and the like. Among these, it is most preferable to contain vinylene carbonate. By containing unsaturated carbonate as the non-aqueous solvent, it is considered that the effect due to the properties of SEI (function of the protective film) produced in the negative electrode active material is obtained, and the overdischarge resistance is further improved.
[0032]
The unsaturated carbonate is preferably contained in the electrolyte in a proportion of 0.05% by weight or more and 5% by weight or less, and particularly preferably 0.5% by weight or more and 3% by weight or less. By setting the unsaturated carbonate content in the above range, a non-aqueous secondary battery having a high initial discharge capacity and a high energy density is obtained.
[0033]
The electrolyte salt is not particularly limited as long as it is a lithium salt exhibiting ionic conductivity.For example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, etc. can be used. These electrolyte salts may be used alone or in combination of two or more.
[0034]
As shown in FIGS. 4 and 5, the plurality of stacked batteries 10, 10... Constituting the assembled battery 1 are flat second laminated films 13 of the stacked battery 10 adjacent to the vertical direction X that is the stacking direction. They are butted against each other in the surface direction, and the sealing portions 17 on the long sides are butted together to form a butted portion P0.
[0035]
In the first embodiment, the laminated battery 10 that abuts the second laminated films 13 is only the central two-stage laminated in the upper and lower four stages, and the laminated battery disposed at the other upper and lower ends. 10 is arranged with the second laminated film 13 facing outward.
[0036]
Therefore, the upper two stages and the lower two stages of the stacked batteries 10, 10... Stacked in four stages are in a state in which the top surfaces of the storage recesses 16 projecting outward from the first laminate film 12 are abutted. .
[0037]
At this time, the butted surfaces of the first laminate film 12 are preferably adhered, but even when they are not adhered, the outer case 18 can prevent displacement.
[0038]
Here, in this embodiment, as shown in FIGS. 4 and 5, pressure is applied between the sealing portions 17 of the first and second laminate films 12 and 13 while being supported by the outer case 18. A pressure member 20 is provided.
[0039]
The pressure member 20 is disposed along the entire circumference including the short side and the long side of the sealing portion 17. In addition, the pressure members 20 in the first embodiment are formed in a ladder shape that is continuous across a series of stacked batteries 10 arranged in six rows in the left-right direction (parallel direction) Y, and are arranged in parallel as shown in FIG. It is shared between stacked batteries 10 adjacent in the direction.
[0040]
Of course, the pressure member 20 may be independent for each stacked battery 10, and in this case, the pressure member 20 may be formed as a continuous rectangular shape along the outer peripheral shape of the sealing portion 17. Alternatively, each side may be formed independently.
[0041]
At this time, in the laminated battery 10 having two layers on the center side, the second laminated films 13 formed flat are butted against each other in the surface direction, and the sealing portions 17 on the long sides are butted against each other. The pressure member 20 is disposed on both surfaces of the sealed portions 17 and 17 which are abutted.
[0042]
The pressure members 20 arranged on both surfaces of the central two-stage sealing portion 17 in this way were elastically compressed between the sealing portions 17 of the stacked battery 10 at both upper and lower end portions. Arranged in a state.
[0043]
Therefore, the pressure member 20 disposed in a compressed state between the sealing portions 17 at both upper and lower end portions and the two-stage sealing portions 17 at the center side tends to extend in the vertical direction in FIGS. Resilience is generated. This restoring force is a pressing force that acts in the direction of closing each sealing portion 17 in a state where the sealing portions 17 at both upper and lower ends are supported by the upper and lower walls 18c and 18d of the outer case 18.
[0044]
That is, the pressing force of the pressurizing member 20 acts in a direction to seal the sealing portions 17 of the stacked batteries 10 stacked in four upper and lower stages in a state where the reaction force is received by the outer case 18. .
[0045]
Actually, the outer case 18 is placed in the order of the stacked battery 10 at the lower end, the pressure member 20, the stacked batteries 10 and 10 at the center side, the pressure member 20, and the stacked battery 10 at the upper end. By closing the lid which becomes the upper wall 18c of the outer case 18 while applying pressure, the pressurizing member 20 generates pressure.
[0046]
The pressure applied to the sealing portion 17 by the pressurizing member 20 is the internal pressure in which the laminated electrodes 11 of the first and second laminate films 12 and 13 are stored, that is, the pressure of the electrolyte solution enclosed in the storage recess 16. It is set to be larger than.
[0047]
The pressurizing member 20 includes an elastic member having a predetermined resilience, that is, a resilience sufficient to apply a sufficient pressing force to the sealing portion 17, such as a synthetic resin, a synthetic resin, and a metal. Can be constituted by a laminated body obtained by alternately laminating or a metal plate having a leaf spring or a spring interposed therebetween.
[0048]
The pressure member 20 is preferably formed of a member having a high thermal conductivity. In this case, it is preferable to select a metal as a material, but a synthetic resin having a high thermal conductivity can also be used.
[0049]
With the above configuration, the assembled battery 1 using the stacked battery 10 according to the first embodiment is configured such that a plurality of stacked batteries 10, 10... The stacked batteries 10, 10... Are barely sealed with the first and second laminate films 12, 13, so that the volume efficiency of the stacked batteries 10, 10. The entire assembled battery 1 including the case 18 can be made compact.
[0050]
Therefore, the mounting efficiency of the stacked battery 10 in a limited space, such as an automobile, can be increased, and the assembled battery 1 having a large current and a large capacity can be provided.
[0051]
Further, the sealing portions 17 of the first and second laminated films 12 and 13 of the laminated battery cells 10, 10... Are supported by the outer case 18 by the pressurizing member 20, that is, applied with a reaction force. Since each of the sealing portions 17 is sealed by the pressing force of the pressurizing member 20, leakage of the electrolytic solution and entry of moisture can be effectively suppressed from the sealing portion 17, Deterioration of battery performance can be prevented over a long period of time.
[0052]
Furthermore, in the assembled battery 1 of the first embodiment, the pressure applied to the sealing portion 17 by the pressure member 20 is greater than the internal pressure in which the laminated electrodes 11 of the first and second laminated films 12 and 13 are housed. Since it is set, it is possible to reliably prevent the electrolyte solution enclosed in the storage recess 16 from leaking from the sealing portion 17.
[0053]
Further, since the pressurizing member 20 is formed of an elastic member having a predetermined resilience, that is, a resilience sufficient to apply a sufficient pressure to the sealing portion 17, a long time has passed. However, it can prevent the pressure from being lowered, prevent the deterioration of the sealing performance due to the vibration that is input over a long period of time and the change of environment such as temperature and humidity, and the deterioration of the battery performance due to the leakage of liquid and moisture. This can be prevented for a long time.
[0054]
Furthermore, since the pressing member 20 is formed of a metal or synthetic resin having a high thermal conductivity, the heat generated in each stacked battery 10 is released to the outer case 18 side through the pressing member 20, and Since the outer case 18 can be discharged outward, the heat dissipation within the assembled battery 1 can be enhanced.
[0055]
Furthermore, the laminated battery 10 has a flat side of the first and second laminated films 12 and 13 adjacent to each other in the laminating direction, that is, the second laminated film 13 in the plane direction with each other, like the laminated battery 10 in the center two steps. Since the respective sealing portions 17 are butted against each other and the pressing member 20 is disposed at the butting portion P0, the butted sealing portions 17 can be simultaneously pressed by the pressing members 20 on both sides. As a result, the number of pressure members 20 can be reduced, the volumetric efficiency of the stacked battery 10 housed in the outer case 18 can be increased, and the battery pack 1 can be made compact.
[0056]
FIG. 6 shows a second embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and redundant description is omitted.
[0057]
FIG. 6 is an enlarged cross-sectional view of a main part showing a state in which a pressure member is arranged at a sealing portion of the laminated battery, and the assembled battery 1a using the laminated battery according to the second embodiment is pressurized. A heat radiation cavity 21 is provided in the member 20a.
[0058]
The heat radiation cavity 21 is formed inside the pressure member 20a, and the shape and the number of the heat radiation cavity 21 are arbitrarily set within a range not impairing the function of pressurizing the sealing portion 17 by the pressure member 20a. Can be formed. In this embodiment, in the state where the thick pressure transmission part 22 is left above and below the central part, a total of four rectangular heat dissipating cavities 21 are provided on both sides of the pressure transmission part 22, ie, two upper and lower parts. It is formed.
[0059]
And this cavity 21 for heat dissipation has penetrated continuously from the width direction surface of the outer case 18 (refer FIG. 3) to the opposing surface.
[0060]
In the second embodiment, the sealing portions 17 of the stacked battery 10 adjacent to each other in the left-right direction Y (see FIG. 3) are overlapped with each other, and the pressure member 20a is disposed in the overlapping portions P1 and P2. ing.
[0061]
Note that P1 is an overlapped portion of the central two-stage sealing portions 17 stacked in four stages, and P2 is an overlapped portion of the sealing portions 17 at both upper and lower ends.
[0062]
Even in the second embodiment, similarly to the first embodiment, in the stacked battery 10 in the center side of the four-tiered upper and lower layers, the second laminated films 13 are butted against each other in the surface direction, respectively. The long-side sealing portions 17 are abutted against each other.
[0063]
The overlapping portion P1 of the two-tiered stacked battery 10 on the center side is located on the upper and lower surfaces of one overlapping sealing portion 17 adjacent in the left-right direction Y and on the top end portion of the other overlapping sealing portion 17 It is separated and inserted.
[0064]
Therefore, in the assembled battery 1a using the multilayer battery 10 of the second embodiment, the heat radiation cavity 21 is formed in the pressure member 20a. Therefore, the generation of the multilayer battery 10 through the heat radiation cavity 21 occurs. Heat can be dissipated more effectively and weight reduction can also be achieved.
[0065]
Further, since the heat radiating cavity 21 continuously penetrates from one surface in the width direction of the outer case 18 to the opposite surface, the heat generated by the stacked battery 10 is efficiently transmitted to the outer case 18, and as a result The heat dissipation effect from the case 18 can be enhanced, and cooling of the stacked battery 10 group housed in the outer case 18 can be promoted.
[0066]
In order to further improve the cooling efficiency, a coolant or the like may be flowed into the heat radiation cavity 21.
[0067]
Furthermore, since the sealing portions 17 of the stacked battery 10 adjacent in the left-right direction Y are overlapped with each other by the overlapping portions P1, P2, the volume efficiency of the stacked battery 10 housed in the outer case 18 is increased, and the assembled battery The downsizing of the parallel direction Y of 1a can be promoted.
[0068]
By the way, although the assembled battery using the laminated battery of the present invention has been described by taking the examples of the first and second embodiments, various embodiments are adopted without departing from the gist of the present invention. can do. For example, in the assembled battery 1 of the first embodiment, the case where the stacked battery 10 is stacked in four stages and the six columns are arranged in parallel is shown. Without limitation, it can be arbitrarily selected according to the required current and capacity.
[0069]
1 and 2, the positive electrode tab 14 and the negative electrode tab 15 are drawn out in opposite directions from the opposing short side portions, but the drawing direction is not particularly limited, For example, the present invention can be applied to the case where the electrode tabs 14 and 15 are drawn in parallel from the same side.
[0070]
Furthermore, the stacked battery 10 is not limited to a lithium ion secondary battery, and the present invention can be applied to other batteries having the same configuration.
[Brief description of the drawings]
FIG. 1 is a plan view showing a single unit of a stacked battery according to a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view taken along the line AA in FIG.
FIG. 3 is a perspective view of an assembled battery showing a perspective view of the outer case in the first embodiment of the present invention.
4 is an enlarged cross-sectional view taken along the line B-B in FIG. 3;
FIG. 5 is an enlarged cross-sectional view taken along the line CC in FIG. 3;
FIG. 6 is an enlarged cross-sectional view of a main part showing a state in which a pressure member is arranged at a sealing portion of a stacked battery in a second embodiment of the present invention.
[Explanation of symbols]
1, 1a Battery pack 10 Stacked battery 11 Stacked electrode (power generation element)
11A Positive electrode plate 11B Negative electrode 11C Separator 12 First laminate film (exterior material)
13 Second laminate film (exterior material)
12a, 13a Peripheral part 16 Storage recess 17 Sealing part 18 Outer case 20, 20a Pressure member 21 Radiation cavity P0 Butting part P1, P2 Overlapping part

Claims (6)

正極板と負極板との間にセパレータを介在しつつ積層した発電要素の両面をラミネートフィルムで構成した外装材で覆い、その周縁部同士を内部に電解液を封入しつつ接合して密封した積層型電池を備え、この積層型電池を複数積層して構成し、前記複数積層した積層型電池を全体的に収納する外部ケースを設ける一方、互いに隣接する前記各積層型電池の外装材の封止部分相互間に、この封止部分に対して前記積層型電池の積層方向に加圧力を付加する加圧部材を設けた積層型電池を用いた組電池において、前記加圧部材は、放熱用空洞部を備えていることを特徴とする積層型電池を用いた組電池。A laminate in which both sides of a power generation element laminated with a separator interposed between a positive electrode plate and a negative electrode plate are covered with an exterior material composed of a laminate film, and the peripheral portions thereof are joined and sealed with an electrolyte solution sealed inside. comprising a mold battery, the laminated type battery configured by stacking a plurality of prior SL while providing an external case for totally housing the stacked battery was stacked, the sealing of the outer package of the laminate cell adjacent to each other In an assembled battery using a stacked battery in which a pressurizing member is provided between the stop portions to apply pressure to the sealed portion in the stacking direction of the stacked battery, the pressurizing member is for heat dissipation An assembled battery using a stacked battery, comprising a hollow portion . 前記加圧部材による前記封止部分への加圧力は、前記外装材の前記発電要素を収納した内部圧力よりも大きく設定したことを特徴とする請求項1記載の積層型電池を用いた組電池。  2. The assembled battery using a stacked battery according to claim 1, wherein the pressure applied to the sealing portion by the pressurizing member is set to be larger than the internal pressure of the exterior member housing the power generation element. . 前記加圧部材は、所定の弾発力を有する弾性部材であることを特徴とする請求項1または2記載の積層型電池を用いた組電池。  The assembled battery using a stacked battery according to claim 1 or 2, wherein the pressure member is an elastic member having a predetermined elastic force. 前記加圧部材は、熱伝導率の大きな部材で形成したことを特徴とする請求項1ないし3のいずれか1項に記載の積層型電池を用いた組電池。The pressing member is assembled battery using the laminated cell according to any one of claims 1 to 3, characterized by forming a large member of the thermal conductivity. 正極板と負極板との間にセパレータを介在しつつ積層した発電要素の両面をラミネートフィルムで構成した外装材で覆い、その周縁部同士を内部に電解液を封入しつつ接合して密封した積層型電池を備え、この積層型電池を複数積層して構成し、前記複数積層した積層型電池を全体的に収納する外部ケースを設ける一方、互いに隣接する前記各積層型電池の外装材の封止部分相互間に、この封止部分に対して前記積層型電池の積層方向に加圧力を付加する加圧部材を設けた積層型電池を用いた組電池において、複数積層した前記積層型電池を、この積層方向と直交する方向に複数並列配置し、この並列配置した各積層型電池の互いに隣接する前記外装材の封止部分を互いに重ね合わせ、この重ね合わせ部分に前記加圧部材を配置したことを特徴とする積層型電池を用いた組電池。 A laminate in which both sides of a power generation element laminated with a separator interposed between a positive electrode plate and a negative electrode plate are covered with an exterior material composed of a laminate film, and the peripheral portions thereof are joined and sealed with an electrolyte solution sealed inside. A plurality of stacked batteries are provided, and an outer case is provided for housing the plurality of stacked batteries as a whole, while the exterior material of each of the stacked batteries adjacent to each other is sealed In an assembled battery using a stacked battery provided with a pressure member that applies pressure to the sealing portion in the stacking direction of the stacked battery between the portions, the stacked battery stacked in a plurality of layers, A plurality of the battery packs arranged in parallel in a direction perpendicular to the stacking direction, the sealing portions of the exterior materials adjacent to each other of the stacked batteries arranged in parallel are overlapped with each other, and the pressure member is disposed in the overlapped portion. Special Assembled battery using the laminated cell according to. 正極板と負極板との間にセパレータを介在しつつ積層した発電要素の両面をラミネートフィルムで構成した外装材で覆い、その周縁部同士を内部に電解液を封入しつつ接合して密封した積層型電池を備え、この積層型電池を複数積層して構成し、前記複数積層した積層型電池を全体的に収納する外部ケースを設ける一方、互いに隣接する前記各積層型電池の外装材の封止部分相互間に、この封止部分に対して前記積層型電池の積層方向に加圧力を付加する加圧部材を設けた積層型電池を用いた組電池において、前記ラミネートフィルムは、前記発電要素の片面を覆う部分に発電要素を収納する収納凹部を設ける一方、他面を覆う部分を平坦に形成して前記収納凹部の開口部分を覆い、前記各積層型電池の積層方向に隣接したラミネートフィルムの前記平坦側を互い面方向に突き合わせて、それぞれの封止部分を互いに突き合わせ、この突き合わせ部分に前記加圧部材を配置したことを特徴とする積層型電池を用いた組電池。 A laminate in which both sides of a power generation element laminated with a separator interposed between a positive electrode plate and a negative electrode plate are covered with an exterior material composed of a laminate film, and the peripheral portions thereof are joined and sealed with an electrolyte solution sealed inside. A plurality of stacked batteries are provided, and an outer case is provided for housing the plurality of stacked batteries as a whole, while the exterior material of each of the stacked batteries adjacent to each other is sealed In an assembled battery using a stacked battery in which a pressure member that applies pressure to the sealing portion in the stacking direction of the stacked battery is provided between the portions, the laminate film is formed of the power generation element. A laminated recess adjacent to the stacking direction of each stacked battery is formed by providing a storage recess for storing the power generating element in a portion covering one side, and forming a flat portion covering the other surface to cover the opening of the storage recess. Said abutting the flat side surface direction to each other, butting the respective sealing portions to each other, assembled battery using the laminate type battery, characterized in that a said pressure member in the abutting portion of.
JP2002207415A 2002-07-16 2002-07-16 Battery pack using stacked battery Expired - Fee Related JP3985616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002207415A JP3985616B2 (en) 2002-07-16 2002-07-16 Battery pack using stacked battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207415A JP3985616B2 (en) 2002-07-16 2002-07-16 Battery pack using stacked battery

Publications (2)

Publication Number Publication Date
JP2004055169A JP2004055169A (en) 2004-02-19
JP3985616B2 true JP3985616B2 (en) 2007-10-03

Family

ID=31931882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207415A Expired - Fee Related JP3985616B2 (en) 2002-07-16 2002-07-16 Battery pack using stacked battery

Country Status (1)

Country Link
JP (1) JP3985616B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581481B2 (en) * 2004-05-26 2010-11-17 トヨタ自動車株式会社 Battery module manufacturing method
JPWO2007043392A1 (en) * 2005-10-03 2009-04-16 Tdkラムダ株式会社 Battery pack
JP2007123003A (en) * 2005-10-27 2007-05-17 Sony Corp Battery pack
KR101089086B1 (en) 2008-10-30 2011-12-06 주식회사 엘지화학 Battery Cartridge and Battery Module Containing the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188927A (en) * 1996-12-20 1998-07-21 Toyo Takasago Kandenchi Kk Structure for collective battery
JP2000195482A (en) * 1998-12-25 2000-07-14 Kyocera Corp Sheet-shaped battery
JP4108918B2 (en) * 2000-12-26 2008-06-25 シャープ株式会社 Thin secondary battery
JP4214450B2 (en) * 2002-06-03 2009-01-28 日本電気株式会社 module

Also Published As

Publication number Publication date
JP2004055169A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP3767531B2 (en) Battery assembly
JP3624903B2 (en) Module battery
US7282297B2 (en) Laminate cell, assembled battery, battery module and electric vehicle
JP4211322B2 (en) Multilayer battery, battery pack, battery module and electric vehicle
JP3649213B2 (en) Module battery
JP4114415B2 (en) Electrode laminated battery cooling device
JP2007018917A (en) Stacked battery, and battery pack
JP2004111219A (en) Laminate secondary cell, cell pack module made of a plurality of laminated secondary cells, cell pack made of a plurality of cell pack modules, and electric car loading either thereof
CN110137388B (en) Secondary battery and battery pack
WO2008050736A1 (en) Electricity storage device and cooling system
JP3852376B2 (en) Battery outer case
JP3591528B2 (en) Module battery
JP3891054B2 (en) Structure of electrode tab lead-out part of stacked battery
JP2004047167A (en) Cell aggregate
JP3565216B2 (en) Module battery
JP2004031272A (en) Electrode stack type battery
JP2004055153A (en) Layer-built battery
JP3818232B2 (en) Multilayer battery case
JP2006260990A (en) Stacked battery
JP4075534B2 (en) Laminated secondary battery, assembled battery module, assembled battery and electric vehicle equipped with this battery
JP3985616B2 (en) Battery pack using stacked battery
JP2004055154A (en) Sealing structure and method for layer-built battery
JP2004039485A (en) Module battery
WO2021117584A1 (en) Electrochemical cell and electrochemical cell module
JP2004047185A (en) Sealing structure of battery, and mounting board of this battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees