JP3985557B2 - Multilayer ceramic electronic component and manufacturing method thereof - Google Patents

Multilayer ceramic electronic component and manufacturing method thereof Download PDF

Info

Publication number
JP3985557B2
JP3985557B2 JP2002075745A JP2002075745A JP3985557B2 JP 3985557 B2 JP3985557 B2 JP 3985557B2 JP 2002075745 A JP2002075745 A JP 2002075745A JP 2002075745 A JP2002075745 A JP 2002075745A JP 3985557 B2 JP3985557 B2 JP 3985557B2
Authority
JP
Japan
Prior art keywords
electrode
internal
multilayer ceramic
electrodes
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002075745A
Other languages
Japanese (ja)
Other versions
JP2003272945A (en
Inventor
雄樹 鎌田
立郎 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002075745A priority Critical patent/JP3985557B2/en
Publication of JP2003272945A publication Critical patent/JP2003272945A/en
Application granted granted Critical
Publication of JP3985557B2 publication Critical patent/JP3985557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば積層セラミックコンデンサなどの積層セラミック電子部品およびその製造方法に関するものである。
【0002】
【従来の技術】
昨今のコンピュータや携帯電話に代表される情報通信機器の小型化に伴い、電子部品の高密度実装が進行する中で積層セラミック電子部品においては小型化が望まれている。特に、代表的な積層セラミック電子部品である積層セラミックコンデンサにおいては小型化とともに大容量化が望まれている。
【0003】
そして、実装面積低減と実装回数削減によるコスト低減の要求から単一素体内にコンデンサを複数個並設した多連形の積層セラミックコンデンサも開発され使用されてきており、多連形の積層セラミックコンデンサにおいても小型化、大容量化が要望されている。
【0004】
従来の多連形の積層セラミックコンデンサについて、図13を参照して説明する。図13は従来の多連形の積層セラミックコンデンサの内部電極の構造を示す模式的分解斜視図である。
【0005】
図13に示すように、従来の多連形の積層セラミックコンデンサは、誘電体層3を挟んで第1の内部電極1と第2の内部電極2とが交互に積層され、第1の内部電極1および第2の内部電極2は同一平面に複数(図13では4個)が形成され、この素体の相対向する端面に内部電極の複数対が交互に露出し、この露出した内部電極に接続するように複数対の外部電極(図示せず)を形成している。また、多連形の積層セラミックコンデンサは外部電極の形状を小さくする必要があるため、図13に示すように、第1の内部電極1および第2の内部電極2は、容量形成電極部1a,2aと引出し電極部1b,2bとを設け、引出し電極部1b,2bの幅寸法を容量形成電極部1a,2aに比べ小さくし、外部電極との接続部分の寸法を小さくしている。
【0006】
一方、積層セラミックコンデンサの静電容量は、内部電極の重なり面積、内部電極に挟まれた誘電体層の有効層数、誘電体層の厚みおよび誘電体層の比誘電率によって決定される。したがって、所望の静電容量を得るためには、上記の各因子のいずれか一つまたは複数を変更して行う。
【0007】
しかしながら、非常に多種類の比誘電率の異なる誘電体セラミック材料を作製することや非常に多種類の厚みの誘電体層となるセラミック生シートを作製することは煩雑で生産効率が悪い。また、有効層数での調整は静電容量の微調整ができない。したがって、通常、面積が異なる多種類の内部電極となる導体層パターンを用意して、誘電体層の厚みや有効層数を変化させると共に、静電容量設計に応じた導体層パターンを使用して内部電極の重なり面積を変えて所望の静電容量を得ることが一般的である。しかし、非常に多種類の導体層パターンの印刷版を揃えることも、製版コストがかさみ、製品の低コスト化が困難となる問題が生じる。
【0008】
このため、従来の多連形の積層セラミックコンデンサにおいて、1種類の導体層パターンを用いて内部電極の重なり面積を変えることができ多種類の静電容量を得る方法として、特開2001−203122公報のように、容量形成部の2辺から相対向する両端面へ延ばされている第1、第2の引出し部がそれぞれ設けられた内部電極となる導体層パターンを用いて、この1種類の導体層パターンの第1、第2の引出し部が交互に相対向する端面から露出するよう対向方向に交互にずらして積層するとともに、ずらし量を調整することで内部電極間の重なり面積を変化させて静電容量を調整するという方法も提案されている。
【0009】
【発明が解決しようとする課題】
しかしながら、上記特開2001−203122公報の方法では、容量形成部の2辺から相対向する両端面へ延ばされている第1、第2の引出し部がそれぞれ設けられた導体層パターンを用いるので、誘電体層を挟んで向かい合う容量形成部の面積が制限され内部電極の重なり面積を大きくすることができないため、大容量化を図る上で不適であるという問題がある。
【0010】
本発明は上記従来の問題点を解決するもので、1種類の導体層パターンを用いて内部電極の重なりを変えることができ多種類の静電容量が容易に得られるとともに、内部電極の重なり面積を大きくして大容量化が図れる積層セラミック電子部品およびその製造方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下の構成を有するものである。
【0012】
本発明の請求項1に記載の発明は、誘電体層と内部電極とを交互に積層した積層焼結体とこの積層焼結体の表面に設けた対向する第1の外部電極と第2の外部電極とを備えた積層セラミック電子部品であって、前記内部電極は、誘電体層を挟んで設けた第1の内部電極と第2の内部電極とを備え、前記第1および第2の内部電極は、それぞれ同一層に容量形成電極とこの容量形成電極と一方の外部電極とを接続する引出し電極と前記容量形成電極に非接続で他方の外部電極に接続するダミー電極とを有し、前記引出し電極および前記ダミー電極の幅はほぼ同一でかつ前記容量形成電極に比して小であり、前記第2の内部電極の形状は、前記第1の内部電極と略同一形状を略180度回転させた形状であるという構成を備えており、これにより、内部電極が容量形成電極部に比べ引出し電極部の幅寸法を小さくして外部電極との接続部の寸法を小さくする必要がある形状である場合においても、所望の静電容量を得るための内部電極の重なり面積の変更が最少1種類の導体層パターンでできるので、容易に多種類の静電容量を得られる積層セラミック電子部品となるとともに、従来に比べて内部電極の重なり面積が大きくでき、かつ変更できる重なり面積の幅つまり静電容量の範囲が大きくできる積層セラミック電子部品となるという作用効果が得られる。
【0013】
また、外部電極に接続する内部電極として、容量形成電極に接続する引出し電極のほかに容量形成電極に非接続のダミー電極が設けてあるので、外部電極と内部電極との接続強度が向上し信頼性の高い積層セラミック電子部品となるという作用効果が得られる。
【0014】
本発明の請求項2に記載の発明は、特に、ダミー電極と容量形成電極の間隔は誘電体層1層当りの厚みの3倍以上であるという構成を有しており、これにより、ダミー電極と容量形成電極との間の十分な電気絶縁性が確保できるばかりでなく、積層ずれ切断ずれ等により外部電極と対向する内部電極との間隔が誘電体層1層当りの厚みの3倍以下に近接した場合、これを容量測定により選別除去することができる。したがって、外部電極と対向する内部電極との間で絶縁破壊する危険性の高い製品をあらかじめ除去でき信頼性の高い積層セラミック電子部品となるという作用効果が得られる。
【0015】
本発明の請求項3に記載の発明は、誘電体層と内部電極とを交互に積層した積層焼結体とこの積層焼結体の表面に設けた複数対の対向する第1の外部電極と第2の外部電極とを備えた多連形の積層セラミック電子部品であって、前記内部電極は、誘電体層を挟んで設けた第1の内部電極と第2の内部電極とを備え、前記第1および第2の内部電極は、それぞれ同一層に容量形成電極とこの容量形成電極と一方の外部電極とを接続する引出し電極と前記容量形成電極に非接続で他方の外部電極に接続するダミー電極とを有し、前記引出し電極および前記ダミー電極の幅はほぼ同一でかつ前記容量形成電極に比して小であり、前記第2の内部電極の形状は、前記第1の内部電極と略同一形状を略180度回転させた形状であり、前記第1および第2の内部電極はそれぞれ複数を同一層に並設した構成であり、これにより、内部電極が容量形成電極部に比べ引出し電極部の幅寸法を小さくして外部電極との接続部の寸法を小さくする必要がある形状である場合においても、所望の静電容量を得るための内部電極の重なり面積の変更が最少1種類の導体層パターンでできるので、容易に多種類の静電容量を得られる多連形の積層セラミック電子部品となるとともに、従来に比べて内部電極の重なり面積が大きくでき、かつ変更できる重なり面積の幅つまり静電容量の範囲が大きくできる多連形の積層セラミック電子部品となるという作用効果が得られる。
【0016】
また、外部電極に接続する内部電極として、容量形成電極に接続する引出し電極のほかに容量形成電極に非接続のダミー電極が設けてあるので、外部電極と内部電極との接続強度が向上し信頼性の高い多連形の積層セラミック電子部品となるという作用効果が得られる。
【0017】
本発明の請求項4に記載の発明は、特に、複数対の外部電極を備えた多連形の積層セラミック電子部品であって、ダミー電極と容量形成電極の間隔は誘電体層1層当りの厚みの3倍以上であるという構成を有しており、これにより、ダミー電極と容量形成電極との間の十分な電気絶縁性が確保できるばかりでなく、積層ずれ切断ずれ等により外部電極と対向する内部電極との間隔が誘電体層1層当りの厚みの3倍以下に近接した場合、これを容量測定により選別除去することができる。したがって、外部電極と対向する内部電極との間で絶縁破壊する危険性の高い製品をあらかじめ除去でき信頼性の高い多連形の積層セラミック電子部品となるという作用効果が得られる。
【0018】
本発明の請求項5に記載の発明は、特に、複数対の外部電極および同一層に複数並設した内部電極は、その外部電極のピッチと前記内部電極の容量形成電極のピッチとが異なるという構成を有しており、これにより、複数を同一層に並設した内部電極の容量形成電極のピッチを外部電極のピッチに合わせる必要がなく容量形成電極の配置の自由度が増し、外形寸法を大きくすることなく容量形成電極の面積を大きくできるので、小型大容量化が可能な多連形の積層セラミック電子部品となるという作用効果が得られる。
【0019】
本発明の請求項6に記載の発明は、セラミック生シートと内部電極となる導体層とを交互に積層して積層体ブロックを作製する第1工程と、この積層体ブロックを個片に切断分離し焼成して積層焼結体を作製する第2工程と、この積層焼結体に外部電極を形成する第3工程と、これを検査する第4工程とを備え、前記第1工程において、前記内部電極となる導体層の形成は、容量形成電極となる矩形状パターンとこれに接続する引出し電極およびダミー電極となる帯状パターンとからなる導体層パターンを縦横に多数個配列した導体層パターン群を用いて行う第1電極形成工程と、前記導体層パターン群と略同一の導体層パターン群を略180度回転させて行う第2電極形成工程とを、交互に繰り返して行う積層セラミック電子部品の製造方法であり、これにより、内部電極が容量形成電極部に比べ引出し電極部の幅寸法を小さくして外部電極との接続部の寸法を小さくする必要がある形状である積層セラミック電子部品においても、所望の静電容量を得るための内部電極の重なり面積の変更が最少1種類の導体層パターンでできるので、製版コストが低減でき製品の低コスト化が図れるとともに、所望の多種類の静電容量の積層セラミック電子部品が容易に製造できるという作用効果が得られる。
【0020】
また、従来に比べて内部電極の重なり面積が大きくでき、かつ変更できる重なり面積の幅つまり静電容量の範囲が大きくでき、積層セラミック電子部品の大容量化が図れるという作用効果が得られる。
【0021】
本発明の請求項7に記載の発明は、特に、第2電極形成工程において、第1電極形成工程と同一の導体層パターン群を用いこれを略180度回転させて内部電極となる導体層を形成する積層セラミック電子部品の製造方法であり、これにより、内部電極が容量形成電極部に比べ引出し電極部の幅寸法を小さくして外部電極との接続部の寸法を小さくする必要がある形状である積層セラミック電子部品においても、導体層パターンを形成するために必要な印刷版の数は一つであり、一つの印刷版により内部電極の重なり面積の変更ができるので、製版コストが極限まで低減でき製品の低コスト化が図れるという作用効果が得られる。
【0022】
本発明の請求項8に記載の発明は、特に、第2電極形成工程において、第1電極形成工程の導体層パターン群と略同一形状を略180度回転させた形状の導体層パターン群を用いて内部電極となる導体層を形成する積層セラミック電子部品の製造方法であり、これにより、内部電極が容量形成電極部に比べ引出し電極部の幅寸法を小さくして外部電極との接続部の寸法を小さくする必要がある形状である積層セラミック電子部品においても、導体層パターンを形成するために必要な印刷版の数は二つであり、わずか二つの印刷版により内部電極の重なり面積の変更ができるので、製版コストが大幅に低減でき製品の低コスト化が図れるという作用効果が得られる。
【0023】
本発明の請求項9に記載の発明は、特に、静電容量を測定して外部電極と対向する内部電極との間隔が近接した不良品を選別除去する方法であり、これにより、外部電極と対向する内部電極との間で絶縁破壊する危険性の高い製品をあらかじめ除去でき信頼性の高い積層セラミック電子部品が容易に製造できるという作用効果が得られる。
【0024】
【発明の実施の形態】
(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1、請求項2、請求項3、請求項4、請求項6、請求項7および請求項9に記載の発明について積層セラミックコンデンサを例に説明する。
【0025】
本発明の実施の形態1について図面を参照して説明する。図1は本発明の実施の形態1における積層セラミックコンデンサの内部電極の構造を示す模式的分解斜視図、図2は本発明の実施の形態1における積層セラミックコンデンサの積層焼結体の斜視図、図3は本発明の実施の形態1における積層セラミックコンデンサの斜視図である。
【0026】
図1〜図3において、10は積層焼結体、11〜14は第1の外部電極、21〜24は第2の外部電極、100は誘電体層、110〜140は第1の内部電極、210〜240は第2の内部電極である。
【0027】
図3に示すように、本実施の形態1における積層セラミックコンデンサは、誘電体層と内部電極とを交互に積層した積層焼結体10とこの積層焼結体10の表面に設けた4対の対向する外部電極、つまり、第1の外部電極11と第2の外部電極21、第1の外部電極12と第2の外部電極22、第1の外部電極13と第2の外部電極23および第1の外部電極14と第2の外部電極24の4対を備えている。そして、図1〜図3に示すように、内部電極は、誘電体層100を挟んで一方の層に4つ並設した第1の内部電極110〜140と他方の層に4つ並設した第2の内部電極210〜240とからなり、第1の内部電極110と第2の内部電極210、第1の内部電極120と第2の内部電極220、第1の内部電極130と第2の内部電極230および第1の内部電極140と第2の内部電極240とがそれぞれ1個のコンデンサを構成し、1個の素体である積層焼結体10内に4個のコンデンサを内蔵した4連形の積層セラミックコンデンサである。
【0028】
そして、いずれの内部電極も、容量形成電極とこの容量形成電極と一方の外部電極とを接続する引出し電極と容量形成電極に非接続で他方の外部電極に接続するダミー電極とを1単位としてそれぞれ同一層に有した構成としている。具体的には、図1に示すように、第1の内部電極110は、容量形成電極110aとこの容量形成電極110aと第1の外部電極11とを接続する引出し電極110bと容量形成電極110aに非接続で第2の外部電極21に接続するダミー電極110cとを有し、第2の内部電極210は、容量形成電極210aとこの容量形成電極210aと第2の外部電極21とを接続する引出し電極210bと容量形成電極210aに非接続で第1の外部電極11に接続するダミー電極210cとを有している。また、引出し電極およびダミー電極の幅はほぼ同一でかつ容量形成電極に比して小としている。例えば、引出し電極110bおよびダミー電極110cの幅はほぼ同一でかつ容量形成電極110aに比して小としている。
【0029】
さらに、図1に示すように、第2の内部電極210,220,230および240の形状は、第1の内部電極140,130,120および110と略同一形状を略180度回転させた形状としている。
【0030】
以上のように構成することにより、本実施の形態1における積層セラミックコンデンサは、内部電極が容量形成電極部に比べ引出し電極部の幅寸法を小さくして外部電極との接続部の寸法を小さくする必要がある形状である場合においても、所望の静電容量を得るための内部電極の重なり面積の変更が最少1種類の導体層パターンでできるので、容易に多種類の静電容量を得られる積層セラミックコンデンサとなるとともに、従来に比べて内部電極の重なり面積が大きくでき、かつ変更できる重なり面積の幅つまり静電容量の範囲が大きくできる積層セラミックコンデンサとなる。具体的には、本発明の実施の形態1における積層セラミックコンデンサの製造方法とともに説明する。
【0031】
以下に、本発明の実施の形態1における積層セラミックコンデンサの製造方法について説明する。図4は本発明の実施の形態1で用いた内部電極となる導体層パターン群を形成するための印刷版のパターン図であり、容量形成電極となる矩形状パターン501とこれに接続する引出し電極およびダミー電極となる帯状パターン502とからなる導体層パターン500を縦横に多数個配列した導体層パターン群である。また、図4に示す導体層パターン500の配列は、焼成後にダミー電極と容量形成電極の間隔が誘電体層1層当りの厚みの3倍以上となるように、ダミー電極となる帯状パターン502と容量形成電極となる矩形状パターン501の間隔D1は、後述するセラミック生シートの厚みの4倍とした。
【0032】
まず、チタン酸バリウムを主成分とするセラミック粉末と有機バインダからなるセラミック生シートを作製し準備した。この時、セラミック生シートの厚みは約15μmとした。
【0033】
そして、支持板上に接着シートを介して上記セラミック生シートを複数枚積層して下側の無効層を形成した。続いて、図4に示したパターンの印刷板を用いてスクリーン印刷法により、上記の無効層上にニッケルを主成分とする金属ペーストで、下最外層の第1の内部電極110〜140となる導体層を形成した。
【0034】
次に、上記の第1の内部電極110〜140となる導体層を形成した積層体を支持板とともに略180度回転させ、印刷版の位置合わせを行って、この積層体の上にセラミック生シートを積層し、このセラミック生シート上に上記と同じ印刷版を用いてスクリーン印刷法により、ニッケルを主成分とする金属ペーストで、第2の内部電極210〜240となる導体層を形成した。
【0035】
さらに、上記の第2の内部電極210〜240となる導体層を形成した積層体を支持板とともに略180度回転させ、印刷版の位置合わせを行って、この積層体の上にセラミック生シートを積層し、このセラミック生シート上に上記と同じ印刷版を用いてスクリーン印刷法により、ニッケルを主成分とする金属ペーストで、第1の内部電極110〜140となる導体層を形成した。
【0036】
続いて、上記の第1の内部電極110〜140となる導体層を形成した積層体を支持板とともに略180度回転させ、印刷版の位置合わせを行って、この積層体の上にセラミック生シートを積層し、このセラミック生シート上に上記と同じ印刷版を用いてスクリーン印刷法により、ニッケルを主成分とする金属ペーストで、第2の内部電極210〜240となる導体層を形成した。
【0037】
これら上記の第1の内部電極110〜140となる導体層の印刷、略180度回転、印刷版の位置合わせ、セラミック生シートの積層、第2の内部電極210〜240となる導体層の印刷、略180度回転、印刷版の位置合わせ、セラミック生シートの積層を所望の回数繰り返した。そして、この上に上記セラミック生シートを複数枚積層して上側の無効層を形成し積層体ブロックを得た。なお、上記において略180度回転、印刷版の位置合わせは、支持板とともに積層体を略180度回転させ行ったが、積層体と印刷版とを相対的に略180度回転させれば良く、積層体側を固定し印刷版を略180度回転させて行っても良い。
【0038】
次に、上記積層体ブロックを図4に示した切断位置510および520で所望の寸法に切断分離して、個片の生チップとした。この生チップを窒素ガス中で加熱して脱バインダ処理した後、ニッケルが酸化されない窒素水素の混合ガス雰囲気中で1300℃まで加熱して焼成し焼結体を得た。
【0039】
次に、上記焼結体を面取りして焼結体の表面に内部電極を完全に露出させ図2の積層焼結体10を得た。続いて、積層焼結体10の両端面に銅を主成分とする電極ペーストを塗布し、800℃の窒素雰囲気中で焼付けし、この上にニッケルめっき、はんだめっきを施して、第1の外部電極11〜14および第2の外部電極21〜24を形成し、図3に示した本実施の形態1における積層セラミックコンデンサを作製した。
【0040】
作製した本実施の形態1における積層セラミックコンデンサは、長手方向寸法が3.2mm、幅方向寸法が1.6mm、厚み方向寸法が0.85mmであった。
【0041】
次に、本実施の形態1における積層セラミックコンデンサおよびその製造方法が、図4に示した導体層パターン群を形成するための印刷版一つで、内部電極の重なり面積の変更ができ容易に多種類の静電容量を得られる積層セラミックコンデンサとなることについて、図4〜図6を用いて詳しく説明する。
【0042】
図5は本発明の実施の形態1における積層セラミックコンデンサの内部電極の重なり状態の1例を示す平面透視図であり、図6は本発明の実施の形態1における積層セラミックコンデンサの内部電極の重なり状態の他の例を示す平面透視図である。なお、説明をわかりやすくするために、図5および図6においては第1の内部電極と第2の内部電極とをそれぞれ1層のみを図示している。
【0043】
まず、内部電極の重なり状態の1例として、図5には重なり面積が最大で得られる静電容量が最大の場合を示した。図5に示すように、第2の内部電極210〜240の形状は、第1の内部電極110〜140と同一形状を略180度回転させた形状であり、また、第1の内部電極の容量形成電極と第2の内部電極の容量形成電極との重なり面積、例えば第1の内部電極110の容量形成電極110aと第2の内部電極210の容量形成電極210aとの重なり面積が最大となるよう位置合わせしている。
【0044】
この容量形成電極の重なり面積を変更し、得られる静電容量を変えるためには、第2の内部電極210〜240となる導体層の印刷時に、第1の内部電極110〜140に対して略180度回転させるとともに、図4の縦方向にずらして位置合わせして形成すれば良い。例えば、導体層の印刷時に、マーク530とマーク550とを位置合わせし、マーク540とマーク560とを位置合わせする時、マーク530の531とマーク550の551とを位置合わせし、マーク540の541とマーク560の561とを位置合わせすれば、容量形成電極の重なり面積は最大となり、マーク530の531とマーク550の555とを位置合わせし、マーク540の541とマーク560の565とを位置合わせすれば、容量形成電極の重なり面積は最小となる。
【0045】
そして、例えば図6に示すように、第1の内部電極110の容量形成電極110aと第2の内部電極210の容量形成電極210aとの重なり面積を小さくすることができ、静電容量の小さな積層セラミックコンデンサとなる。
【0046】
次に、本発明の実施の形態1における積層セラミックコンデンサが、ダミー電極と容量形成電極の間隔を誘電体層1層当りの厚みの3倍以上とすることにより、積層ずれ切断ずれ等により外部電極と対向する内部電極との間隔が誘電体層1層当りの厚みの3倍以下に近接した場合、これを容量測定により選別除去することができ、したがって、外部電極と対向する内部電極との間で絶縁破壊する危険性の高い製品をあらかじめ除去でき信頼性の高い積層セラミックコンデンサとなるという効果について説明する。なお、外部電極と対向する内部電極との間隔が誘電体層1層当りの厚みの3倍以下に近接した製品が、外部電極と対向する内部電極との間で絶縁破壊する危険性が高いとしたのは、種々検討した結果であり、内部電極の層間に比較して内部電極が同一層内で絶縁破壊し易いためである。
【0047】
図7は、図4の所望の切断位置510で切断された場合の積層セラミックコンデンサの断面図であり、図8は、切断ずれにより図4の所望外の切断位置511で切断された場合の積層セラミックコンデンサの断面図である。なお、説明をわかりやすくするために、図7および図8においては第1の内部電極と第2の内部電極とをそれぞれ1層のみを図示している。
【0048】
図7に示すように、所望の切断位置510で切断され作製された積層セラミックコンデンサは、第1の内部電極110は、容量形成電極110aとこの容量形成電極110aと第1の外部電極11とを接続する引出し電極110bと容量形成電極110aに非接続で第2の外部電極21に接続するダミー電極110cとを有し、第2の内部電極210は、容量形成電極210aとこの容量形成電極210aと第2の外部電極21とを接続する引出し電極210bと容量形成電極210aに非接続で第1の外部電極11に接続するダミー電極210cとを有した構成となっている。そして、この積層セラミックコンデンサの容量は、第1の内部電極110の容量形成電極110aと第2の内部電極210の容量形成電極210aとの重なり部分で形成される静電容量C1となる。
【0049】
しかしながら、図8に示すように、所望外の切断位置511で切断され作製された積層セラミックコンデンサは、第1の内部電極110は、容量形成電極110a、引出し電極110bおよびダミー電極110cとなるべき電極のいずれも、第1の外部電極11、第2の外部電極21のいずれにも接続せずに誘電体層1層当りの厚みの3倍以下の極めて近接した状態になり、第2の内部電極210は、容量形成電極210aが第2の外部電極21に接続し、引出し電極210bおよびダミー電極210cとなるべき電極と接続した容量形成電極210aの一部が第1の外部電極11に接続した構成となっている。そして、この積層セラミックコンデンサの容量は、第1の内部電極110の容量形成電極110aと第2の内部電極210の容量形成電極210aとの重なり部分で形成される静電容量C1と、第1の内部電極110の引出し電極110bおよびダミー電極110cとなるべき電極と第2の内部電極210の引出し電極210bおよびダミー電極210cとなるべき電極との重なり部分で形成される静電容量C2とが直列接続された容量となるので、この静電容量は、(C1×C2)/(C1+C2)となり、C1に比して極めて小さな静電容量となる。
【0050】
したがって、静電容量を測定することにより、図8に示したような積層ずれ切断ずれ等により外部電極と対向する内部電極との間隔が極めて近接した不良品を選別除去することができ、外部電極と対向する内部電極との間で絶縁破壊する危険性の高い製品をあらかじめ除去でき信頼性の高い積層セラミックコンデンサが得られる。
【0051】
(実施の形態2)
以下、実施の形態2を用いて、本発明の特に請求項5および請求項8に記載の発明について積層セラミックコンデンサを例に説明する。
【0052】
以下、本発明の実施の形態2について図面を参照して説明する。
【0053】
図9は本発明の実施の形態2における積層セラミックコンデンサの内部電極の重なり状態の1例を示す平面透視図であり、図10は本発明の実施の形態2における積層セラミックコンデンサの内部電極の重なり状態の他の例を示す平面透視図である。なお、説明をわかりやすくするために、図9および図10においては第1の内部電極と第2の内部電極とをそれぞれ1層のみを図示している。
【0054】
図9および図10において、15は積層焼結体、16〜19は第1の外部電極、26〜29は第2の外部電極、160〜190は第1の内部電極、260〜290は第2の内部電極である。
【0055】
本実施の形態2における積層セラミックコンデンサが上記実施の形態1と特に異なる点は、第1の内部電極160〜190および第2の内部電極260〜290の形状であり、図9および図10に示すように、本実施の形態2における積層セラミックコンデンサは、同一層に複数並設した内部電極の容量形成電極のピッチP2が複数対の外部電極のピッチP1と異なり、内部電極の容量形成電極のピッチP2を外部電極のピッチP1に比して小とした構成としている。
【0056】
これにより、上記実施の形態1における図5と本実施の形態2における図9とを比較すれば明らかなように、本実施の形態2における積層セラミックコンデンサは、容量形成電極の配置の自由度が増し、同一層の容量形成電極の間隔が小さくできるので、外形寸法、外部電極のピッチおよび外形と容量形成電極との間隔を変えることなく、容量形成電極の面積が大きくでき小型大容量化が可能な多連形の積層セラミックコンデンサとなる。
【0057】
なお、図9および図10に示すように、本実施の形態2における積層セラミックコンデンサが、誘電体層と内部電極とを交互に積層した積層焼結体15とこの積層焼結体15の表面に設けた4対の対向する外部電極16〜19および26〜29を備えている点、そして、内部電極は誘電体層を挟んで一方に4つ並設した第1の内部電極160〜190と他方に4つ並設した第2の内部電極260〜290とからなり、1個の素体である積層焼結体15内に4個のコンデンサを内蔵した4連形の積層セラミックコンデンサである点は、上記実施の形態1と同様である。
【0058】
また、いずれの内部電極も、容量形成電極とこの容量形成電極と一方の外部電極とを接続する引出し電極と容量形成電極に非接続で他方の外部電極に接続するダミー電極とを1単位としてそれぞれ同一層に有し、引出し電極およびダミー電極の幅はほぼ同一でかつ容量形成電極に比して小としている点、さらに、第2の内部電極260〜290の形状は第1の内部電極160〜190と略同一形状を略180度回転させた形状としている点は、上記実施の形態1と同様である。
【0059】
したがって、本実施の形態2における積層セラミックコンデンサも上記実施の形態1と同様の効果が得られる。
【0060】
以下に、本発明の実施の形態2における積層セラミックコンデンサの製造方法について説明する。
【0061】
図11は本発明の実施の形態2で用いた第1の内部電極となる導体層パターン群を形成するための印刷版のパターン図であり、容量形成電極となる矩形状パターン601とこれに接続する引出し電極およびダミー電極となる帯状パターン602とからなる導体層パターン600を縦横に多数個配列した導体層パターン群である。また、上記実施の形態1と同様に、導体層パターン600の配列は、焼成後にダミー電極と容量形成電極の間隔が誘電体層1層当りの厚みの3倍以上となるように、ダミー電極となる帯状パターン602と容量形成電極となる矩形状パターン601の間隔は、セラミック生シートの厚みの4倍とした。
【0062】
そして、図12は本発明の実施の形態2で用いた第2の内部電極となる導体層パターン群を形成するための印刷版のパターン図であり、図11の第1の内部電極となる導体層パターン群を形成するための印刷版のパターン図を180度回転させたパターンである。
【0063】
本実施の形態2における積層セラミックコンデンサの製造方法が上記実施の形態1と特に異なる点は、導体層パターン群を形成するために、図11および図12に示した二つの印刷版を用いて内部電極となる導体層を形成して積層体ブロックを作製する点であり、他は上記実施の形態1と同様であるので詳細な説明は省略する。
【0064】
まず、図11に示したパターンの印刷版を取り付けたスクリーン印刷機と、図12に示したパターンの印刷版を取り付けたスクリーン印刷機の2台のスクリーン印刷機を準備した。
【0065】
次に、支持板上に接着シートを介して上記セラミック生シートを複数枚積層して下側の無効層を形成した。続いて、図11に示したパターンの印刷版を用いてスクリーン印刷法により、上記の無効層上にニッケルを主成分とする金属ペーストで、下最外層の第1の内部電極160〜190となる導体層を形成した。
【0066】
次に、この積層体の上に、図11の位置合わせマーク630〜660と図12の位置合わせマーク730〜760とを、マーク630とマーク730、マーク640とマーク740、マーク650とマーク750、マーク660とマーク760とをそれぞれ位置合わせしてセラミック生シートを積層し、このセラミック生シート上に図12に示したパターンの印刷版を用いてスクリーン印刷法により、ニッケルを主成分とする金属ペーストで、第2の内部電極260〜290となる導体層を形成した。
【0067】
さらに、この積層体の上に、図11の印刷版の位置合わせをして、セラミック生シートを積層し、このセラミック生シート上に図11に示したパターンの印刷版を用いてスクリーン印刷法により、ニッケルを主成分とする金属ペーストで、第1の内部電極160〜190となる導体層を形成した。
【0068】
続いて、この積層体の上に、図12の印刷版の位置合わせをして、セラミック生シートを積層し、このセラミック生シート上に図12に示したパターンの印刷版を用いてスクリーン印刷法により、ニッケルを主成分とする金属ペーストで、第2の内部電極260〜290となる導体層を形成した。
【0069】
これら上記の第1の内部電極160〜190となる導体層の印刷、印刷版の位置合わせ、セラミック生シートの積層、第2の内部電極260〜290となる導体層の印刷、印刷版の位置合わせ、セラミック生シートの積層を所望の回数繰り返した。そして、この上に上記セラミック生シートを複数枚積層して上側の無効層を形成し積層体ブロックを得た。なお、セラミック生シートの厚み、導体層の厚みおよび積層数は、上記実施の形態1と同一とした。
【0070】
次に、上記積層体ブロックを切断分離し、脱バインダ処理した後焼成し、面取りして積層焼結体15を得て、次に、第1の外部電極16〜19および第2の外部電極26〜29を形成して本実施の形態2における積層セラミックコンデンサを作製した。
【0071】
作製した本実施の形態2における積層セラミックコンデンサは、長手方向寸法が3.2mm、幅方向寸法が1.6mm、厚み方向寸法が0.85mmで、外形の形状、寸法ともに上記実施の形態1と同一とした。
【0072】
以下に、図11および図12に示したパターンの印刷版二つで、本実施の形態2における積層セラミックコンデンサおよびその製造方法が、上記実施の形態1と同様に内部電極の重なり面積の変更ができ容易に多種類の静電容量を得られる積層セラミックコンデンサとなることについて、図9および図10を用いて説明する。
【0073】
まず、内部電極の重なり状態の1例として、図9には重なり面積が最大で得られる静電容量が最大の場合を示した。図9に示すように、第2の内部電極260〜290の形状は、第1の内部電極160〜190と同一形状を180度回転させた形状であり、また、第1の内部電極の容量形成電極と第2の内部電極の容量形成電極との重なり面積、例えば第1の内部電極160の容量形成電極160aと第2の内部電極260の容量形成電極260aとの重なり面積が最大となるよう位置合わせしている。
【0074】
この容量形成電極の重なり面積を変更し、得られる静電容量を変えるためには、図12のパターンの印刷版を用いた第2の内部電極260〜290となる導体層の印刷時に、図11の位置合わせマーク630〜660に対して図12の位置合わせマーク730〜760を縦方向にずらして位置合わせして形成すれば良く、例えば図10に示すように、第1の内部電極160の容量形成電極160aと第2の内部電極260の容量形成電極260aとの重なり面積を小さくすることができ、小さな静電容量の積層セラミックコンデンサとなる。
【0075】
また、本発明の実施の形態2における積層セラミックコンデンサが、ダミー電極と容量形成電極の間隔を誘電体層1層当りの厚みの3倍以上とすることにより、積層ずれ切断ずれ等により外部電極と対向する内部電極との間隔が誘電体層1層当りの厚みの3倍以下に近接した場合、これを容量測定により選別除去することができ、したがって、外部電極と対向する内部電極との間で絶縁破壊する危険性の高い製品をあらかじめ除去でき信頼性の高い積層セラミックコンデンサとなるという効果については、上記実施の形態1と同様であるので、説明を省略する。
【0076】
なお、上記実施の形態1および実施の形態2においては、積層体ブロックの作製方法として、セラミック生シートの積層、導体層のスクリーン印刷形成を順次行う方法について説明したが、これに限られるものではなく、あらかじめ導体層の印刷形成したセラミック生シートを積層する方法や、セラミック生シートおよび導体層を転写積層して形成する方法など公知の種々の方法により行うことができる。
【0077】
また、内部電極となる導体層の形成方法として、上記実施の形態1では図4に示したパターンの一つの印刷版でこれを交互に相対的に略180度回転させ導体層を形成し、上記実施の形態2では図11および図12に示したパターンの二つの印刷版を交互に用いて導体層を形成した方法を説明したが、印刷版を一つ用いるか二つ用いるかは導体層のパターンによって限定されるものではなく、積層体ブロックの作製工程における生産性、品質等を考慮して選択すれば良い。
【0078】
さらにまた、図4、図11および図12に示したパターンの印刷版では、導体層パターンは、帯状パターンがすべて同方向となるよう配列した例を示したが、必ずしもこのように配列する必要はなく、第1の内部電極となる導体層パターン群を略180度回転させた時、第1の内部電極となる導体層パターン群の帯状パターンと第2の内部電極となる導体層パターン群の帯状パターンとが、交互に形成されるように配置すれば良い。
【0079】
そして、上記実施の形態1および実施の形態2においては、1個の積層焼結体内に4個のコンデンサを内蔵した4連形の積層セラミックコンデンサについて説明したが、複数対の外部電極のピッチと複数の内部電極の容量形成電極のピッチとが異なるという構成を除いて、上記実施の形態1および実施の形態2で説明した構成を採用することにより、単一素体内に1個のコンデンサのみを内蔵する一般的な積層セラミックコンデンサにおいても同様の効果が得られる。
【0080】
そしてまた、上記実施の形態1および実施の形態2においては、積層セラミックコンデンサを例に説明したが、積層バリスタ、積層サーミスタなどの積層セラミック電子部品においても、同様に、所望の電気的特性を得るための内部電極の重なり面積の変更が最少1種類の導体層パターンででき、容易に多種類の電気的特性の積層セラミック電子部品を得ることができる。
【0081】
【発明の効果】
以上のように本発明は、誘電体層と内部電極とを交互に積層した積層焼結体とこの積層焼結体の表面に設けた対向する第1の外部電極と第2の外部電極とを備えた積層セラミック電子部品であって、前記内部電極は、誘電体層を挟んで設けた第1の内部電極と第2の内部電極とを備え、前記第1および第2の内部電極は、それぞれ同一層に容量形成電極とこの容量形成電極と一方の外部電極とを接続する引出し電極と前記容量形成電極に非接続で他方の外部電極に接続するダミー電極とを有し、前記引出し電極および前記ダミー電極の幅はほぼ同一でかつ前記容量形成電極に比して小であり、前記第2の内部電極の形状は、前記第1の内部電極と略同一形状を略180度回転させた形状である積層セラミック電子部品であり、内部電極が容量形成電極部に比べ引出し電極部の幅寸法を小さくして外部電極との接続部の寸法を小さくする必要がある形状である場合においても、所望の静電容量を得るための内部電極の重なり面積の変更が最少1種類の導体層パターンででき、容易に多種類の静電容量の積層セラミック電子部品が得られるとともに、従来に比べて内部電極の重なり面積が大きくでき、かつ変更できる重なり面積の幅つまり静電容量の範囲が大きくできるという効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の実施の形態1における積層セラミック電子部品の内部電極の構造を示す模式的分解斜視図
【図2】同積層セラミックコンデンサの積層焼結体の斜視図
【図3】同積層セラミックコンデンサの斜視図
【図4】本発明の実施の形態1で用いた内部電極となる導体層パターン群を形成するための印刷版のパターン図
【図5】本発明の実施の形態1における積層セラミックコンデンサの内部電極の重なり状態の1例を示す平面透視図
【図6】同他の例を示す平面透視図
【図7】所望の切断位置で切断された場合の積層セラミックコンデンサの断面図
【図8】所望外の切断位置で切断された場合の積層セラミックコンデンサの断面図
【図9】本発明の実施の形態2における積層セラミックコンデンサの内部電極の重なり状態の1例を示す平面透視図
【図10】同他の例を示す平面透視図
【図11】本発明の実施の形態2で用いた第1の内部電極となる導体層パターン群を形成するための印刷版のパターン図
【図12】同第2の内部電極となる導体層パターン群を形成するための印刷版のパターン図
【図13】従来の多連形の積層セラミックコンデンサの内部電極の構造を示す模式的分解斜視図
【符号の説明】
10,15 積層焼結体
11〜14、16〜19 第1の外部電極
21〜24、26〜29 第2の外部電極
100 誘電体層
110〜140、160〜190 第1の内部電極
110a,160a,210a,260a 容量形成電極
110b,210b 引出し電極
110c,210c ダミー電極
210〜240、260〜290 第2の内部電極
500,600 導体層パターン
501,601 矩形状パターン
502,602 帯状パターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer ceramic electronic component such as a multilayer ceramic capacitor and a method for manufacturing the same.
[0002]
[Prior art]
With recent miniaturization of information and communication equipment represented by computers and mobile phones, miniaturization is desired for multilayer ceramic electronic components as high-density mounting of electronic components proceeds. In particular, a multilayer ceramic capacitor, which is a typical multilayer ceramic electronic component, is desired to have a smaller size and a larger capacity.
[0003]
In order to reduce the mounting area and the number of mounting times, a multi-layered multilayer ceramic capacitor in which a plurality of capacitors are arranged in a single body has been developed and used. There is also a demand for smaller size and larger capacity.
[0004]
A conventional multi-layered multilayer ceramic capacitor will be described with reference to FIG. FIG. 13 is a schematic exploded perspective view showing the structure of internal electrodes of a conventional multi-layered multilayer ceramic capacitor.
[0005]
As shown in FIG. 13, in the conventional multi-layered multilayer ceramic capacitor, the first internal electrode 1 and the second internal electrode 2 are alternately stacked with the dielectric layer 3 interposed therebetween, and the first internal electrode A plurality (four in FIG. 13) of the first and second internal electrodes 2 are formed on the same plane, and a plurality of pairs of internal electrodes are alternately exposed on opposite end faces of the element body. A plurality of pairs of external electrodes (not shown) are formed so as to be connected. Further, since it is necessary to reduce the shape of the external electrode in the multi-layer monolithic ceramic capacitor, as shown in FIG. 13, the first internal electrode 1 and the second internal electrode 2 are composed of the capacitance forming electrode portion 1a, 2a and lead electrode portions 1b and 2b are provided, the width dimensions of the lead electrode portions 1b and 2b are made smaller than those of the capacity forming electrode portions 1a and 2a, and the size of the connection portion with the external electrode is made small.
[0006]
On the other hand, the capacitance of the multilayer ceramic capacitor is determined by the overlapping area of the internal electrodes, the effective number of dielectric layers sandwiched between the internal electrodes, the thickness of the dielectric layers, and the relative dielectric constant of the dielectric layers. Therefore, in order to obtain a desired capacitance, any one or more of the above factors are changed.
[0007]
However, producing very many types of dielectric ceramic materials having different relative dielectric constants and producing ceramic raw sheets to be very various types of dielectric layers are cumbersome and poor in production efficiency. Further, the adjustment with the effective number of layers cannot make fine adjustment of the capacitance. Therefore, usually, preparing conductor layer patterns to be various types of internal electrodes with different areas, changing the thickness of the dielectric layer and the number of effective layers, and using conductor layer patterns according to the capacitance design In general, a desired capacitance is obtained by changing the overlapping area of the internal electrodes. However, preparing printing plates having a very large variety of conductor layer patterns also raises the problem of making the plate making cost difficult and making it difficult to reduce the cost of the product.
[0008]
For this reason, in a conventional multi-layered multilayer ceramic capacitor, as a method of obtaining various types of capacitance by changing the overlapping area of internal electrodes using one type of conductor layer pattern, Japanese Patent Laid-Open No. 2001-203122 As described above, the conductor layer pattern is used as an internal electrode provided with first and second lead portions extending from the two sides of the capacitance forming portion to the opposite end faces. The first and second lead portions of the conductor layer pattern are alternately shifted in the opposing direction so as to be exposed from the opposite end faces, and the overlapping area between the internal electrodes is changed by adjusting the shift amount. A method of adjusting the capacitance is also proposed.
[0009]
[Problems to be solved by the invention]
However, the method disclosed in Japanese Patent Laid-Open No. 2001-203122 uses a conductor layer pattern provided with first and second lead portions that are extended from two sides of the capacitance forming portion to opposite end faces. Since the area of the capacitor forming portions facing each other across the dielectric layer is limited and the overlapping area of the internal electrodes cannot be increased, there is a problem that it is not suitable for increasing the capacity.
[0010]
The present invention solves the above-mentioned conventional problems, and the overlap of the internal electrodes can be changed by using one type of conductor layer pattern, and various types of capacitance can be easily obtained, and the overlap area of the internal electrodes can be obtained. An object of the present invention is to provide a monolithic ceramic electronic component and a method for manufacturing the same, which can increase the capacity of the ceramic ceramic component.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
[0012]
According to the first aspect of the present invention, there is provided a laminated sintered body in which dielectric layers and internal electrodes are alternately laminated, a first external electrode and a second opposed electrode provided on the surface of the laminated sintered body. A multilayer ceramic electronic component including an external electrode, wherein the internal electrode includes a first internal electrode and a second internal electrode provided with a dielectric layer in between, and the first and second internal electrodes Each of the electrodes includes a capacitor forming electrode, a lead electrode connecting the capacitor forming electrode and one external electrode, and a dummy electrode not connected to the capacitor forming electrode and connected to the other external electrode in the same layer, The widths of the extraction electrode and the dummy electrode are substantially the same and smaller than the capacitance forming electrode, and the shape of the second internal electrode is substantially the same shape as the first internal electrode rotated by about 180 degrees. It has a configuration that is a shape that has been Even when the internal electrode has a shape that requires a smaller width of the extraction electrode part and a smaller dimension of the connection part with the external electrode than the capacitance forming electrode part, the internal electrode is used to obtain a desired capacitance. Since the electrode overlap area can be changed with a minimum of one type of conductor layer pattern, it becomes a multilayer ceramic electronic component that can easily obtain various types of capacitance, and the internal electrode overlap area can be increased compared to the conventional one. In addition, the effect of the multilayer ceramic electronic component can be obtained in which the width of the overlapping area that can be changed, that is, the capacitance range can be increased.
[0013]
Also, as the internal electrode connected to the external electrode, in addition to the lead electrode connected to the capacitance forming electrode, a dummy electrode that is not connected to the capacitance forming electrode is provided, so that the connection strength between the external electrode and the internal electrode is improved and reliable. The effect of becoming a highly functional multilayer ceramic electronic component can be obtained.
[0014]
The invention according to claim 2 of the present invention has a configuration in which the distance between the dummy electrode and the capacitance forming electrode is particularly three times or more the thickness per dielectric layer, whereby the dummy electrode In addition to ensuring sufficient electrical insulation between the capacitor electrode and the capacitor forming electrode, the gap between the outer electrode and the inner electrode facing the outer electrode is less than three times the thickness per dielectric layer due to misalignment, cutting, etc. In the case of proximity, this can be selected and removed by capacitance measurement. Accordingly, it is possible to obtain a function effect that a product having a high risk of dielectric breakdown between the external electrode and the opposed internal electrode can be removed in advance, and a highly reliable multilayer ceramic electronic component can be obtained.
[0015]
According to a third aspect of the present invention, there is provided a laminated sintered body in which dielectric layers and internal electrodes are alternately laminated, and a plurality of pairs of opposing first external electrodes provided on the surface of the laminated sintered body. A multi-layered multilayer ceramic electronic component comprising a second external electrode, wherein the internal electrode comprises a first internal electrode and a second internal electrode provided with a dielectric layer in between, The first and second internal electrodes are a dummy forming a capacitor forming electrode, a lead electrode connecting the capacitor forming electrode and one external electrode, and a dummy connecting to the other external electrode without being connected to the capacitor forming electrode, respectively. And the width of the extraction electrode and the dummy electrode is substantially the same and smaller than that of the capacitance forming electrode, and the shape of the second internal electrode is substantially the same as that of the first internal electrode. It is a shape obtained by rotating the same shape by approximately 180 degrees, and the first and first Each of the internal electrodes has a configuration in which a plurality of internal electrodes are arranged side by side in the same layer, thereby reducing the width of the extraction electrode portion and the size of the connection portion with the external electrode compared to the capacitance forming electrode portion. Even in the case of a required shape, the overlapping area of internal electrodes for obtaining a desired capacitance can be changed with a minimum of one type of conductor layer pattern, so that various types of capacitance can be easily obtained. In addition to the continuous multilayer ceramic electronic component, the overlapping area of the internal electrodes can be increased compared to the conventional one, and the width of the overlapping area that can be changed, that is, the capacitance range can be increased. The effect is obtained.
[0016]
Also, as the internal electrode connected to the external electrode, in addition to the lead electrode connected to the capacitance forming electrode, a dummy electrode that is not connected to the capacitance forming electrode is provided, so that the connection strength between the external electrode and the internal electrode is improved and reliable. The effect of becoming a multi-layered multilayer ceramic electronic component having high performance can be obtained.
[0017]
The invention according to claim 4 of the present invention is particularly a multi-layered multilayer ceramic electronic component having a plurality of pairs of external electrodes, wherein the distance between the dummy electrode and the capacitance forming electrode is equal to that per dielectric layer. It has a configuration that is at least three times the thickness, which not only ensures sufficient electrical insulation between the dummy electrode and the capacitance forming electrode, but also faces the external electrode due to misalignment, cutting, etc. When the distance to the internal electrode is close to 3 times or less the thickness per dielectric layer, this can be selectively removed by capacitance measurement. Accordingly, it is possible to obtain a multi-layer monolithic ceramic electronic component having high reliability by removing a product having a high risk of dielectric breakdown between the external electrode and the opposed internal electrode in advance.
[0018]
According to the fifth aspect of the present invention, in particular, a plurality of pairs of external electrodes and a plurality of internal electrodes arranged in parallel on the same layer have different pitches of the external electrodes and capacitance forming electrodes of the internal electrodes. As a result, it is not necessary to adjust the pitch of the capacitance forming electrodes of the internal electrodes arranged in parallel in the same layer to the pitch of the external electrodes, and the degree of freedom of arrangement of the capacitance forming electrodes is increased, and the external dimensions are increased. Since the area of the capacitance forming electrode can be increased without increasing the size, an effect of obtaining a multi-layered multilayer ceramic electronic component that can be reduced in size and increased in capacity can be obtained.
[0019]
The invention according to claim 6 of the present invention includes a first step of alternately laminating a ceramic raw sheet and a conductor layer serving as an internal electrode to produce a laminate block, and cutting and separating the laminate block into individual pieces. A second step of producing a laminated sintered body by firing, a third step of forming an external electrode on the laminated sintered body, and a fourth step of inspecting this, wherein in the first step, The formation of the conductor layer serving as the internal electrode consists of a conductor layer pattern group in which a large number of conductor layer patterns, each of which has a rectangular pattern serving as a capacitance forming electrode, and a strip pattern serving as a lead electrode and dummy electrode connected to the rectangular pattern, are arranged vertically and horizontally. 1st electrode formation process performed using, and the 2nd electrode formation process performed by rotating substantially the same conductor layer pattern group as the above-mentioned conductor layer pattern group by about 180 degrees are manufactured alternately, and manufacture of a multilayer ceramic electronic component Direction As a result, even in a multilayer ceramic electronic component in which the internal electrode has a shape that requires a smaller width dimension of the extraction electrode part and a smaller dimension of the connection part with the external electrode than the capacitance forming electrode part, it is desirable. Since the change of the overlapping area of the internal electrodes to obtain the required capacitance can be made with at least one type of conductor layer pattern, the plate-making cost can be reduced, the cost of the product can be reduced, and the desired various types of capacitance can be reduced. The effect that a multilayer ceramic electronic component can be manufactured easily is obtained.
[0020]
In addition, the overlapping area of the internal electrodes can be increased as compared with the conventional case, and the width of the overlapping area that can be changed, that is, the range of the electrostatic capacity can be increased, so that the multilayer ceramic electronic component can be increased in capacity.
[0021]
In the invention according to claim 7 of the present invention, in particular, in the second electrode forming step, the same conductor layer pattern group as in the first electrode forming step is used, and this is rotated by approximately 180 degrees to form a conductor layer that becomes an internal electrode. This is a method of manufacturing a multilayer ceramic electronic component to be formed, whereby the internal electrode has a shape that requires a smaller width dimension of the lead electrode portion and a smaller size of the connection portion with the external electrode than the capacitance forming electrode portion. Even in a multilayer ceramic electronic component, the number of printing plates required to form a conductor layer pattern is only one, and the overlapping area of internal electrodes can be changed with one printing plate, reducing plate making costs to the limit. As a result, the cost and cost of the product can be reduced.
[0022]
The invention according to claim 8 of the present invention uses a conductor layer pattern group having a shape obtained by rotating substantially the same shape as that of the conductor layer pattern group in the first electrode forming step, approximately 180 degrees, in the second electrode forming step. The method of manufacturing a multilayer ceramic electronic component for forming a conductor layer to be an internal electrode, whereby the internal electrode has a smaller width dimension of the extraction electrode portion than the capacitance formation electrode portion, and the size of the connection portion with the external electrode Even in multilayer ceramic electronic components that have a shape that needs to be reduced, the number of printing plates required to form a conductor layer pattern is two, and the overlapping area of internal electrodes can be changed by only two printing plates. Therefore, it is possible to obtain the operational effect that the plate-making cost can be greatly reduced and the cost of the product can be reduced.
[0023]
The invention according to claim 9 of the present invention is a method for selecting and removing defective products in which the distance between the external electrode and the internal electrode facing the external electrode is particularly close by measuring the electrostatic capacitance. A product having a high risk of dielectric breakdown between the opposing internal electrodes can be removed in advance, and an effect of being able to easily manufacture a highly reliable multilayer ceramic electronic component can be obtained.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Hereinafter, a multilayer ceramic capacitor according to the first, second, third, fourth, sixth, seventh, and ninth aspects of the present invention will be described with reference to the first embodiment. Explained as an example.
[0025]
Embodiment 1 of the present invention will be described with reference to the drawings. 1 is a schematic exploded perspective view showing the structure of an internal electrode of a multilayer ceramic capacitor according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of a multilayer sintered body of the multilayer ceramic capacitor according to Embodiment 1 of the present invention. FIG. 3 is a perspective view of the multilayer ceramic capacitor according to Embodiment 1 of the present invention.
[0026]
1-3, 10 is a laminated sintered body, 11 to 14 are first external electrodes, 21 to 24 are second external electrodes, 100 is a dielectric layer, 110 to 140 are first internal electrodes, 210 to 240 are second internal electrodes.
[0027]
As shown in FIG. 3, the multilayer ceramic capacitor according to the first embodiment includes a laminated sintered body 10 in which dielectric layers and internal electrodes are alternately laminated, and four pairs provided on the surface of the laminated sintered body 10. Opposing external electrodes, that is, the first external electrode 11 and the second external electrode 21, the first external electrode 12 and the second external electrode 22, the first external electrode 13 and the second external electrode 23, and the first external electrode Four pairs of one external electrode 14 and second external electrode 24 are provided. As shown in FIGS. 1 to 3, four internal electrodes are arranged in parallel in the first internal electrodes 110 to 140 arranged in one layer with the dielectric layer 100 in between, and four in the other layer. The first internal electrode 110 and the second internal electrode 210, the first internal electrode 120 and the second internal electrode 220, the first internal electrode 130 and the second internal electrode 210. The internal electrode 230, the first internal electrode 140, and the second internal electrode 240 each constitute one capacitor, and four capacitors are incorporated in the laminated sintered body 10 that is one element body. This is a continuous multilayer ceramic capacitor.
[0028]
Each of the internal electrodes has a capacitance forming electrode, an extraction electrode that connects the capacitance forming electrode and one external electrode, and a dummy electrode that is not connected to the capacitance forming electrode and connected to the other external electrode as a unit. The structure is in the same layer. Specifically, as shown in FIG. 1, the first internal electrode 110 is connected to the capacitance forming electrode 110a, the extraction electrode 110b that connects the capacitance formation electrode 110a and the first external electrode 11, and the capacitance formation electrode 110a. A dummy electrode 110c that is disconnected and connected to the second external electrode 21; the second internal electrode 210 is a lead that connects the capacitance forming electrode 210a and the capacitance forming electrode 210a to the second external electrode 21; An electrode 210b and a dummy electrode 210c connected to the first external electrode 11 without being connected to the capacitance forming electrode 210a are provided. In addition, the widths of the extraction electrode and the dummy electrode are substantially the same and are smaller than the capacitance forming electrode. For example, the width of the extraction electrode 110b and the dummy electrode 110c is substantially the same and is smaller than that of the capacitance forming electrode 110a.
[0029]
Further, as shown in FIG. 1, the second internal electrodes 210, 220, 230, and 240 have the same shape as that of the first internal electrodes 140, 130, 120, and 110, and are rotated by about 180 degrees. Yes.
[0030]
By configuring as described above, in the multilayer ceramic capacitor according to the first embodiment, the inner electrode has a smaller width dimension of the extraction electrode portion than the capacitance forming electrode portion, and the dimension of the connection portion with the external electrode is reduced. Even when the shape is necessary, the overlapping area of the internal electrodes for obtaining a desired capacitance can be changed with a minimum of one type of conductor layer pattern, so that it is possible to easily obtain various types of capacitance. In addition to a ceramic capacitor, a multilayer ceramic capacitor in which the overlapping area of internal electrodes can be increased as compared with the conventional one, and the width of the overlapping area that can be changed, that is, the capacitance range can be increased. Specifically, it will be described together with the method for manufacturing the multilayer ceramic capacitor in the first embodiment of the present invention.
[0031]
Below, the manufacturing method of the multilayer ceramic capacitor in Embodiment 1 of this invention is demonstrated. FIG. 4 is a pattern diagram of a printing plate for forming a conductor layer pattern group serving as an internal electrode used in the first embodiment of the present invention, and a rectangular pattern 501 serving as a capacitance forming electrode and a lead electrode connected thereto. And a conductor layer pattern group in which a large number of conductor layer patterns 500 composed of strip-like patterns 502 serving as dummy electrodes are arranged vertically and horizontally. Also, the arrangement of the conductor layer pattern 500 shown in FIG. 4 is such that the gap between the dummy electrode and the capacitance forming electrode after firing is a strip-shaped pattern 502 that becomes a dummy electrode so that the thickness per dielectric layer is three times or more. The interval D1 between the rectangular patterns 501 serving as the capacitance forming electrodes was four times the thickness of the ceramic raw sheet described later.
[0032]
First, a ceramic raw sheet made of a ceramic powder mainly composed of barium titanate and an organic binder was prepared and prepared. At this time, the thickness of the ceramic raw sheet was about 15 μm.
[0033]
Then, a plurality of the ceramic raw sheets were laminated on the support plate via an adhesive sheet to form a lower ineffective layer. Subsequently, the first inner electrodes 110 to 140 of the lowermost outermost layer are formed by a metal paste containing nickel as a main component on the ineffective layer by screen printing using the printing plate having the pattern shown in FIG. A conductor layer was formed.
[0034]
Next, the laminate on which the conductor layers to be the first internal electrodes 110 to 140 are formed is rotated approximately 180 degrees together with the support plate, the printing plate is aligned, and the ceramic raw sheet is placed on the laminate. A conductive layer to be the second internal electrodes 210 to 240 was formed on the ceramic raw sheet by a screen printing method using the same printing plate as described above, using a metal paste mainly composed of nickel.
[0035]
Further, the laminated body in which the conductor layer to be the second internal electrodes 210 to 240 is formed is rotated approximately 180 degrees together with the support plate, the printing plate is aligned, and the ceramic raw sheet is placed on the laminated body. The conductor layers to be the first internal electrodes 110 to 140 were formed on the ceramic raw sheet by a screen printing method using the same printing plate as above with a metal paste mainly composed of nickel.
[0036]
Subsequently, the laminate on which the conductor layers to be the first internal electrodes 110 to 140 are formed is rotated approximately 180 degrees together with the support plate, the printing plate is aligned, and the ceramic raw sheet is placed on the laminate. A conductive layer to be the second internal electrodes 210 to 240 was formed on the ceramic raw sheet by a screen printing method using the same printing plate as described above, using a metal paste mainly composed of nickel.
[0037]
Printing of the conductor layer to be the first internal electrodes 110 to 140, rotation by about 180 degrees, positioning of the printing plate, lamination of the ceramic raw sheet, printing of the conductor layer to be the second internal electrodes 210 to 240, The rotation of about 180 degrees, the alignment of the printing plate, and the lamination of the ceramic green sheets were repeated a desired number of times. Then, a plurality of the ceramic raw sheets were laminated thereon to form an upper ineffective layer to obtain a laminate block. In the above description, the rotation of the printing plate and the positioning of the printing plate are performed by rotating the laminate together with the support plate by about 180 °. However, the lamination and the printing plate may be relatively rotated by about 180 °. Alternatively, the laminate may be fixed and the printing plate may be rotated approximately 180 degrees.
[0038]
Next, the laminated body block was cut and separated into desired dimensions at the cutting positions 510 and 520 shown in FIG. 4 to obtain individual raw chips. This raw chip was heated in nitrogen gas to remove the binder, and then heated to 1300 ° C. in a nitrogen-hydrogen mixed gas atmosphere in which nickel was not oxidized to obtain a sintered body.
[0039]
Next, the sintered body was chamfered, and the internal electrodes were completely exposed on the surface of the sintered body to obtain the laminated sintered body 10 of FIG. Subsequently, an electrode paste mainly composed of copper is applied to both end faces of the laminated sintered body 10 and baked in a nitrogen atmosphere at 800 ° C., and then nickel plating and solder plating are performed on the electrode paste. Electrodes 11 to 14 and second external electrodes 21 to 24 were formed, and the multilayer ceramic capacitor according to the first embodiment shown in FIG. 3 was produced.
[0040]
The produced multilayer ceramic capacitor according to the first embodiment has a longitudinal dimension of 3.2 mm, a width dimension of 1.6 mm, and a thickness dimension of 0.85 mm.
[0041]
Next, the multilayer ceramic capacitor and the manufacturing method thereof according to the first embodiment are a single printing plate for forming the conductor layer pattern group shown in FIG. 4, and the overlapping area of the internal electrodes can be easily changed. It will be described in detail with reference to FIG. 4 to FIG. 6 that the multilayer ceramic capacitor can obtain various types of capacitance.
[0042]
FIG. 5 is a plan perspective view showing an example of the overlapping state of the internal electrodes of the multilayer ceramic capacitor according to Embodiment 1 of the present invention, and FIG. 6 is the overlap of the internal electrodes of the multilayer ceramic capacitor according to Embodiment 1 of the present invention. It is a plane perspective view which shows the other example of a state. For ease of explanation, FIGS. 5 and 6 show only one layer each of the first internal electrode and the second internal electrode.
[0043]
First, as an example of the overlapping state of the internal electrodes, FIG. 5 shows a case where the electrostatic capacity obtained with the maximum overlapping area is maximum. As shown in FIG. 5, the shape of the second internal electrodes 210 to 240 is a shape obtained by rotating the same shape as the first internal electrodes 110 to 140 by approximately 180 degrees, and the capacity of the first internal electrodes. The overlapping area of the forming electrode and the capacitance forming electrode of the second internal electrode, for example, the overlapping area of the capacitance forming electrode 110a of the first internal electrode 110 and the capacitance forming electrode 210a of the second internal electrode 210 is maximized. It is aligned.
[0044]
In order to change the overlapping area of the capacitance forming electrodes and change the obtained capacitance, the first internal electrodes 110 to 140 are substantially not printed when the conductor layers to be the second internal electrodes 210 to 240 are printed. It may be formed by being rotated 180 degrees and shifted in the vertical direction of FIG. For example, when the conductor layer is printed, the mark 530 and the mark 550 are aligned, and when the mark 540 and the mark 560 are aligned, the mark 530 531 and the mark 550 551 are aligned, and the mark 540 541 is aligned. And the mark 560 561 are aligned, the overlapping area of the capacitance forming electrodes is maximized, the mark 530 531 and the mark 550 555 are aligned, and the mark 540 541 and the mark 560 565 are aligned. In this case, the overlapping area of the capacitance forming electrodes is minimized.
[0045]
Then, for example, as shown in FIG. 6, the overlapping area of the capacitance forming electrode 110a of the first internal electrode 110 and the capacitance forming electrode 210a of the second internal electrode 210 can be reduced, and a laminate having a small capacitance is obtained. It becomes a ceramic capacitor.
[0046]
Next, in the multilayer ceramic capacitor according to the first embodiment of the present invention, the distance between the dummy electrode and the capacitance forming electrode is set to three times or more the thickness per dielectric layer, so that the external electrode When the distance between the internal electrode and the opposing internal electrode is close to three times or less the thickness per dielectric layer, this can be selectively removed by capacitance measurement, and therefore between the external electrode and the opposing internal electrode In this section, we will explain the effect of removing a product with a high risk of dielectric breakdown in advance and making it a highly reliable multilayer ceramic capacitor. If a product in which the distance between the external electrode and the opposed internal electrode is close to three times the thickness of the dielectric layer is high, there is a high risk of dielectric breakdown between the external electrode and the opposed internal electrode. This is the result of various investigations, because the internal electrodes are more likely to break down in the same layer than between the layers of the internal electrodes.
[0047]
7 is a cross-sectional view of the multilayer ceramic capacitor when it is cut at a desired cutting position 510 in FIG. 4, and FIG. 8 is a multilayer view when it is cut at an undesired cutting position 511 in FIG. It is sectional drawing of a ceramic capacitor. For easy understanding, FIGS. 7 and 8 show only one layer each of the first internal electrode and the second internal electrode.
[0048]
As shown in FIG. 7, in the multilayer ceramic capacitor manufactured by cutting at a desired cutting position 510, the first internal electrode 110 includes a capacitance forming electrode 110a, the capacitance forming electrode 110a, and the first external electrode 11. It has a lead electrode 110b to be connected and a dummy electrode 110c to be connected to the second external electrode 21 without being connected to the capacitance forming electrode 110a. The second internal electrode 210 includes a capacitance forming electrode 210a and the capacitance forming electrode 210a. This has a configuration including an extraction electrode 210b for connecting to the second external electrode 21 and a dummy electrode 210c for connecting to the first external electrode 11 without being connected to the capacitance forming electrode 210a. The capacitance of the multilayer ceramic capacitor is a capacitance C1 formed by the overlapping portion of the capacitance forming electrode 110a of the first internal electrode 110 and the capacitance forming electrode 210a of the second internal electrode 210.
[0049]
However, as shown in FIG. 8, in the multilayer ceramic capacitor manufactured by cutting at an undesired cutting position 511, the first internal electrode 110 is an electrode to be the capacitance forming electrode 110a, the extraction electrode 110b, and the dummy electrode 110c. None of these are connected to either the first external electrode 11 or the second external electrode 21 and are in close proximity to each other with a thickness not more than three times the thickness per dielectric layer, and the second internal electrode 210 has a configuration in which a capacitance forming electrode 210a is connected to the second external electrode 21, and a part of the capacitance forming electrode 210a connected to the electrode to be the extraction electrode 210b and the dummy electrode 210c is connected to the first external electrode 11. It has become. The capacitance of the multilayer ceramic capacitor is such that the capacitance C1 formed by the overlapping portion of the capacitance forming electrode 110a of the first internal electrode 110 and the capacitance forming electrode 210a of the second internal electrode 210, and the first capacitance A capacitance C2 formed in an overlapping portion between the electrode to be the extraction electrode 110b and the dummy electrode 110c of the internal electrode 110 and the electrode to be the extraction electrode 210b and the dummy electrode 210c of the second internal electrode 210 is connected in series. Therefore, this capacitance is (C1 × C2) / (C1 + C2), which is a very small capacitance compared to C1.
[0050]
Therefore, by measuring the electrostatic capacity, it is possible to select and remove a defective product whose distance between the external electrode and the internal electrode facing the external electrode is very close due to stacking deviation cutting deviation as shown in FIG. Highly reliable multilayer ceramic capacitors can be obtained by removing in advance products that have a high risk of dielectric breakdown between the internal electrodes facing each other.
[0051]
(Embodiment 2)
Hereinafter, the second embodiment of the present invention, in particular, the invention described in claims 5 and 8 will be described by taking a multilayer ceramic capacitor as an example.
[0052]
Embodiment 2 of the present invention will be described below with reference to the drawings.
[0053]
FIG. 9 is a plan perspective view showing an example of the overlapping state of the internal electrodes of the multilayer ceramic capacitor according to Embodiment 2 of the present invention, and FIG. 10 is the overlap of internal electrodes of the multilayer ceramic capacitor according to Embodiment 2 of the present invention. It is a plane perspective view which shows the other example of a state. For easy understanding, FIGS. 9 and 10 show only one layer each of the first internal electrode and the second internal electrode.
[0054]
9 and 10, 15 is a laminated sintered body, 16 to 19 are first external electrodes, 26 to 29 are second external electrodes, 160 to 190 are first internal electrodes, and 260 to 290 are second electrodes. Internal electrode.
[0055]
The multilayer ceramic capacitor according to the second embodiment is particularly different from the first embodiment in the shapes of the first internal electrodes 160 to 190 and the second internal electrodes 260 to 290, which are shown in FIG. 9 and FIG. Thus, in the multilayer ceramic capacitor according to the second embodiment, the pitch P2 of the capacitance forming electrodes of the internal electrodes arranged in parallel in the same layer is different from the pitch P1 of the plurality of pairs of external electrodes, and the pitch of the capacitance forming electrodes of the internal electrodes P2 is configured to be smaller than the pitch P1 of the external electrodes.
[0056]
Thus, as is clear from a comparison between FIG. 5 in the first embodiment and FIG. 9 in the second embodiment, the multilayer ceramic capacitor in the second embodiment has a degree of freedom in the arrangement of the capacitance forming electrodes. In addition, since the interval between the capacitance forming electrodes in the same layer can be reduced, the area of the capacitance forming electrode can be increased without changing the outer dimensions, the pitch of the external electrodes, and the interval between the outer shape and the capacitance forming electrode, and the size and capacity can be increased. A multi-layered multilayer ceramic capacitor.
[0057]
As shown in FIGS. 9 and 10, the multilayer ceramic capacitor according to the second embodiment includes a multilayer sintered body 15 in which dielectric layers and internal electrodes are alternately stacked, and a surface of the multilayer sintered body 15. The point which is provided with four pairs of external electrodes 16 to 19 and 26 to 29 which are provided, and the internal electrodes are arranged in parallel with four first internal electrodes 160 to 190 arranged on one side with a dielectric layer in between. The four-layered multilayer ceramic capacitor is composed of four internal capacitors 260 to 290 arranged in parallel to each other, and includes four capacitors in a single layered laminated sintered body 15. This is the same as in the first embodiment.
[0058]
In addition, each of the internal electrodes has a capacitance forming electrode, an extraction electrode that connects the capacitance forming electrode and one external electrode, and a dummy electrode that is not connected to the capacitance forming electrode and connected to the other external electrode as one unit. In the same layer, the width of the extraction electrode and the dummy electrode is substantially the same and smaller than that of the capacitance forming electrode, and the shape of the second internal electrodes 260 to 290 is the first internal electrode 160 to It is the same as the first embodiment in that the shape substantially the same as 190 is rotated by approximately 180 degrees.
[0059]
Therefore, the multilayer ceramic capacitor according to the second embodiment can achieve the same effects as those of the first embodiment.
[0060]
Below, the manufacturing method of the multilayer ceramic capacitor in Embodiment 2 of this invention is demonstrated.
[0061]
FIG. 11 is a pattern diagram of a printing plate for forming a conductor layer pattern group serving as a first internal electrode used in Embodiment 2 of the present invention, and a rectangular pattern 601 serving as a capacitance forming electrode and a connection to the rectangular pattern 601 This is a conductor layer pattern group in which a large number of conductor layer patterns 600 including strip electrodes 602 serving as extraction electrodes and dummy electrodes are arranged vertically and horizontally. Similarly to the first embodiment, the conductor layer pattern 600 is arranged so that the distance between the dummy electrode and the capacitance forming electrode after firing is three times or more the thickness per dielectric layer. The distance between the strip-shaped pattern 602 and the rectangular pattern 601 serving as the capacitance forming electrode was four times the thickness of the ceramic raw sheet.
[0062]
FIG. 12 is a pattern diagram of a printing plate for forming a conductor layer pattern group to be the second internal electrode used in Embodiment 2 of the present invention, and a conductor to be the first internal electrode of FIG. It is the pattern which rotated the pattern figure of the printing plate for forming a layer pattern group 180 degree | times.
[0063]
The manufacturing method of the multilayer ceramic capacitor in the second embodiment is particularly different from that in the first embodiment, in order to form a conductor layer pattern group by using two printing plates shown in FIGS. 11 and 12. This is in that a laminated body block is formed by forming a conductor layer to be an electrode, and the rest is the same as in the first embodiment, and a detailed description thereof is omitted.
[0064]
First, two screen printing machines were prepared: a screen printing machine with a printing plate with the pattern shown in FIG. 11 and a screen printing machine with a printing plate with the pattern shown in FIG.
[0065]
Next, a plurality of the ceramic raw sheets were laminated on the support plate via an adhesive sheet to form a lower ineffective layer. Subsequently, the first inner electrodes 160 to 190 of the lowermost outermost layer are formed by a metal paste containing nickel as a main component on the ineffective layer by screen printing using the printing plate having the pattern shown in FIG. A conductor layer was formed.
[0066]
Next, the alignment marks 630 to 660 in FIG. 11 and the alignment marks 730 to 760 in FIG. 12 are placed on the laminate, with the marks 630 and 730, the marks 640 and 740, the marks 650 and 750, A metal paste containing nickel as a main component is formed by laminating a ceramic raw sheet by aligning the marks 660 and 760 and using a printing plate having the pattern shown in FIG. 12 on the ceramic raw sheet by a screen printing method. Thus, a conductor layer to be the second internal electrodes 260 to 290 was formed.
[0067]
Furthermore, the printing plate of FIG. 11 is aligned on this laminate, a ceramic raw sheet is laminated, and the printing plate having the pattern shown in FIG. 11 is used on the ceramic raw sheet by a screen printing method. A conductor layer to be the first internal electrodes 160 to 190 was formed from a metal paste mainly composed of nickel.
[0068]
Subsequently, the printing plate of FIG. 12 is aligned on this laminate, and a ceramic raw sheet is laminated, and a screen printing method using the printing plate of the pattern shown in FIG. 12 on this ceramic raw sheet. Thus, a conductor layer to be the second internal electrodes 260 to 290 was formed using a metal paste mainly composed of nickel.
[0069]
Printing of the conductor layer to be the first internal electrodes 160 to 190, alignment of the printing plate, lamination of the ceramic raw sheet, printing of the conductor layer to be the second internal electrodes 260 to 290, alignment of the printing plate The lamination of the green ceramic sheets was repeated a desired number of times. Then, a plurality of the ceramic raw sheets were laminated thereon to form an upper ineffective layer to obtain a laminate block. The thickness of the ceramic raw sheet, the thickness of the conductor layer, and the number of laminated layers were the same as those in the first embodiment.
[0070]
Next, the laminated body block is cut and separated, subjected to binder removal treatment, fired, and chamfered to obtain a laminated sintered body 15, and then the first external electrodes 16 to 19 and the second external electrode 26. -29 were formed to produce a multilayer ceramic capacitor according to the second embodiment.
[0071]
The manufactured multilayer ceramic capacitor according to the second embodiment has a longitudinal dimension of 3.2 mm, a width dimension of 1.6 mm, and a thickness direction dimension of 0.85 mm. Both the outer shape and dimensions are the same as those of the first embodiment. Identical.
[0072]
In the following, with the two printing plates of the pattern shown in FIGS. 11 and 12, the multilayer ceramic capacitor and the manufacturing method thereof in the second embodiment are changed in the overlapping area of the internal electrodes as in the first embodiment. It will be described with reference to FIG. 9 and FIG. 10 that a multilayer ceramic capacitor that can easily obtain various types of capacitance can be obtained.
[0073]
First, as an example of the overlapping state of the internal electrodes, FIG. 9 shows a case where the electrostatic capacity obtained with the maximum overlapping area is maximum. As shown in FIG. 9, the shape of the second internal electrodes 260 to 290 is a shape obtained by rotating the same shape as the first internal electrodes 160 to 190 by 180 degrees, and forming the capacitance of the first internal electrodes. Position where the overlapping area of the electrode and the capacitance forming electrode of the second internal electrode, for example, the overlapping area of the capacitance forming electrode 160a of the first internal electrode 160 and the capacitance forming electrode 260a of the second internal electrode 260 is maximized It is matched.
[0074]
In order to change the overlapping area of the capacitance forming electrodes and change the obtained capacitance, when printing the conductor layers to be the second internal electrodes 260 to 290 using the printing plate of the pattern of FIG. 12 may be formed by shifting the alignment marks 730 to 760 of FIG. 12 in the vertical direction. For example, as shown in FIG. 10, the capacitance of the first internal electrode 160 may be formed. The overlapping area of the formation electrode 160a and the capacitance formation electrode 260a of the second internal electrode 260 can be reduced, and a multilayer ceramic capacitor having a small capacitance is obtained.
[0075]
Further, in the multilayer ceramic capacitor according to the second embodiment of the present invention, the distance between the dummy electrode and the capacitance forming electrode is set to be three times or more the thickness per dielectric layer, so that it can be When the distance between the opposing internal electrodes is close to 3 times or less the thickness per dielectric layer, this can be selectively removed by capacitance measurement, and therefore between the external electrode and the opposing internal electrode. The effect of removing a product having a high risk of dielectric breakdown in advance and becoming a highly reliable multilayer ceramic capacitor is the same as that of the first embodiment, and thus the description thereof is omitted.
[0076]
In the first embodiment and the second embodiment, the method of sequentially stacking the ceramic raw sheets and screen-printing the conductor layers has been described as a method for manufacturing the laminate block. However, the present invention is not limited to this. Alternatively, it can be carried out by various known methods such as a method of laminating a ceramic raw sheet on which a conductor layer has been printed and a method of laminating and forming a ceramic raw sheet and a conductor layer.
[0077]
In addition, as a method for forming a conductor layer to be an internal electrode, in the first embodiment, a single printing plate having the pattern shown in FIG. 4 is alternately rotated approximately 180 degrees to form a conductor layer. In the second embodiment, the method of forming the conductor layer by alternately using the two printing plates having the patterns shown in FIG. 11 and FIG. 12 is described. It is not limited by the pattern, and may be selected in consideration of productivity, quality, etc. in the manufacturing process of the laminated body block.
[0078]
Furthermore, in the printing plates having the patterns shown in FIGS. 4, 11 and 12, the conductor layer pattern is shown as an example in which all the belt-like patterns are arranged in the same direction, but it is not always necessary to arrange in this way. When the conductor layer pattern group serving as the first internal electrode is rotated approximately 180 degrees, the strip pattern of the conductor layer pattern group serving as the first internal electrode and the strip pattern of the conductor layer pattern group serving as the second internal electrode What is necessary is just to arrange | position so that a pattern may be formed alternately.
[0079]
In the first embodiment and the second embodiment, the quadruple multilayer ceramic capacitor having four capacitors built in one multilayer sintered body has been described. By adopting the configuration described in the first embodiment and the second embodiment except for the configuration in which the pitch of the capacitance forming electrodes of the plurality of internal electrodes is different, only one capacitor is provided in the single element. The same effect can be obtained in a general multilayer ceramic capacitor built in.
[0080]
In the first and second embodiments, the multilayer ceramic capacitor has been described as an example. However, in a multilayer ceramic electronic component such as a multilayer varistor or a multilayer thermistor, desired electrical characteristics are obtained in the same manner. Therefore, it is possible to change the overlapping area of the internal electrodes with a minimum of one kind of conductor layer pattern, and it is possible to easily obtain a multilayer ceramic electronic component having various kinds of electrical characteristics.
[0081]
【The invention's effect】
As described above, according to the present invention, the laminated sintered body in which the dielectric layers and the internal electrodes are alternately laminated, and the first external electrode and the second external electrode facing each other provided on the surface of the laminated sintered body are provided. The multilayer ceramic electronic component is provided, wherein the internal electrode includes a first internal electrode and a second internal electrode provided with a dielectric layer interposed therebetween, and the first and second internal electrodes are respectively A capacitor-forming electrode, a lead-out electrode connecting the capacitor-forming electrode and one external electrode, and a dummy electrode not connected to the capacitor-forming electrode and connected to the other external electrode in the same layer; The width of the dummy electrode is substantially the same and smaller than that of the capacitance forming electrode, and the shape of the second internal electrode is a shape obtained by rotating substantially the same shape as the first internal electrode by approximately 180 degrees. A multilayer ceramic electronic component with internal electrodes Even if it is a shape that needs to reduce the width of the extraction electrode part and the size of the connection part with the external electrode compared to the formed electrode part, the overlapping area of the internal electrode to obtain the desired capacitance Can be changed with a minimum of one type of conductor layer pattern, and various types of multilayer ceramic electronic components can be easily obtained. Also, the overlapping area of internal electrodes can be increased and the overlapping area can be changed. There is an effect that the width, that is, the range of the capacitance can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic exploded perspective view showing a structure of internal electrodes of a multilayer ceramic electronic component according to a first embodiment of the present invention.
FIG. 2 is a perspective view of a multilayer sintered body of the multilayer ceramic capacitor.
FIG. 3 is a perspective view of the same multilayer ceramic capacitor.
FIG. 4 is a pattern diagram of a printing plate for forming a conductor layer pattern group to be an internal electrode used in Embodiment 1 of the present invention.
FIG. 5 is a plan perspective view showing an example of an overlapping state of internal electrodes of the multilayer ceramic capacitor according to the first embodiment of the present invention.
FIG. 6 is a plan perspective view showing another example.
FIG. 7 is a cross-sectional view of a multilayer ceramic capacitor when cut at a desired cutting position.
FIG. 8 is a cross-sectional view of a multilayer ceramic capacitor when cut at an undesired cutting position.
FIG. 9 is a plan perspective view showing an example of an overlapping state of internal electrodes of a multilayer ceramic capacitor according to a second embodiment of the present invention.
FIG. 10 is a plan perspective view showing another example.
FIG. 11 is a pattern diagram of a printing plate for forming a conductor layer pattern group to be a first internal electrode used in Embodiment 2 of the present invention.
FIG. 12 is a pattern diagram of a printing plate for forming a conductor layer pattern group serving as the second internal electrode.
FIG. 13 is a schematic exploded perspective view showing the structure of internal electrodes of a conventional multi-layered multilayer ceramic capacitor.
[Explanation of symbols]
10, 15 Laminated sintered body
11-14, 16-19 First external electrode
21 to 24, 26 to 29 Second external electrode
100 Dielectric layer
110-140, 160-190 1st internal electrode
110a, 160a, 210a, 260a Capacitance forming electrode
110b, 210b Extraction electrode
110c, 210c Dummy electrode
210 to 240, 260 to 290 Second internal electrode
500,600 Conductor layer pattern
501 601 rectangular pattern
502,602 strip pattern

Claims (9)

誘電体層と内部電極とを交互に積層した積層焼結体とこの積層焼結体の表面に設けた対向する第1の外部電極と第2の外部電極とを備えた積層セラミック電子部品であって、前記内部電極は、誘電体層を挟んで設けた第1の内部電極と第2の内部電極とを備え、前記第1および第2の内部電極は、それぞれ同一層に容量形成電極とこの容量形成電極と一方の外部電極とを接続する引出し電極と前記容量形成電極に非接続で他方の外部電極に接続するダミー電極とを有し、前記引出し電極および前記ダミー電極の幅はほぼ同一でかつ前記容量形成電極に比して小であり、前記第2の内部電極の形状は、前記第1の内部電極と略同一形状を略180度回転させた形状である積層セラミック電子部品。A multilayer ceramic electronic component comprising a laminated sintered body in which dielectric layers and internal electrodes are alternately laminated, and a first external electrode and a second external electrode facing each other provided on the surface of the laminated sintered body. The internal electrode includes a first internal electrode and a second internal electrode provided with a dielectric layer in between, and the first and second internal electrodes are respectively formed on a same layer with a capacitance forming electrode. A lead electrode connecting the capacitance forming electrode and one external electrode and a dummy electrode not connected to the capacitance forming electrode and connected to the other external electrode, and the width of the lead electrode and the dummy electrode is substantially the same The multilayer ceramic electronic component is smaller than the capacitance forming electrode, and the shape of the second internal electrode is a shape obtained by rotating substantially the same shape as the first internal electrode by approximately 180 degrees. ダミー電極と容量形成電極の間隔は誘電体層1層当りの厚みの3倍以上である請求項1に記載の積層セラミック電子部品。2. The multilayer ceramic electronic component according to claim 1, wherein the distance between the dummy electrode and the capacitance forming electrode is at least three times the thickness per dielectric layer. 誘電体層と内部電極とを交互に積層した積層焼結体とこの積層焼結体の表面に設けた複数対の対向する第1の外部電極と第2の外部電極とを備えた多連形の積層セラミック電子部品であって、前記内部電極は、誘電体層を挟んで設けた第1の内部電極と第2の内部電極とを備え、前記第1および第2の内部電極は、それぞれ同一層に容量形成電極とこの容量形成電極と一方の外部電極とを接続する引出し電極と前記容量形成電極に非接続で他方の外部電極に接続するダミー電極とを有し、前記引出し電極および前記ダミー電極の幅はほぼ同一でかつ前記容量形成電極に比して小であり、前記第2の内部電極の形状は、前記第1の内部電極と略同一形状を略180度回転させた形状であり、前記第1および第2の内部電極はそれぞれ複数を同一層に並設した構成である積層セラミック電子部品。A multi-layered structure comprising a laminated sintered body in which dielectric layers and internal electrodes are alternately laminated, and a plurality of pairs of opposing first external electrodes and second external electrodes provided on the surface of the laminated sintered body In the multilayer ceramic electronic component, the internal electrode includes a first internal electrode and a second internal electrode provided with a dielectric layer in between, and the first and second internal electrodes are the same. One layer includes a capacitor forming electrode, a lead electrode connecting the capacitor forming electrode and one external electrode, and a dummy electrode not connected to the capacitor forming electrode and connected to the other external electrode, and the lead electrode and the dummy The width of the electrode is substantially the same and smaller than that of the capacitance forming electrode, and the shape of the second internal electrode is a shape obtained by rotating substantially the same shape as the first internal electrode by approximately 180 degrees. The plurality of first and second internal electrodes are the same. Configuration is a multilayer ceramic electronic component arranged in. ダミー電極と容量形成電極の間隔は誘電体層1層当りの厚みの3倍以上である請求項3に記載の積層セラミック電子部品。4. The multilayer ceramic electronic component according to claim 3, wherein the distance between the dummy electrode and the capacitance forming electrode is at least three times the thickness per dielectric layer. 複数対の外部電極および同一層に複数並設した内部電極は、その外部電極のピッチと前記内部電極の容量形成電極のピッチとが異なる請求項3に記載の積層セラミック電子部品。4. The multilayer ceramic electronic component according to claim 3, wherein a plurality of pairs of external electrodes and a plurality of internal electrodes arranged in parallel in the same layer have different pitches of the external electrodes and capacitance forming electrodes of the internal electrodes. セラミック生シートと内部電極となる導体層とを交互に積層して積層体ブロックを作製する第1工程と、この積層体ブロックを個片に切断分離し焼成して積層焼結体を作製する第2工程と、この積層焼結体に外部電極を形成する第3工程と、これを検査する第4工程とを備え、前記第1工程において、前記内部電極となる導体層の形成は、容量形成電極となる矩形状パターンとこれに接続する引出し電極およびダミー電極となる帯状パターンとからなる導体層パターンを縦横に多数個配列した導体層パターン群を用いて行う第1電極形成工程と、前記導体層パターン群と略同一の導体層パターン群を略180度回転させて行う第2電極形成工程とを、交互に繰り返して行う積層セラミック電子部品の製造方法。A first step of alternately laminating a ceramic raw sheet and a conductor layer serving as an internal electrode to produce a laminate block, and a step of producing a laminate sintered body by cutting and separating the laminate block into individual pieces and firing. 2 steps, a third step of forming an external electrode on the laminated sintered body, and a fourth step of inspecting the external electrode. In the first step, the formation of the conductor layer serving as the internal electrode is a capacitance formation. A first electrode forming step that is performed using a conductor layer pattern group in which a plurality of conductor layer patterns each having a rectangular pattern to be an electrode and a strip pattern to be a lead electrode and a dummy electrode connected to the rectangular pattern are arranged vertically and horizontally; A method for manufacturing a multilayer ceramic electronic component, wherein a second electrode forming step performed by rotating substantially the same conductor layer pattern group as the layer pattern group by approximately 180 degrees is alternately repeated. 第2電極形成工程において、第1電極形成工程と同一の導体層パターン群を用いこれを略180度回転させて内部電極となる導体層を形成する請求項6に記載の積層セラミック電子部品の製造方法。7. The production of a multilayer ceramic electronic component according to claim 6, wherein in the second electrode forming step, the same conductor layer pattern group as in the first electrode forming step is used, and this is rotated by approximately 180 degrees to form a conductor layer serving as an internal electrode. Method. 第2電極形成工程において、第1電極形成工程の導体層パターン群と略同一形状を略180度回転させた形状の導体層パターン群を用いて内部電極となる導体層を形成する請求項6に記載の積層セラミック電子部品の製造方法。The second electrode forming step includes forming a conductor layer serving as an internal electrode using a conductor layer pattern group having a shape obtained by rotating substantially the same shape as the conductor layer pattern group of the first electrode forming step by approximately 180 degrees. The manufacturing method of the multilayer ceramic electronic component of description. 第4工程において、静電容量を測定して外部電極と対向する内部電極との間隔が近接した不良品を選別除去する請求項6に記載の積層セラミック電子部品の製造方法。The method for manufacturing a multilayer ceramic electronic component according to claim 6, wherein in the fourth step, a defective product whose capacitance is measured and the distance between the external electrode and the internal electrode facing is selected and removed.
JP2002075745A 2002-03-19 2002-03-19 Multilayer ceramic electronic component and manufacturing method thereof Expired - Lifetime JP3985557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075745A JP3985557B2 (en) 2002-03-19 2002-03-19 Multilayer ceramic electronic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075745A JP3985557B2 (en) 2002-03-19 2002-03-19 Multilayer ceramic electronic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003272945A JP2003272945A (en) 2003-09-26
JP3985557B2 true JP3985557B2 (en) 2007-10-03

Family

ID=29204738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075745A Expired - Lifetime JP3985557B2 (en) 2002-03-19 2002-03-19 Multilayer ceramic electronic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3985557B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7152291B2 (en) 2002-04-15 2006-12-26 Avx Corporation Method for forming plated terminations
JP4059181B2 (en) 2003-09-29 2008-03-12 株式会社村田製作所 Manufacturing method of multi-terminal type multilayer ceramic electronic components
JP4770570B2 (en) * 2006-05-01 2011-09-14 株式会社村田製作所 Multilayer ceramic electronic components
JP4548471B2 (en) * 2007-10-18 2010-09-22 株式会社村田製作所 Capacitor array and manufacturing method thereof
JP4725629B2 (en) * 2008-10-14 2011-07-13 Tdk株式会社 Manufacturing method of multilayer feedthrough capacitor
JP4618361B2 (en) * 2008-10-21 2011-01-26 Tdk株式会社 Manufacturing method of multilayer capacitor
JP4618362B2 (en) * 2008-10-21 2011-01-26 Tdk株式会社 Manufacturing method of multilayer capacitor
JP5672162B2 (en) * 2010-07-21 2015-02-18 株式会社村田製作所 Electronic components
KR101228688B1 (en) * 2010-11-25 2013-02-01 삼성전기주식회사 Multi-layered ceramic capacitor

Also Published As

Publication number Publication date
JP2003272945A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
JP5420619B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR101251022B1 (en) Ceramic electronic component
JP5653886B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR101083983B1 (en) Method of manufacturing multilayer capacitor
JP5932946B2 (en) Multilayer ceramic electronic components
JP3985557B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
KR20180110450A (en) Multi-layered capacitor and method for manufacturing the same
JPH11176691A (en) Manufacture of laminated chip electronic part
JPH09153433A (en) Manufacture of laminated electronic component
US10453607B2 (en) Ceramic capacitor
JP2000277382A (en) Multi-laminated ceramic capacitor and manufacturing method of the same
JPH07122457A (en) Manufacture of multilayered ceramic electronic component
JP2000340448A (en) Laminated ceramic capacitor
KR100474947B1 (en) Method of manufacturing laminated ceramic electronic component and method of manufacturing laminated inductor
JPH11354326A (en) Laminated inductor and its manufacture
JP2005327999A (en) Laminated ceramic capacitor
JP2001015373A (en) Manufacture of laminated ceramic electronic component and laminated ceramic electronic component
JP2000106321A (en) Laminated ceramic capacitor
JP3642462B2 (en) Manufacturing method of laminated parts
JPH06204075A (en) Stacked ceramic electronic component for high frequency and its manufacture
JP2600127Y2 (en) Multilayer chip EMI removal filter
JP2982916B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JPS6214669Y2 (en)
JP2001044059A (en) Multilayer ceramic capacitor
JP2004179546A (en) Wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R151 Written notification of patent or utility model registration

Ref document number: 3985557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

EXPY Cancellation because of completion of term