JP3985092B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3985092B2
JP3985092B2 JP2002066284A JP2002066284A JP3985092B2 JP 3985092 B2 JP3985092 B2 JP 3985092B2 JP 2002066284 A JP2002066284 A JP 2002066284A JP 2002066284 A JP2002066284 A JP 2002066284A JP 3985092 B2 JP3985092 B2 JP 3985092B2
Authority
JP
Japan
Prior art keywords
compressor
pressure
condenser
air conditioner
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002066284A
Other languages
Japanese (ja)
Other versions
JP2003262385A (en
Inventor
和幹 浦田
敦彦 横関
眞幸 岡部
福治 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002066284A priority Critical patent/JP3985092B2/en
Publication of JP2003262385A publication Critical patent/JP2003262385A/en
Application granted granted Critical
Publication of JP3985092B2 publication Critical patent/JP3985092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空気調和機に係り、特に冷凍サイクルの圧縮機吐出圧力と圧縮機吸入圧力の比である運転圧力比を検出して容量制御するものに好適である。
【0002】
【従来の技術】
従来、空気調和機において、運転圧力比を求めるため、冷凍サイクルの高圧側及び低圧側に各々圧力センサを設け、その圧力センサの値の比から演算することが知られ、特開平5−10608号公報に記載されている。また、温度センサを冷凍サイクルの低圧側冷媒通路に設け、温度センサ設置部の飽和圧力を温度センサの出力信号より演算し、温度センサ設置部から圧縮機吸入側に至るまでの圧力損失を推定して、圧縮機吸入圧力を演算することが、特開平8−121916号公報に記載のように知られている。
【0003】
【発明が解決しようとする課題】
上記従来技術の圧力センサを用いるものにおいては、圧力センサ自体のコストが高く、価格面で不利であり、圧縮機吸入圧力を低圧側冷媒通路に設けた温度センサで推定するものは、室内機と室外機を接続する配管長さが長い場合、圧縮機吸入側の冷媒が過熱状態であるのにも関わらず温度センサ設置部が低い温度となり、吸入圧力の推定値に誤差が生じ、運転圧力比の推定精度が低下する恐れがある。さらに、冷房運転及び暖房運転共に運転圧力比を検出するために温度センサを増やさなければならず、やはり価格面で不利であった。
【0004】
本発明の目的は、上記従来の技術的課題を解決し、製造コストが安価でかつ運転圧力比を高い精度で検出し、信頼性の高い空気調和機を提供することにある。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、圧縮機、凝縮器、減圧装置、蒸発器とを配管接続して冷凍サイクルを構成し、蒸発器入口温度と凝縮器出口温度とを検出し、前記蒸発器入口温度から前記圧縮機の吸入圧力を、前記凝縮器出口温度から前記圧縮機の吐出圧力をそれぞれ演算して前記圧縮機の吐出圧力と吸入圧力の比である運転圧力比を求めて容量制御する空気調和機において、前記吸入圧力の値は、ガス側接続配管の長さ及び前記圧縮機の運転周波数によって変化する圧力損失を考慮して補正され、この補正された吸入圧力値で前記圧縮機の運転圧力比を求めることを特徴とする。
【0007】
さらに、上記のものにおいて、凝縮器出口側に開度が可変できる膨脹弁と該膨脹弁の出口に余剰冷媒を貯留する受液器とを設け、膨脹弁を全開して、つまり膨脹弁での圧力損失を小さくするように開度を大きくして運転圧力比を求めることが望ましい。
【0008】
さらに、上記のものにおいて、吸入圧力は、吸入側の飽和圧力、圧縮機のモータ回転数に比例するものに係数を加えた値、凝縮器と蒸発器を接続する配管長さ、の和となる値のべき乗に関連して求めることが望ましい。
【0009】
さらに、上記のものにおいて、求めた運転圧力比が所定の範囲となるように圧縮機の運転周波数を制御することが望ましい。
【0010】
【発明の実施の形態】
以下、本発明の一実施の形態を図1ないし図4を参照して説明する。
図1は、冷凍サイクル構成を示し、室外機100と室内機200に大別され、室外機100と室内機200は液側接続配管51及びガス側接続配管50で接続されている。室外機100は圧縮機1、四方弁2、室外熱交換器4、室外ファン5より構成され、室外熱交換器4には凝縮器として作用した場合に出口側、蒸発器として作用した場合に入口側となる位置に温度センサ21が設けられている。また、室内機200は室内熱交換器3、室内膨張弁7、室内ファン6より構成され、室内熱交換器3には、室外熱交換器4と同様に凝縮器として作用した場合に出口側、蒸発器として作用した場合に入口側となる位置に温度センサ22が設けられている。室内熱交換器3及び室外熱交換器4に設けられている温度センサの信号は、マイクロコンピュータ20内に入力されるように配線されている。
【0011】
次に、冷凍サイクルの運転動作について説明する。図1において、実線矢印は冷房運転での冷媒の流れ方向を示し、破線矢印は暖房運転時での冷媒の流れ方向を示す。
冷房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は、四方弁2を通り室外熱交換器4に流入し、室外ファン5により室外熱交換器4に送られる空気と熱交換して凝縮液化して室外熱交換器4から流出する。凝縮液化した冷媒は、液側接続配管51を通り室内膨張弁7で減圧され気液二相状態の冷媒となり、室内熱交換器3に流入し、室内ファン6により室内熱交換器3に送られる空気と熱交換して蒸発ガス化して室内熱交換器3から流出する。蒸発ガス化した冷媒は、ガス接続配管50、四方弁2を通り圧縮機1に戻り、再び圧縮機1で圧縮されることで冷凍サイクルが形成される。
【0012】
図2は、冷凍サイクルモリエル線図を表わし、点aは圧縮機1から吐出された状態を示しており、その圧力である吐出圧力はPdとなる。点bは室外熱交換器4出口すなわち凝縮器出口の状態であり、点cは室内膨張弁7で減圧された室内熱交換器3入口すなわち蒸発器入口の状態を示す。点dは圧縮機1に吸入される状態を示しており、その圧力である吸入圧力はPsとなる。冷房運転時の運転圧力比εは、吐出圧力Pdと吸入圧力Psの比となる。
【0013】
圧縮機の運転可能範囲として運転圧力比εは、λ1(例えば、1.8)<ε<λ2(例えば、8.0)が望ましく、運転圧力比εがλ1以下、あるいはλ2以上となると圧縮機の運転寿命が極端に減少し、早期に故障を起こす恐れがある。このため、運転圧力比εがλ1とλ2の間になるように、圧縮機周波数、室内外ファンや室内外の膨張弁開度を制御して、圧縮機の信頼性を確保する。つまり、運転圧力比ε<λ1となった場合は、圧縮機周波数の下限値を通常制御時よりも高くし、冷房運転であれば室外ファンの風量を減少させ、暖房運転であれば室内ファンの風量を増加させる。また、運転圧力比ε>λ2となった場合は、圧縮機周波数の上限値を通常制御時よりも低くし、冷房運転であれば室外ファンの風量を増加させ、暖房運転であれば室外ファンの風量を減少させたり、室内膨張弁の開度を開けて凝縮器として作用している熱交換器内の冷媒をレシーバ等に回収させたりする。
【0014】
次に、冷房運転時の運転圧力比の推定方法について説明する。運転圧力比の推定は、室内熱交換器3及び室外熱交換器4に設けた温度センサ21,22及び圧縮機1のモータ回転数の信号を用いてマイクロコンピュータ20で行う。
運転圧力比εは、室外熱交換器4に設けた温度センサ21の検出値Tcから推定した吐出圧力Pdと、室内熱交換器3に設けた温度センサ22の検出値Teから推定した吸入圧力Psとの比となる。
【0015】
【数1】

Figure 0003985092
【0016】
推定吐出圧力Pdは自然対数の底eの{α2×(Tc+α3)}乗に比例するとし、推定吸入圧力Psは、底eの{β2×(Te+F1+L1)}乗に比例するとする。
【0017】
【数2】
Figure 0003985092
【0018】
【数3】
Figure 0003985092
【0019】
Tcは、吐出側の飽和圧力、Teは、吸入側の飽和圧力であり、α1〜α3、β1、β2、は空気調和機に封入する冷媒の種類に応じて変わる係数である。F1はモータ回転数Hzによる補正値であり、L1は、凝縮器と蒸発器又は室外機と室内機とを接続する接続配管長さによる補正係数である。F1は数4に示すように圧縮機1のモータ回転数の検出値Hzに比例するものにγ2を加えたものとする。
【0020】
【数4】
Figure 0003985092
【0021】
L1は、室内機200と室外機100を接続する配管長さによって変わり、マイクロコンピュータ20に予め入力されているか、ディップスイッチや通信等による外部信号から入力される。
【0022】
図2に示すモリエル線図で説明すると、室外熱交換器4に設けられている温度センサ21により飽和圧力Tcが求められ、Tcを数2により求めて推定吐出圧力Pdが求められる。推定Pdは、実際の吐出圧力であるPdと比べて四方弁2や室外熱交換器4の圧力損失及び凝縮器の冷媒過冷却度により若干低くなるが、冷媒の状態が高温高圧で密度が大きく圧力損失が小さいこと、及び温度センサまでに至る距離が変化しないことから、数1の係数を調整することで推定Pdと実際のPdを同値とすることができる。
【0023】
一方、室内熱交換器3に設けられている温度センサ22により吸入側の飽和圧力Teが求められる。飽和圧力Teは、室内熱交換器3やガス接続配管50等での圧力損失があるため吸入圧力Psより高くなる。この圧力損失は、ガス側接続配管50の長さ及び冷凍サイクルを流れる冷媒循環量で変化するため、数4に示すように補正する。つまり、冷凍サイクルを流れる冷媒循環量は圧縮機1のモータ回転数Hzに比例することから、推定吸入圧力Psは接続配管長さによる補正係数L1と圧縮機1のモータ回転数Hzによる補正値F1により求める。
【0024】
暖房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は、四方弁2、ガス側接続配管50を通り室内熱交換器3に流入し、室内ファン6により室内熱交換器3に送られる空気と熱交換して凝縮液化して室内熱交換器3から流出する。凝縮液化した冷媒は、室内膨張弁7で減圧され気液二相状態の冷媒となり、液側接続配管51を通り室外熱交換器4に流入し、室外ファン5により室外熱交換器4に送られる空気と熱交換して蒸発ガス化して室外熱交換器4から流出する。蒸発ガス化した冷媒は、四方弁2を通り圧縮機1に戻り、再び圧縮機1で圧縮されることで冷凍サイクルが形成される。
【0025】
暖房運転の冷凍サイクルをモリエル線図に示すと、冷房運転と同様に図2となり、暖房運転時の運転圧力比は、冷房運転時と同様に求めることができる。また、暖房運転時の運転圧力比の推定は、冷房運転時と同様に数1ないし4を用いて行う。ただし、数式中のTcは室内熱交換器3に設けた温度センサ22の検出値、Teは室外熱交換器4に設けた温度センサ21の検出値とする。
【0026】
以上に示すように、凝縮器出口温度及び蒸発器入口温度を検出することにより空気調和機の運転圧力比の推定が可能であり、高価な圧力センサを使用せずに運転圧力比を検出でき、信頼性を向上できる。また、吐出圧力及び吸入圧力を温度センサ(サーミスタ)で推定するため、吐出圧力推定値から吐出ガスの飽和温度を推定することが可能であるため、吐出温度を検出することで吐出ガス過熱度を推定することが可能であり、吐出ガス過熱度を膨張弁で制御することができる。さらに、吸入圧力の推定値を用いて、圧縮機の真空運転を防止するように冷凍サイクルの制御機器を制御できるため、圧縮機の信頼性をより一層向上することができる。
【0027】
次に、本発明の他の実施形態について図3ないし4を参照して説明する。
図3は、凝縮器の冷媒過冷却度制御装置を具備した空気調和機の冷凍サイクルを示し、冷凍サイクルは、室内膨張弁7と室外熱交換器4の間に受液器9と室外膨張弁8を配置した構成となっている。
【0028】
受液器9は、余剰冷媒が貯留され、冷房運転時は室外膨張弁8を全開で、つまり膨脹弁での圧力損失を小さくするように開度を大きくして使用し、室内膨張弁7で冷凍サイクルの温度を制御し、暖房運転時は室内膨張弁7を全開で使用し室外膨張弁8で冷凍サイクルの温度を制御する。冷凍サイクルの運転をモリエル線図で示すと図4のようになる。すなわち、凝縮器として作用している熱交換器の出口に設けられている膨張弁を全開で使用するため、凝縮器冷媒過冷却度は0となり、凝縮器出口の温度センサで検知したTcの飽和圧力は吐出圧力Pdと同値となる。よって、受液器9を設け、凝縮器として作用している熱交換器の出口に設けられている膨張弁を全開にして凝縮器冷媒過冷却度を制御することで、吐出圧力Pdの推定値の精度を向上することができ、空気調和機の運転圧力比をより精度良くして、信頼性を向上できる。
【0029】
【発明の効果】
以上説明したように、本発明によれば、高価な圧力センサを使用せずに運転圧力比を検出し、空気調和機の製造コストを大幅に低減できると共に、信頼性の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す空気調和機の冷凍サイクル。
【図2】図1の冷凍サイクルの運転状態を示したモリエル線図。
【図3】他の実施形態を示す空気調和機の冷凍サイクル。
【図4】図2の冷凍サイクルの運転状態を示したモリエル線図。
【符号の説明】
1…圧縮機、3…室内熱交換器、4…室外熱交換器、7…室内膨張弁、8…室外膨張弁、9…受液器、20…マイクロコンピュータ、21,22…温度センサ、50…ガス側接続配管、51…液側接続配管、100…室外機、200…室内機。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner, and is particularly suitable for detecting the operating pressure ratio, which is the ratio of the compressor discharge pressure and the compressor suction pressure in the refrigeration cycle, and controlling the capacity.
[0002]
[Prior art]
Conventionally, in an air conditioner, in order to obtain an operating pressure ratio, it is known to provide a pressure sensor on each of a high pressure side and a low pressure side of a refrigeration cycle and calculate from the ratio of the values of the pressure sensors. It is described in the publication. In addition, a temperature sensor is provided in the low-pressure side refrigerant passage of the refrigeration cycle, the saturation pressure of the temperature sensor installation part is calculated from the output signal of the temperature sensor, and the pressure loss from the temperature sensor installation part to the compressor suction side is estimated. Thus, it is known to calculate the compressor suction pressure as described in JP-A-8-121916.
[0003]
[Problems to be solved by the invention]
Among those using the above prior art pressure sensor, the cost of the pressure sensor itself is high and disadvantageous in terms of price, and the one that estimates the compressor suction pressure with the temperature sensor provided in the low-pressure side refrigerant passage is an indoor unit. If the length of the pipe connecting the outdoor unit is long, the temperature sensor installation part will be at a low temperature even though the refrigerant on the compressor suction side is overheated, causing an error in the estimated value of the suction pressure, and the operating pressure ratio There is a risk that the estimation accuracy of will decrease. Furthermore, the temperature sensor has to be increased in order to detect the operating pressure ratio in both the cooling operation and the heating operation, which is also disadvantageous in terms of price.
[0004]
An object of the present invention is to solve the above-described conventional technical problems, to provide an air conditioner that has a low manufacturing cost, detects an operating pressure ratio with high accuracy, and has high reliability.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention configures a refrigeration cycle by connecting a compressor, a condenser, a decompression device, and an evaporator, and detects an evaporator inlet temperature and a condenser outlet temperature. The compressor suction pressure is calculated from the evaporator inlet temperature, and the compressor discharge pressure is calculated from the condenser outlet temperature to obtain an operating pressure ratio that is the ratio of the compressor discharge pressure to the suction pressure. In the air conditioner for capacity control, the value of the suction pressure is corrected in consideration of the pressure loss that varies depending on the length of the gas side connection pipe and the operating frequency of the compressor, and the corrected suction pressure value The operation pressure ratio of the compressor is obtained.
[0007]
Further, in the above, an expansion valve whose opening degree can be varied on the outlet side of the condenser and a receiver for storing excess refrigerant at the outlet of the expansion valve are provided, and the expansion valve is fully opened, that is, the expansion valve It is desirable to obtain the operating pressure ratio by increasing the opening so as to reduce the pressure loss.
[0008]
Further, in the above, the suction pressure is the sum of the saturation pressure on the suction side, the value proportional to the motor speed of the compressor plus a coefficient, and the length of the pipe connecting the condenser and the evaporator. It is desirable to find it in relation to the power of the value.
[0009]
Furthermore, in the above, it is desirable to control the operating frequency of the compressor so that the obtained operating pressure ratio falls within a predetermined range.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 shows a refrigeration cycle configuration, which is roughly divided into an outdoor unit 100 and an indoor unit 200, and the outdoor unit 100 and the indoor unit 200 are connected by a liquid side connection pipe 51 and a gas side connection pipe 50. The outdoor unit 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 4, and an outdoor fan 5. The outdoor heat exchanger 4 has an outlet side when acting as a condenser, and an inlet when acting as an evaporator. A temperature sensor 21 is provided at a position on the side. The indoor unit 200 includes an indoor heat exchanger 3, an indoor expansion valve 7, and an indoor fan 6, and the indoor heat exchanger 3 has an outlet side when acting as a condenser, like the outdoor heat exchanger 4, A temperature sensor 22 is provided at a position on the inlet side when acting as an evaporator. Signals from temperature sensors provided in the indoor heat exchanger 3 and the outdoor heat exchanger 4 are wired so as to be input into the microcomputer 20.
[0011]
Next, the operation of the refrigeration cycle will be described. In FIG. 1, a solid line arrow indicates the flow direction of the refrigerant in the cooling operation, and a broken line arrow indicates the flow direction of the refrigerant in the heating operation.
In the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 4 through the four-way valve 2 and exchanges heat with air sent to the outdoor heat exchanger 4 by the outdoor fan 5. Then, it is liquefied and flows out of the outdoor heat exchanger 4. The condensed and liquefied refrigerant passes through the liquid side connection pipe 51 and is decompressed by the indoor expansion valve 7 to become a gas-liquid two-phase refrigerant, flows into the indoor heat exchanger 3, and is sent to the indoor heat exchanger 3 by the indoor fan 6. It exchanges heat with air to evaporate gas and flows out from the indoor heat exchanger 3. The evaporated gas refrigerant returns to the compressor 1 through the gas connection pipe 50 and the four-way valve 2 and is compressed again by the compressor 1 to form a refrigeration cycle.
[0012]
FIG. 2 shows a refrigeration cycle Mollier diagram. A point a indicates a state of being discharged from the compressor 1, and a discharge pressure which is the pressure is Pd. Point b indicates the state of the outlet of the outdoor heat exchanger 4, that is, the outlet of the condenser, and point c indicates the state of the inlet of the indoor heat exchanger 3, that is, the inlet of the evaporator, which is decompressed by the indoor expansion valve 7. A point d indicates a state where the air is sucked into the compressor 1, and the suction pressure that is the pressure is Ps. The operating pressure ratio ε during cooling operation is the ratio between the discharge pressure Pd and the suction pressure Ps.
[0013]
The operating pressure ratio ε is preferably λ1 (for example, 1.8) <ε <λ2 (for example, 8.0) as an operable range of the compressor. When the operating pressure ratio ε is λ1 or less, or λ2 or more, the compressor The operating life of the battery may be drastically reduced, leading to failure at an early stage. For this reason, the reliability of the compressor is ensured by controlling the compressor frequency, the indoor / outdoor fan and the indoor / outdoor expansion valve opening so that the operating pressure ratio ε is between λ1 and λ2. In other words, when the operating pressure ratio ε <λ1, the lower limit value of the compressor frequency is set higher than that during normal control, the air volume of the outdoor fan is reduced during cooling operation, and the indoor fan Increase air flow. Also, when the operating pressure ratio ε> λ2, the upper limit value of the compressor frequency is set lower than that during normal control, the air volume of the outdoor fan is increased during cooling operation, and the outdoor fan The air volume is reduced, or the opening of the indoor expansion valve is opened, and the refrigerant in the heat exchanger acting as a condenser is collected by a receiver or the like.
[0014]
Next, a method for estimating the operating pressure ratio during cooling operation will be described. The operation pressure ratio is estimated by the microcomputer 20 using the temperature sensors 21 and 22 provided in the indoor heat exchanger 3 and the outdoor heat exchanger 4 and the motor rotation speed signal of the compressor 1.
The operating pressure ratio ε is the discharge pressure Pd estimated from the detection value Tc of the temperature sensor 21 provided in the outdoor heat exchanger 4 and the suction pressure Ps estimated from the detection value Te of the temperature sensor 22 provided in the indoor heat exchanger 3. And the ratio.
[0015]
[Expression 1]
Figure 0003985092
[0016]
Assume that the estimated discharge pressure Pd is proportional to the power of {α2 × (Tc + α3)} of the natural logarithm e, and the estimated suction pressure Ps is proportional to the power of {β2 × (Te + F1 + L1)} of the base e.
[0017]
[Expression 2]
Figure 0003985092
[0018]
[Equation 3]
Figure 0003985092
[0019]
Tc is the saturation pressure on the discharge side, Te is the saturation pressure on the suction side, and α1 to α3, β1, and β2 are coefficients that vary depending on the type of refrigerant sealed in the air conditioner. F1 is a correction value based on the motor rotation speed Hz, and L1 is a correction coefficient based on the length of a connection pipe connecting the condenser and the evaporator or the outdoor unit and the indoor unit. As shown in Formula 4, F1 is assumed to be obtained by adding γ2 to a value proportional to the detected value Hz of the motor rotation number of the compressor 1.
[0020]
[Expression 4]
Figure 0003985092
[0021]
L1 varies depending on the length of the pipe connecting the indoor unit 200 and the outdoor unit 100, and is input to the microcomputer 20 in advance or input from an external signal such as a dip switch or communication.
[0022]
Referring to the Mollier diagram shown in FIG. 2, the saturation pressure Tc is obtained by the temperature sensor 21 provided in the outdoor heat exchanger 4, and the estimated discharge pressure Pd is obtained by obtaining Tc by Equation 2. The estimated Pd is slightly lower than Pd, which is the actual discharge pressure, due to the pressure loss of the four-way valve 2 and the outdoor heat exchanger 4 and the degree of refrigerant supercooling of the condenser. Since the pressure loss is small and the distance to the temperature sensor does not change, the estimated Pd and the actual Pd can be made equal by adjusting the coefficient of Equation 1.
[0023]
On the other hand, the saturation pressure Te on the suction side is obtained by the temperature sensor 22 provided in the indoor heat exchanger 3. The saturation pressure Te is higher than the suction pressure Ps because of pressure loss in the indoor heat exchanger 3, the gas connection pipe 50, and the like. Since this pressure loss varies depending on the length of the gas side connection pipe 50 and the amount of refrigerant circulating through the refrigeration cycle, the pressure loss is corrected as shown in Equation 4. That is, since the amount of refrigerant circulating through the refrigeration cycle is proportional to the motor rotation speed Hz of the compressor 1, the estimated suction pressure Ps is a correction value L1 based on the correction coefficient L1 due to the connection pipe length and the motor rotation speed Hz of the compressor 1. Ask for.
[0024]
In the case of heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the indoor heat exchanger 3 through the four-way valve 2 and the gas side connection pipe 50, and is sent to the indoor heat exchanger 3 by the indoor fan 6. Heat exchange with the air to be condensed and liquefied to flow out of the indoor heat exchanger 3. The condensed and liquefied refrigerant is decompressed by the indoor expansion valve 7 to become a gas-liquid two-phase refrigerant, flows through the liquid side connection pipe 51 and flows into the outdoor heat exchanger 4, and is sent to the outdoor heat exchanger 4 by the outdoor fan 5. It exchanges heat with air to evaporate gas and flows out of the outdoor heat exchanger 4. The evaporated gas refrigerant returns to the compressor 1 through the four-way valve 2 and is compressed again by the compressor 1 to form a refrigeration cycle.
[0025]
When the refrigeration cycle of the heating operation is shown in the Mollier diagram, it becomes FIG. 2 like the cooling operation, and the operation pressure ratio during the heating operation can be obtained in the same manner as during the cooling operation. Further, the estimation of the operating pressure ratio during the heating operation is performed using Equations 1 to 4 as in the cooling operation. In the equation, Tc is a detection value of the temperature sensor 22 provided in the indoor heat exchanger 3 and Te is a detection value of the temperature sensor 21 provided in the outdoor heat exchanger 4.
[0026]
As shown above, the operating pressure ratio of the air conditioner can be estimated by detecting the condenser outlet temperature and the evaporator inlet temperature, and the operating pressure ratio can be detected without using an expensive pressure sensor, Reliability can be improved. Moreover, since the discharge pressure and the suction pressure are estimated by a temperature sensor (thermistor), it is possible to estimate the saturation temperature of the discharge gas from the estimated discharge pressure value. Therefore, by detecting the discharge temperature, the discharge gas superheat degree can be determined. It is possible to estimate, and the discharge gas superheat degree can be controlled by the expansion valve. Furthermore, since the estimated value of the suction pressure can be used to control the control device of the refrigeration cycle so as to prevent the vacuum operation of the compressor, the reliability of the compressor can be further improved.
[0027]
Next, another embodiment of the present invention will be described with reference to FIGS.
FIG. 3 shows a refrigeration cycle of an air conditioner equipped with a refrigerant supercooling degree control device for a condenser. The refrigeration cycle includes a receiver 9 and an outdoor expansion valve between the indoor expansion valve 7 and the outdoor heat exchanger 4. 8 is arranged.
[0028]
The receiver 9 stores excess refrigerant, and is used with the outdoor expansion valve 8 fully opened during cooling operation, that is, with the opening degree increased so as to reduce the pressure loss at the expansion valve. The temperature of the refrigeration cycle is controlled. During the heating operation, the indoor expansion valve 7 is fully opened and the outdoor expansion valve 8 controls the temperature of the refrigeration cycle. FIG. 4 shows the operation of the refrigeration cycle as a Mollier diagram. That is, since the expansion valve provided at the outlet of the heat exchanger acting as a condenser is used fully open, the condenser refrigerant supercooling degree becomes 0, and the saturation of Tc detected by the temperature sensor at the condenser outlet. The pressure has the same value as the discharge pressure Pd. Therefore, the estimated value of the discharge pressure Pd is provided by providing the liquid receiver 9 and fully opening the expansion valve provided at the outlet of the heat exchanger acting as a condenser to control the degree of subcooling of the condenser refrigerant. The accuracy of the air conditioner can be improved, the operating pressure ratio of the air conditioner can be improved more accurately, and the reliability can be improved.
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to detect the operating pressure ratio without using an expensive pressure sensor, greatly reduce the manufacturing cost of the air conditioner, and improve the reliability. .
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle of an air conditioner showing an embodiment of the present invention.
FIG. 2 is a Mollier diagram showing the operating state of the refrigeration cycle of FIG.
FIG. 3 is a refrigeration cycle of an air conditioner showing another embodiment.
4 is a Mollier diagram showing the operating state of the refrigeration cycle of FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 3 ... Indoor heat exchanger, 4 ... Outdoor heat exchanger, 7 ... Indoor expansion valve, 8 ... Outdoor expansion valve, 9 ... Liquid receiver, 20 ... Microcomputer, 21,22 ... Temperature sensor, 50 ... gas side connection piping, 51 ... liquid side connection piping, 100 ... outdoor unit, 200 ... indoor unit.

Claims (3)

圧縮機、凝縮器、減圧装置、蒸発器とを配管接続して冷凍サイクルを構成し、蒸発器入口温度と凝縮器出口温度とを検出し、前記蒸発器入口温度から前記圧縮機の吸入圧力を、前記凝縮器出口温度から前記圧縮機の吐出圧力をそれぞれ演算して前記圧縮機の吐出圧力と吸入圧力の比である運転圧力比を求めて容量制御する空気調和機において、
前記吸入圧力の値は、ガス側接続配管の長さ及び前記圧縮機の運転周波数によって変化する圧力損失を考慮して補正され、
この補正された吸入圧力値で前記圧縮機の運転圧力比を求めることを特徴とする空気調和機。
A compressor, a condenser, a decompression device, and an evaporator are connected to each other to form a refrigeration cycle , and an evaporator inlet temperature and a condenser outlet temperature are detected, and an intake pressure of the compressor is determined from the evaporator inlet temperature. In the air conditioner for controlling the capacity by calculating the discharge pressure of the compressor from the outlet temperature of the condenser to obtain the operating pressure ratio which is the ratio of the discharge pressure and the suction pressure of the compressor ,
The value of the suction pressure is corrected in consideration of the pressure loss that varies depending on the length of the gas side connection pipe and the operating frequency of the compressor,
An air conditioner characterized in that an operating pressure ratio of the compressor is obtained from the corrected suction pressure value .
請求項1に記載のものにおいて、前記凝縮器出口側に開度が可変できる膨脹弁と該膨脹弁の出口に余剰冷媒を貯留する受液器とを設け、前記膨脹弁を全開して前記運転圧力比を求めることを特徴とする空気調和機。2. The operation according to claim 1, further comprising: an expansion valve whose opening degree can be varied on the outlet side of the condenser; and a liquid receiver that stores excess refrigerant at an outlet of the expansion valve, and the expansion valve is fully opened to perform the operation. An air conditioner characterized by obtaining a pressure ratio . 請求項1に記載のものにおいて、求めた運転圧力比が所定の範囲となるように前記圧縮機の運転周波数を制御することを特徴とする空気調和機。2. The air conditioner according to claim 1, wherein the operating frequency of the compressor is controlled so that the obtained operating pressure ratio falls within a predetermined range .
JP2002066284A 2002-03-12 2002-03-12 Air conditioner Expired - Lifetime JP3985092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066284A JP3985092B2 (en) 2002-03-12 2002-03-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066284A JP3985092B2 (en) 2002-03-12 2002-03-12 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003262385A JP2003262385A (en) 2003-09-19
JP3985092B2 true JP3985092B2 (en) 2007-10-03

Family

ID=29198148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066284A Expired - Lifetime JP3985092B2 (en) 2002-03-12 2002-03-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP3985092B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115891A1 (en) * 2013-01-28 2014-07-31 ダイキン工業 株式会社 Air conditioner
KR20160138567A (en) * 2014-04-16 2016-12-05 존슨 컨트롤스 테크놀러지 컴퍼니 Method for operating a chiller
CN108131805A (en) * 2017-10-31 2018-06-08 宁波奥克斯电气股份有限公司 A kind of multi-connected machine self_adaptive adjusting method and device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557031B2 (en) * 2008-03-27 2010-10-06 株式会社デンソー Air conditioner for vehicles
JP5789535B2 (en) * 2012-02-09 2015-10-07 日立アプライアンス株式会社 Heat pump water heater
JP5981376B2 (en) * 2013-03-27 2016-08-31 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner and method of operating air conditioner
CN103807979B (en) * 2014-02-28 2016-08-17 青岛海信日立空调***有限公司 Variable-frequency multi-connection type air-conditioning based on micro-channel heat exchanger and control method thereof
JP2015230153A (en) * 2014-06-06 2015-12-21 三菱電機株式会社 Air conditioner
WO2016009559A1 (en) * 2014-07-18 2016-01-21 三菱電機株式会社 Refrigeration cycle device
JP6495064B2 (en) * 2015-03-26 2019-04-03 三菱重工サーマルシステムズ株式会社 Air conditioning system control device, air conditioning system, air conditioning system control program, and air conditioning system control method
CN109210687B (en) * 2018-09-21 2020-07-31 宁波奥克斯电气股份有限公司 Control method of air conditioning system
CN112944600B (en) * 2021-03-22 2022-03-29 珠海格力电器股份有限公司 Air conditioner operation control method and system, air conditioner and storage medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115891A1 (en) * 2013-01-28 2014-07-31 ダイキン工業 株式会社 Air conditioner
JP2014159944A (en) * 2013-01-28 2014-09-04 Daikin Ind Ltd Air conditioner
US9835341B2 (en) 2013-01-28 2017-12-05 Daikin Industries, Ltd. Air conditioner
KR20160138567A (en) * 2014-04-16 2016-12-05 존슨 컨트롤스 테크놀러지 컴퍼니 Method for operating a chiller
KR101995219B1 (en) * 2014-04-16 2019-07-02 존슨 컨트롤스 테크놀러지 컴퍼니 Method for operating a chiller
US10451326B2 (en) 2014-04-16 2019-10-22 Johnson Controls Technology Company Method for operating a chiller
US10883749B2 (en) 2014-04-16 2021-01-05 Johnson Controls Technology Company Method for operating a chiller
US11441828B2 (en) 2014-04-16 2022-09-13 Johnson Controls Tyco IP Holdings LLP Method for operating a chiller
CN108131805A (en) * 2017-10-31 2018-06-08 宁波奥克斯电气股份有限公司 A kind of multi-connected machine self_adaptive adjusting method and device
CN108131805B (en) * 2017-10-31 2020-07-10 宁波奥克斯电气股份有限公司 Multi-split self-adaptive adjustment control method and device

Also Published As

Publication number Publication date
JP2003262385A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
KR100540808B1 (en) Control method for Superheating of heat pump system
EP1586836B1 (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
EP1287298B1 (en) Control system of degree of superheat of air conditioner and control method thereof
JP3798374B2 (en) Air conditioner control system and control method thereof
US6564565B2 (en) Air conditioning system and method
JPH0226155B2 (en)
JP3985092B2 (en) Air conditioner
JP4165234B2 (en) Control device for multi-room air conditioner
JP4036288B2 (en) Air conditioner
US20030084673A1 (en) Outdoor fan control system of air conditioner and control method thereof
KR20080069824A (en) System for controlling degree of superheat in air conditioner and method thereof
CN113175738B (en) Method for calculating capacity energy efficiency of air conditioner, computer storage medium and air conditioner
JP3497438B2 (en) Showcase cooling system
CN113175735A (en) Method for calculating capacity energy efficiency of air conditioner, computer storage medium and air conditioner
JP3596506B2 (en) Refrigeration equipment
JP7053988B2 (en) Air conditioner
JP3849468B2 (en) Air conditioner
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
EP1701114B1 (en) Air conditioner
JPH05288413A (en) Air conditioner
JP2893844B2 (en) Air conditioner
KR20100064836A (en) Air conditioner
JP2003156260A (en) Control method for air-conditioner
CN113175734B (en) Method for calculating capacity energy efficiency of air conditioner, computer storage medium and air conditioner
US20240133603A1 (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

R151 Written notification of patent or utility model registration

Ref document number: 3985092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term