JP3984721B2 - Polypropylene nonwoven fabric - Google Patents

Polypropylene nonwoven fabric Download PDF

Info

Publication number
JP3984721B2
JP3984721B2 JP24657098A JP24657098A JP3984721B2 JP 3984721 B2 JP3984721 B2 JP 3984721B2 JP 24657098 A JP24657098 A JP 24657098A JP 24657098 A JP24657098 A JP 24657098A JP 3984721 B2 JP3984721 B2 JP 3984721B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
component
sheath
propylene
sheath component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24657098A
Other languages
Japanese (ja)
Other versions
JP2000064168A (en
Inventor
賢治 小林
徹 松村
俊邦 畑
淳一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP24657098A priority Critical patent/JP3984721B2/en
Publication of JP2000064168A publication Critical patent/JP2000064168A/en
Application granted granted Critical
Publication of JP3984721B2 publication Critical patent/JP3984721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複合繊維よりなる不織布に関し、紡糸時の操業性が良く、特に不織布性能面で高強度でかつ風合いが良い、紙おむつなどの衛生材料として使用するのに適したポリプロピレン不織布に関する。
【0002】
【従来の技術】
不織布を作製する代表的な方法として、カード法とスパンボンド法がある、カード法とは溶融紡糸、延伸により原綿とした後、これをカード機にかけて不織布とするものである。スパンボンド法とは溶融紡糸して得られた長繊維群を捕集コンベア上に集積した後、これらをオーブンまたは熱ロールなどにより熱融着することにより不織布を得る方法である。スパンボンド法はカード法などに比べ、溶融紡糸後そのまま開繊及び集積して不織布を得ることができるため、生産効率の点で非常に有益な方法である。
【0003】
ポリオレフィン製不織布を衛生材料として使用する場合は、不織布強度が高く、風合いが良いものが望まれる。紙おむつ等に使用した場合、着用時に必要以上に伸びたり、あるいは破損(破断)するようでは製品としてなりたたない。また直接肌に接するため、柔らかい風合いが必要である。
【0004】
上述した不織布を得るためには、構成繊維を複合繊維とする必要がある。例えばアイソタクチックホモポリプロピレンのみを原料として不織布を作製した場合、繊維同士の融着温度を高く設定する必要があると同時に、不織布は紙のようになり、風合いは悪くなってしまうという問題が生じる。また、結晶性、融点を下げたプロピレン−エチレンランダム共重合体のみを原料とした場合、繊維同士の融着温度は低く設定できるが、不織布強度は結晶性が低いことによリ低下し、また風合いも紙のようになってしまうという問題が生じる。
【0005】
上述した問題点を解決するためには、不織布構成繊維を低融点成分と高融点成分からなる複合繊維とする必要がある。具体的には低融点成分としてエチレンを数重量%含有するプロピレン−エチレンランダム共重合体を用い、高融点成分としてホモポリプロピレンあるいはエチレンを微量含むプロピレン−エチレンランダム共重合体を用いることにより、不織布強度を低下させることなく風合いも良好な不織布を得ることが可能である。高融点成分と低融点成分の融点差が大きいほど、不織布の強度と風合いはともに良くなる値向にある。すなわち、低融点成分であるプロピレン−エチレンランダム共重合体の融点は低ければ低いほど良い。しかしながら、プロピレン−エチレンランダム共重合体は、ホモポリプロピレンに比べ低融点である他に、低結晶化温度、低結晶化速度といった特徴も持ち合わせており、これらが紡糸時における工程安定性に影響を及ぼす要因となってしまう。
【0006】
スパンボンド法による紡糸工程は、溶融樹脂を複数の紡糸孔より吐出させた後、エアサッカーによりこの繊維群を捕集コンベア−上に集積させるものである。この工程において、低融点プロピレン−エチレンランダム共重合体ではエアサッカー導入点においても固化していないため、当該繊維群が融着してしまい不織布を製造できないという問題が生ずる。通常の溶融紡糸法においても、紡糸口金直下で当該繊維群が融着してしまい、紡糸困難な状況となってしまう。
この問題を解決するために、低融点プロピレン−エチレンランダム共重合体にソルビトール系の結晶造核剤を添加する方法が知られている。すなわち、結晶化温度を高め、結晶化速度を速くすることにより、紡糸時における繊維群の融着を防止できる。
しかし当該結晶核剤を使用した場合、紡糸時における発煙(ソルビトール系核剤が熱分解することにより生じるもの)、ならびに紡糸口金の汚れ(目やに)が顕著になり、作業環境の悪化、長期工程安定性に支障を来すという新たな問題が生じる。
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記の観点から、芯鞘型複合繊維を用いて紡糸時の発煙、紡糸口金の汚れ(目やに)を防止すると同時に、溶融紡糸時の結晶化速度を早め、複合繊維群の融着を防止し、かつ不織布強度が高く、風合いの良好な不織布を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を達成すべく鋭意研究を行った結果、低融点成分として用いる鞘成分に特定のポリマー結晶造核剤を特定量含有する低融点プロピレン−エチレンランダム共重合体を用いた芯鞘型複合繊維において、芯成分と鞘成分の量比及び熱特性(融点と融解熱量の関係)を特定の範囲にすることにより、紡糸時の発煙、紡糸口金の汚れ(目やに)を防止すると同時に、溶融紡糸時の結晶化速度を速め、当該繊維群の融着を防止する等の紡糸時の問題を解決し、強度及び風合いが良好な不織布が得られることを見出し、本発明を完成した。
すなわち、本発明は、メルトフローレイトが5〜100g/10分を満たすプロピレン−エチレンランダム共重合体からなる芯成分と、メルトフローレイトが5〜100g/10分を満たすプロピレン−エチレンランダム共重合体に3−メチル−1−ブテン重合体1〜500重量ppmを含有する鞘成分とで形成された芯鞘型複合繊維を構成繊維とし、芯成分と鞘成分の量比が3:7〜7:3であり、該芯成分と鞘成分の示差走査型熱量計(DSC)による測定から求まる熱特性が以下の式;
0.72<(ΔHm2/Tm2)/(ΔHm1/Tm1)<0.92
(ただし、ΔHm1は芯成分の融解熱量、ΔHm2は鞘成分の融解熱量、Tm1は芯成分の融点、Tm2は鞘成分の融点を表す。)
を満たし、かつ鞘成分が溶融固化することにより、複合繊維同士が結合していることを特徴とするポリプロピレン系不織布である。
【0009】
【発明の実施の形態】
1.芯成分を構成する樹脂
本発明に係わる不織布の構成繊維である複合繊維の芯成分、すなわち高融点成分としては、プロピレン−エチレンランダム共重合体が使用される。芯成分としてこれを使用する理由は、鞘成分であるプロピレン−エチレンランダム共重合体との親和性が良好であるためである。プロピレン−エチレンランダム共重合体のエチレン含量は、好ましくは1.5重量%、より好ましくは1重量%以下である。エチレン含量が1.5重量%を超えると芯成分が低結晶性となることにより、不織布強度、風合いが悪くなってしまうので好ましくない。また、メルトフローレイト(MFR)は5〜100g/10分、好ましくは10〜70g/10分である。MFRが5g/10分未満であると、紡糸圧力が高くなりすぎることにより、紡糸困難な状況となってしまう。また、MFRが100g/10分を超えると、高流動性となることにより、紡糸口金から吐出される溶融繊維群の安定性が損なわれ、やはり紡糸困難な状況となってしまう。
【0010】
2.鞘成分を構成する樹脂
複合長繊維の鞘成分、すなわち低融点成分としては、プロピレン−エチレンランダム共重合体が使用される。このプロピレン−エチレンランダム共重合体は、好ましくはエチレン含量が2.5〜5重量%、より好ましくは3.0〜4.6重量%である。エチレン含量が2.5重量%未満では、ヒートシール温度が高く、風合いが悪くなり、エチレン含量が5重量%を超えると、紡糸口金から吐出される溶融繊維群の安定性が損なわれ、紡糸困難となるので好ましくない。
また、MFRは5〜100g/10分、好ましくは10〜70g/10分である。MFRが5g/10分未満であると、紡糸圧力が高くなりすぎることにより、紡糸困難な状況となってしまう。また、MFRが100g/10分を超えると、高流動性となることにより、紡糸口金から吐出される溶融繊維群の安定性が損なわれ、やはり紡糸困難な状況となってしまう。
さらに、本発明で用いるプロピレン−エチレンランダム共重合体は、3−メチル−1−ブテン重合体を含有し、結晶化温度及び結晶化速度が改良されている。
【0011】
3.芯成分と鞘成分の量比
芯成分と鞘成分の量比は、3:7〜7:3であり、好ましくは4:6〜6:4である。芯成分が多すぎると風合いが悪くなり、少なすぎると不織布の引張強度が低下する。
【0012】
また、示差走査型熱量計(DSC)による芯成分の融解熱量(ΔHm1)と融点(Tm1)の比と鞘成分の融解熱量(ΔHm2)と融点(Tm2)の比との関係は、0.72<(ΔHm2/Tm2)/(ΔHm1/Tm1)<0.92であり、好ましくは0.74<(ΔHm2/Tm2)/(ΔHm1/Tm1)<0.92である。(ΔHm2/Tm2)/(ΔHm1/Tm1)が0.92以上であると、芯成分と鞘成分の融点、結晶性の特性が類似してしまうことから、鞘成分が熱融着成分として好ましくなくなり、目的とする強度の高く風合いの良好な不織布は得られない。また、(ΔHm2/Tm2)/(ΔHm1/Tm1)が0.72以下であると、鞘成分に結晶造核剤を添加しても低結晶化温度、低結晶化速度の改害が困難となり、紡糸口金直下での溶融繊維の融着を引き起こし、不織布製造が困難となる。
【0013】
4.造核剤
本発明において、鞘成分のプロピレン−エチレンランダム共重合体に配合する造核剤として、3−メチル−1−ブテン重合体を用いる。プロピレン−エチレンランダム共重合体樹脂中における3−メチル−1−ブテン重合体の含有量は1〜500重量ppmであり、好ましくは1〜300重量ppmである。3−メチル−1−ブテン重合体の含有量が1重量ppm未満であると、溶融紡糸時において結晶化温度が上昇しないことから、繊維群の融着を改善できない。また、500重量ppmを超えても繊維群の融着に寄与する効果は頭打ちになる。
【0014】
プロピレン−エチレンランダム共重合体と3−メチル−1−ブテン重合体とよりなる樹脂組成物は、例えば以下のようにして製造することができる。すなわち、チーグラー・ナッタ触媒を用いて、まず3−メチル−1−ブテン重合体を重合し(予備重合)、引き続き、この3−メチル−1−ブテン重合体が担持された触媒を用いてプロピレン−エチレンランダム共重合体を重合させて製造する。この際、チーグラー・ナッタ触媒として、固体状チタン系化合物と有機アルミニウム化合物とからなるものを使用することが好ましい。固体状チタン化合物としては、ハロゲン化マグネシウム、有機チタン化合物及び電子供与性化合物を必須成分とすることが好ましい。重合方法は、気相、塊状、スラリー重合などが挙げられる。
上記方法により製造されるプロピレン−エチレンランダム共重合体と3−メチル−1−ブテン重合体の樹脂組成物は、3−メチル−1−ブテン重合体の含有量が高いため、本発明に係わる樹脂組成物とするために、別途製造したプロピレン−エチレンランダム共重合体にマスターバッチとして使用してもよい。また、プロピレン−エチレンランダム共重合体に添加剤として3−メチル−1−ブテン重合体そのものを溶融混練することで調製することも可能である。
【0015】
5.その他の添加剤
本発明に係わるポリプロピレン系不織布には、使用目的に応じて適宜従来公知のポリオレフィン用改質剤を併用することができる。例えば酸化防止剤、紫外線吸収剤、光安定剤、有機カルボン酸、帯電防止剤(界面活性剤含む)、中和剤、エポキシ安定剤、可塑剤、滑剤、抗菌剤、難燃剤、充填剤、発泡剤、発泡助剤、架橋剤、架橋助剤、顔料等である。
酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤及びビタミン類などが挙げられる。
中和剤(分散剤もかねる)としては、金属石鹸、ハイドロタルサイト類、リチウムアルミニウム複合水酸化物塩、ケイ酸塩、金属酸化物、金属水酸化物などが挙げられる。
【0016】
6.不織布
本発明の不織布は、前記の芯成分と前記の造核剤含有プロピレン−エチレンランダム共重合体の鞘成分にそれぞれ必要に応じて添加剤等を添加し、芯鞘型複合紡糸口金を用い、溶融紡糸を行い、その後エアサッカーにて延伸し、複合型長繊維を得、この複合型長繊維をエアサッカー下方にあるコンベアーに集積した後、120〜135℃に設定したエンボスロール等により鞘成分を溶融固化させ繊維同士を結合させて製造する。
【0017】
本発明の不織布の引張強度は、1.6kg/5cm〜3.5kg/5cmであることが好ましい。引張強度が1.6kg/5cm未満であると、当該不織布を衛生材料、例えば紙おむつ等に使用した場合、破損(破断)しやすくなる。また、引張強度が3.5kg/5cmを超えると、不織布の風合いは概して悪くなり、やはり製品として好ましくない。
【0018】
【実施例】
以下に実施例を挙げて、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。なお、試験・評価方法は、以下の通りである。
(1)エチレン含量:赤外分光器(日本分光製IR700)により測定した。
(2)メルトフローレイト(MFR):JIS 7210に準拠し、荷重2.16kg、230℃にて測定した。
(3)DSC測定:サンプル約10mgについて、室温から走査速度10℃/分にて210℃まで昇温し、融点(Tm)及び融解熱量(△Hm)を測定した。
(4)紡糸性:連続60分間紡糸時に、溶融繊維群の融着による糸切れが生じない場合を良好とした。
(5)紡糸時の臭気:パネラー5人による官能試験を行い、5人全員が臭わないとした場合を○、3〜4人が臭わないとした場合を△、それ以外を×とした。
(6)不織布引張強度:JIS L 1096に準拠して縦及び横方向の引張強度を測定し、両者の平均値を算出した。
(7)不織布の肌触り性:パネラー5人による官能試験を行い、5人全員がゴワつきがなく肌触りが良いとした場合を○、3〜4人が良いとした場合を△、それ以外を×とした。
(8)不織布臭気:パネラー5人による官能試験を行い、5人全員が臭わないとした場合を○、3〜4人が臭わないとした場合を△、それ以外を×とした。
【0019】
実施例1(参考例)
(1)固体触媒成分の調製
窒素置換した500ml内容積のガラス製三ッ口フラスコ(温度計、攪拌棒付き)に、75mlの精製ヘプタン、75mlのチタンテトラブトキシド及び10gの無水塩化マグネシウムを加える。その後、フラスコを90℃に昇温し、2時間かけて塩化マグネシウムを完全に溶解させる。次に、フラスコを40℃まで冷却し、メチルハイドロジェンポリシロキサン15mlを添加することにより、塩化マグネシウム・チタンテトラブトキシド錯体を析出させる。これを精製ヘプタンで洗浄した後、四塩化ケイ素8.7mlと塩化フタロイル2.0gを加え、50℃で2時間保持する。この後、生成物を濾過し、精製ヘプタンで洗浄し、更に四塩化チタン25mlを加えて25℃で2時間保持する。これを濾過し、精製ヘプタンで洗浄して固体触媒成分を得た。
【0020】
(2)3−メチル−1−ブテンの重合
内容量1リットルの攪拌式オートクレーブに精製ヘプタン500ml、前記固体触媒成分0.8g、32gの3−メチル−1−ブテン、2gのトリイソブチルアルミニウム及び0.6gの第三級ブチルメチルジメトキシシランを導入し、50℃の温度で3時間反応を行った。その後、生成物を精製ヘプタンで洗浄して未反応成分を除去した。3−メチル−1−ブテン重合量は固体触媒成分1g当たり25gであった。
【0021】
(3)プロピレン重合(3−メチル−1−ブテン重合体マスタバッチの製造)
内容量3リットルの攪拌式オートクレーブ内をプロピレンで充分置換した後、充分に脱水したn−ヘプタン1.5リットルを導入して75℃に保ち、さらにプロピレンで7kg/cm2Gまで加圧した。さらにトリエチルアルミニウム0.38g、ジフェニルジメトキシシラン0.16gおよび前記3−メチル−1−ブテンの重合によって製造した3−メチル−1−ブテン重合体を含有する固体触媒成分30mgを導入し、気相部水素濃度を0.3vol%に調節しながら75℃で3時間重合を行った。その後、プロピレンをパージし、さらにブタノール10mlを添加することにより重合を停止させ、濾過、乾燥を行い375gのポリプロピレンパウダーを得た。このポリプロピレンパウダー中には、3−メチル−1−ブテン重合体が2000重量ppmの濃度で含有されており、これを各実施例、比較例において3−メチル−1−ブテン重合体のマスターバッチとして使用した。
【0022】
(4)芯成分
プロピレン単独重合体(MFR:9g/10分)100重量部、酸化防止剤としてチバガイギー社製lrganox1010、lrgafos168を各0.05重量部、中和剤としてカルシウムステアレートを0.05重量部配合し、ヘンシェルミキサーで混合した後、50mmφの単軸押出機(温度230℃)で造粒ペレット化した。
【0023】
(5)鞘成分
エチレン含量3重量%、MFR:9g/10分のプロピレン−エチレンランダム共重合体100重量部、酸化防止剤としてチバガイギー社製lrganox1010、lrgafos168を各0.05重量部、中和剤としてカルシウムステアレートを0.05重量部、さらに別途調製した3−メチル−1−ブテン重合体を予備重合したホモポリプロピレンを0.05重量部配合(最終濃度10重量ppm)し、ヘンシェルミキサーで混合した後、50mmφの単軸押出機(温度230℃)で造粒ペレット化した。
【0024】
上記で得られた芯成分及び鞘成分を用い、ホール数50個の芯鞘型複合紡糸口金を用いて、溶融紡糸を行った。
溶融紡糸は、紡糸温度:250℃、吐出量:0.8g/分・穴、芯鞘複合比率:1/1で行い、その後エアサッカーにて延伸し、繊度2デニールの複合型長繊維を得た。この複合型長繊維をエアサッカー下方にあるコンベアーに集積した後、130℃に設定したエンボスロールにより繊維同士を融着させ、目付量20g/m2の不織布を得た。芯成分及び鞘成分の物性値を表1に示す。また、得られた不織布の評価結果を表3に示す。
【0025】
実施例2(参考例)
鞘成分のプロピレン−エチレンランダム共重合体のエチレン含量を4.2重量%とした以外は実施例1と同様にして不織布を得た。芯成分及び鞘成分の物性値を表1に示す。また、得られた不織布の評価結果を表3に示す。
【0026】
実施例3(参考例)
芯成分のホモポリプロピレンのMFRを30g/10分、鞘成分のプロピレン−エチレンランダム共重合体のエチレン含量を4.5重量%、MFRを30g/10分、紡糸温度を230℃とした以外は実施例1と同様にして不織布を得た。芯成分及び鞘成分の物性値を表1に示す。また、得られた不織布の評価結果を表3に示す。
【0027】
実施例4(参考例)
芯鞘複合比率:7/3とした以外は実施例3と同様にして不織布を得た。芯成分及び鞘成分の物性値を表1に示す。また、得られた不織布の評価結果を表3に示す。
【0028】
実施例5(参考例)
芯鞘複合比率:3/7とした以外は実施例3と同様にして不織布を得た。芯成分及び鞘成分の物性値を表1に示す。また、得られた不織布の評価結果を表3に示す。
【0029】
実施例6(参考例)
芯成分のホモポリプロピレンのMFRを50g/10分、鞘成分のプロピレン−エチレンランダム共重合体のエチレン含量を4.3重量%、MFRを50g/10分とした以外は実施例1と同様にして不織布を得た。芯成分及び鞘成分の物性値を表1に示す。また、得られた不織布の評価結果を表3に示す。
【0030】
実施例7
芯成分をエチレン含量0.8重量%、MFR30g/10分のプロピレン−エチレンランダム共重合体とし、鞘成分のプロピレン−エチレンランダム共重合体のエチレン含量を4.5重量%、MFRを30g/10分とした以外は実施例1と同様にして不織布を得た。芯成分及び鞘成分の物性値を表1に示す。また、得られた不織布の評価結果を表3に示す。
【0031】
実施例8
鞘成分のプロピレン−エチレンランダム共重合体のエチレン含量を3重量%とした以外は実施例7と同様にして不織布を得た。芯成分及び鞘成分の物性値を表1に示す。また、得られた不織布の評価結果を表3に示す。
【0032】
比較例1
芯成分としてホモポリプロピレン(MFR30g/10分)、鞘成分としてエチレン含量4.5重量%、MFR30g/10分のプロピレン−エチレンランダム共重合体に結晶造核剤NA11UY(旭電化(株)製)を0.2重量%添加し樹脂組成物を用いた。
これらの樹脂成分をホール数50個の芯鞘型複合紡糸口金を用い、溶融紡糸を行った。紡糸は、紡糸温度:230℃、吐出量:0.8g/分・穴、芯鞘複合比率:1/1で行い、その後エアサッカーにて延伸し、繊度2デニールの複合型長繊維を得た。この複合型長繊維をエアサッカー下方にあるコンベアーに集積した後、130℃に設定したエンボスロールにより繊維同士を融着させ不織布を得た。芯成分及び鞘成分の物性値を表2に示す。また、得られた不織布の評価結果を表3に示す。
【0033】
比較例2
鞘成分の結晶造核剤をゲルオールMD(新日本理化(株)製)添加量0.2重量%とした以外は、比較例1と同様にして不織布を得た。芯成分及び鞘成分の物性値を表2に示す。また、得られた不織布の評価結果を表3に示す。
【0034】
比較例3
鞘成分に結晶造核剤を添加しない以外は、比較例1と同様にして不織布を得ようとしたが、紡糸時に繊維群が融着したため不織布は得られなかった。芯成分及び鞘成分の物性値を表2に示す。
【0035】
比較例4
鞘成分のプロピレン−エチレンランダム共重合体のエチレン含量を6重量%、MFRを30g/10分とした以外は、実施例3と同様にして不織布を得ようとしたが、紡糸時に繊維群が融着したため不織布は得られなかった。芯成分及び鞘成分の物性値を表2に示す。
【0036】
比較例5
鞘成分のプロピレン−エチレンランダム共重合体のエチレン含量を0.8重量%、MFRを30g/10分とし、不織布成形時におけるエンボスロール温度を140℃とした以外は、実施例3と同様にして不織布を得た。芯成分及び鞘成分の物性値を表2に示す。また、得られた不織布の評価結果を表3に示す。
【0037】
比較例6
芯成分/鞘成分の芯鞘比率を8/2とした以外は、実施例3と同様にして不織布を得た。芯成分及び鞘成分の物性値を表2に示す。また、得られた不織布の評価結果を表3に示す。
【0038】
【表1】

Figure 0003984721
【0039】
【表2】
Figure 0003984721
【0040】
【表3】
Figure 0003984721
【0041】
表1〜表3から明らかなように、実施例1〜8ではいずれも紡糸性、紡糸時臭気、不織布強度、肌触り性、不織布臭気を満足する不織布が得られた。一方、比較例1、5、6は不織布の肌触り性が悪く、比較例2は紡糸時臭気、並びに不織布臭気(造核剤の臭気)に問題が有り、比較例3、4は紡糸時に繊維群が融着してしまい不織布成形が不能となった。
【0042】
【発明の効果】
本発明のプロピレン系不織布は、不織布を形成する複合繊維の低融点成分として用いるプロピレン−エチレンランダム共重合体に、特定の結晶造核剤を処方することにより、紡糸時の発煙、紡糸口金の汚れ(目やに)を防止すると同時に、溶融紡糸時の結晶化速度を早め、当該繊維群の融着を防止し、かつ不織布強度が高く、風合いの良好な不織布が得られ、紙おむつなどの衛生材料として使用に適する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonwoven fabric made of a composite fiber, and relates to a polypropylene nonwoven fabric suitable for use as a sanitary material such as a disposable diaper, which has good operability during spinning, and particularly has high strength and good texture in terms of nonwoven fabric performance.
[0002]
[Prior art]
As a typical method for producing a nonwoven fabric, there are a card method and a spunbond method. The card method is a method of forming a raw cotton by melt spinning and stretching, and then applying this to a card machine to make a nonwoven fabric. The spunbond method is a method for obtaining a nonwoven fabric by accumulating long fiber groups obtained by melt spinning on a collection conveyor and then thermally fusing them with an oven or a heat roll. The spunbond method is a very useful method in terms of production efficiency because the nonwoven fabric can be obtained by opening and accumulating as it is after melt spinning as compared with the card method or the like.
[0003]
When a polyolefin nonwoven fabric is used as a sanitary material, a nonwoven fabric having high nonwoven fabric strength and good texture is desired. When used as a disposable diaper, it will not become a product if it stretches more than necessary or breaks (breaks) when worn. In addition, a soft texture is required to directly touch the skin.
[0004]
In order to obtain the above-described nonwoven fabric, the constituent fibers need to be composite fibers. For example, when a non-woven fabric is produced using only isotactic homopolypropylene as a raw material, it is necessary to set a high fusion temperature between fibers, and at the same time, the non-woven fabric becomes like paper and the texture becomes worse. . In addition, when only a propylene-ethylene random copolymer having a lowered crystallinity and a melting point is used as a raw material, the fusion temperature between fibers can be set low, but the strength of the nonwoven fabric decreases due to low crystallinity, The problem is that the texture becomes like paper.
[0005]
In order to solve the above-mentioned problems, it is necessary to make the nonwoven fabric constituent fiber a composite fiber composed of a low melting point component and a high melting point component. Specifically, by using a propylene-ethylene random copolymer containing several weight percent of ethylene as a low melting point component and using a propylene-ethylene random copolymer containing a small amount of homopolypropylene or ethylene as a high melting point component, the strength of the nonwoven fabric It is possible to obtain a non-woven fabric having a good texture without lowering. The greater the difference in melting point between the high melting point component and the low melting point component, the better the strength and texture of the nonwoven fabric. That is, the lower the melting point of the propylene-ethylene random copolymer which is a low melting point component, the better. However, the propylene-ethylene random copolymer has a lower melting point than homopolypropylene, and also has characteristics such as a low crystallization temperature and a low crystallization speed, and these influence the process stability during spinning. It becomes a factor.
[0006]
In the spinning process by the spunbond method, the molten resin is discharged from a plurality of spinning holes, and the fiber group is accumulated on a collecting conveyor by air soccer. In this step, since the low melting point propylene-ethylene random copolymer is not solidified even at the introduction point of the air soccer, there arises a problem that the nonwoven fabric cannot be manufactured because the fiber group is fused. Even in the usual melt spinning method, the fiber group is fused directly under the spinneret, which makes spinning difficult.
In order to solve this problem, a method of adding a sorbitol crystal nucleating agent to a low melting point propylene-ethylene random copolymer is known. That is, by increasing the crystallization temperature and increasing the crystallization speed, it is possible to prevent the fiber group from being fused during spinning.
However, when the crystal nucleating agent is used, fuming during spinning (resulting from thermal decomposition of the sorbitol nucleating agent) and dirt (in the eyes) of the spinneret become prominent, the working environment deteriorates, and long-term process stability is achieved. A new problem arises that interferes with sexuality.
[0007]
[Problems to be solved by the invention]
From the above viewpoint, the object of the present invention is to prevent smoking during spinning and contamination of the spinneret (eyes) at the same time using the core-sheath type composite fiber, and at the same time, increase the crystallization speed during melt spinning, The present invention provides a nonwoven fabric that prevents fusion and has a high nonwoven fabric strength and good texture.
[0008]
[Means for Solving the Problems]
As a result of earnest research to achieve the above-mentioned problems, the present inventors used a low-melting-point propylene-ethylene random copolymer containing a specific amount of a specific polymer crystal nucleating agent as a sheath component used as a low-melting-point component. In the core-sheath type composite fiber, the amount ratio of the core component to the sheath component and the thermal characteristics (relationship between the melting point and the heat of fusion) are set within a specific range to prevent fuming during spinning and contamination of the spinneret (eyes). At the same time, it has been found that a nonwoven fabric with good strength and texture can be obtained by solving the problems during spinning, such as increasing the crystallization speed during melt spinning and preventing the fusion of the fibers. did.
That is, the present invention has a melt flow rate is up to meet the 5 to 100 g / 10 min propylene - a core component comprising an ethylene random copolymer, propylene melt flow rate satisfies 5 to 100 g / 10 min - ethylene random copolymer A core-sheath type composite fiber formed from a sheath component containing 1 to 500 ppm by weight of a 3-methyl-1-butene polymer is used as a constituent fiber, and the amount ratio of the core component to the sheath component is 3: 7 to 7: 3, and the thermal characteristics obtained from the measurement of the core component and the sheath component by a differential scanning calorimeter (DSC) are as follows:
0.72 <(ΔHm 2 / Tm 2 ) / (ΔHm 1 / Tm 1 ) <0.92
(However, ΔHm 1 represents the heat of fusion of the core component, ΔHm 2 represents the heat of fusion of the sheath component, Tm 1 represents the melting point of the core component, and Tm 2 represents the melting point of the sheath component.)
And a composite component is bonded to each other by melting and solidifying the sheath component.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
1. Resin constituting the core component A propylene-ethylene random copolymer is used as the core component of the composite fiber that is the constituent fiber of the nonwoven fabric according to the present invention, that is, the high melting point component. The reason for using this as the core component is that the affinity with the propylene-ethylene random copolymer that is the sheath component is good. The ethylene content of the propylene-ethylene random copolymer is preferably 1.5% by weight, more preferably 1% by weight or less. When the ethylene content exceeds 1.5% by weight, the core component becomes low crystallinity, and the strength and texture of the nonwoven fabric are deteriorated. The melt flow rate (MFR) is 5 to 100 g / 10 minutes, preferably 10 to 70 g / 10 minutes. If the MFR is less than 5 g / 10 min, the spinning pressure becomes too high, and spinning becomes difficult. On the other hand, if the MFR exceeds 100 g / 10 min, the fluidity becomes high, so that the stability of the molten fiber group discharged from the spinneret is impaired, and the spinning is difficult.
[0010]
2. A propylene-ethylene random copolymer is used as the sheath component of the resin composite long fiber constituting the sheath component, that is, the low melting point component. The propylene-ethylene random copolymer preferably has an ethylene content of 2.5 to 5% by weight, more preferably 3.0 to 4.6% by weight. If the ethylene content is less than 2.5% by weight, the heat seal temperature is high and the texture is poor. If the ethylene content exceeds 5% by weight, the stability of the molten fiber group discharged from the spinneret is impaired and spinning is difficult. Therefore, it is not preferable.
The MFR is 5 to 100 g / 10 minutes, preferably 10 to 70 g / 10 minutes. If the MFR is less than 5 g / 10 min, the spinning pressure becomes too high, and spinning becomes difficult. On the other hand, if the MFR exceeds 100 g / 10 min, the fluidity becomes high, so that the stability of the molten fiber group discharged from the spinneret is impaired, and the spinning is difficult.
Furthermore, the propylene-ethylene random copolymer used in the present invention contains a 3-methyl-1-butene polymer, and has improved crystallization temperature and crystallization rate.
[0011]
3. Amount ratio between the core component and the sheath component The amount ratio between the core component and the sheath component is 3: 7 to 7: 3, preferably 4: 6 to 6: 4. If the core component is too much, the texture becomes worse, and if it is too little, the tensile strength of the nonwoven fabric is lowered.
[0012]
Also, the relationship between the ratio of the heat of fusion (ΔHm 1 ) and melting point (Tm 1 ) of the core component and the ratio of the heat of fusion (ΔHm 2 ) and melting point (Tm 2 ) of the sheath component by differential scanning calorimeter (DSC) 0.72 <(ΔHm 2 / Tm 2 ) / (ΔHm 1 / Tm 1 ) <0.92, preferably 0.74 <(ΔHm 2 / Tm 2 ) / (ΔHm 1 / Tm 1 ) <0. .92. When (ΔHm 2 / Tm 2 ) / (ΔHm 1 / Tm 1 ) is 0.92 or more, the melting point and crystallinity characteristics of the core component and the sheath component are similar. It becomes unpreferable as a component, and a desired nonwoven fabric with high strength and good texture cannot be obtained. Further, when (ΔHm 2 / Tm 2 ) / (ΔHm 1 / Tm 1 ) is 0.72 or less, even if a crystal nucleating agent is added to the sheath component, the low crystallization temperature and the low crystallization rate are damaged. This makes it difficult to produce the nonwoven fabric, causing fusion of the molten fiber directly below the spinneret.
[0013]
4). Nucleating agent In the present invention, 3-methyl-1-butene polymer is used as a nucleating agent to be blended with the propylene-ethylene random copolymer of the sheath component. The content of 3-methyl-1-butene polymer in the propylene-ethylene random copolymer resin is 1 to 500 ppm by weight, preferably 1 to 300 ppm by weight. When the content of the 3-methyl-1-butene polymer is less than 1 ppm by weight, the crystallization temperature does not increase during melt spinning, so that the fusion of the fiber group cannot be improved. Moreover, even if it exceeds 500 weight ppm, the effect which contributes to the fusion | melting of a fiber group will reach a peak.
[0014]
A resin composition comprising a propylene-ethylene random copolymer and a 3-methyl-1-butene polymer can be produced, for example, as follows. That is, first, 3-methyl-1-butene polymer was polymerized using a Ziegler-Natta catalyst (preliminary polymerization), and then propylene-- using a catalyst carrying this 3-methyl-1-butene polymer. It is produced by polymerizing an ethylene random copolymer. At this time, it is preferable to use a Ziegler-Natta catalyst comprising a solid titanium compound and an organoaluminum compound. As the solid titanium compound, magnesium halide, an organic titanium compound and an electron donating compound are preferably used as essential components. Examples of the polymerization method include gas phase, bulk, slurry polymerization and the like.
Since the resin composition of the propylene-ethylene random copolymer and 3-methyl-1-butene polymer produced by the above method has a high content of 3-methyl-1-butene polymer, the resin according to the present invention In order to obtain a composition, it may be used as a master batch for a propylene-ethylene random copolymer produced separately. Moreover, it is also possible to prepare by melt-kneading 3-methyl-1-butene polymer itself as an additive to a propylene-ethylene random copolymer.
[0015]
5). Other Additives Conventionally known modifiers for polyolefins can be appropriately used in combination with the polypropylene-based nonwoven fabric according to the present invention depending on the purpose of use. For example, antioxidant, UV absorber, light stabilizer, organic carboxylic acid, antistatic agent (including surfactant), neutralizer, epoxy stabilizer, plasticizer, lubricant, antibacterial agent, flame retardant, filler, foaming Agents, foaming aids, crosslinking agents, crosslinking aids, pigments and the like.
Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, amine antioxidants and vitamins.
Examples of neutralizing agents (also dispersing agents) include metal soaps, hydrotalcites, lithium aluminum composite hydroxide salts, silicates, metal oxides, metal hydroxides, and the like.
[0016]
6). Non-woven fabric The non-woven fabric of the present invention is a core-sheath type composite spinneret, wherein an additive or the like is added to the core component and the sheath component of the nucleating agent-containing propylene-ethylene random copolymer, respectively, as necessary. Perform melt spinning, then draw with air soccer to obtain composite long fibers, collect these composite long fibers on the conveyor under the air soccer, and then sheath component by embossing roll set at 120-135 ° C Is produced by melting and solidifying the fibers and bonding the fibers together.
[0017]
The tensile strength of the nonwoven fabric of the present invention is preferably 1.6 kg / 5 cm to 3.5 kg / 5 cm. When the tensile strength is less than 1.6 kg / 5 cm, when the nonwoven fabric is used as a sanitary material, for example, a paper diaper, it is easy to break (break). On the other hand, when the tensile strength exceeds 3.5 kg / 5 cm, the texture of the nonwoven fabric is generally deteriorated, which is not preferable as a product.
[0018]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. The test / evaluation method is as follows.
(1) Ethylene content: Measured with an infrared spectrometer (IR700 manufactured by JASCO Corporation).
(2) Melt flow rate (MFR): Measured according to JIS 7210 at a load of 2.16 kg and 230 ° C.
(3) DSC measurement: About 10 mg of the sample was heated from room temperature to 210 ° C. at a scanning speed of 10 ° C./min, and the melting point (Tm) and the heat of fusion (ΔHm) were measured.
(4) Spinnability: When spinning continuously for 60 minutes, the case where no yarn breakage due to fusion of the molten fiber group occurred was considered good.
(5) Odor during spinning: A sensory test was conducted by five panelists. The case where all five people did not smell was evaluated as ◯, the case where three to four people did not smell was evaluated as △, and the others were evaluated as ×.
(6) Nonwoven fabric tensile strength: The tensile strength in the longitudinal and transverse directions was measured according to JIS L 1096, and the average value of both was calculated.
(7) Touch of non-woven fabric: A sensory test by five panelists was conducted. A case where all the five people were not wrinkled and touched was good. A case where three to four people were good. It was.
(8) Non-woven fabric odor: A sensory test was conducted by 5 panelists, and a case where all 5 people did not smell was evaluated as ◯, a case where 3-4 people did not smell was evaluated as △, and the others were evaluated as ×.
[0019]
Example 1 (Reference Example)
(1) Preparation of solid catalyst component 75 ml of purified heptane, 75 ml of titanium tetrabutoxide and 10 g of anhydrous magnesium chloride are added to a nitrogen-substituted 500 ml internal volume glass three-necked flask (with a thermometer and a stirring rod). Thereafter, the flask is heated to 90 ° C., and magnesium chloride is completely dissolved over 2 hours. Next, the flask is cooled to 40 ° C., and 15 ml of methyl hydrogen polysiloxane is added to precipitate a magnesium chloride / titanium tetrabutoxide complex. After washing this with purified heptane, 8.7 ml of silicon tetrachloride and 2.0 g of phthaloyl chloride are added and kept at 50 ° C. for 2 hours. After this, the product is filtered, washed with purified heptane, further added with 25 ml of titanium tetrachloride and kept at 25 ° C. for 2 hours. This was filtered and washed with purified heptane to obtain a solid catalyst component.
[0020]
(2) Polymerization of 3-methyl-1-butene In a stirred autoclave having an internal volume of 1 liter, 500 ml of purified heptane, 0.8 g of the solid catalyst component, 32 g of 3-methyl-1-butene, 2 g of triisobutylaluminum and 0 .6 g of tertiary butylmethyldimethoxysilane was introduced and the reaction was carried out at a temperature of 50 ° C. for 3 hours. The product was then washed with purified heptane to remove unreacted components. The polymerization amount of 3-methyl-1-butene was 25 g per 1 g of the solid catalyst component.
[0021]
(3) Propylene polymerization (production of 3-methyl-1-butene polymer master batch)
After the inside of the stirred autoclave having an internal volume of 3 liters was sufficiently substituted with propylene, 1.5 liters of sufficiently dehydrated n-heptane was introduced and maintained at 75 ° C., and further pressurized to 7 kg / cm 2 G with propylene. Further, 0.38 g of triethylaluminum, 0.16 g of diphenyldimethoxysilane and 30 mg of a solid catalyst component containing 3-methyl-1-butene polymer produced by polymerization of 3-methyl-1-butene were introduced, Polymerization was carried out at 75 ° C. for 3 hours while adjusting the hydrogen concentration to 0.3 vol%. Thereafter, propylene was purged and 10 ml of butanol was added to stop the polymerization, followed by filtration and drying to obtain 375 g of polypropylene powder. In this polypropylene powder, 3-methyl-1-butene polymer is contained at a concentration of 2000 ppm by weight, and this is used as a master batch of 3-methyl-1-butene polymer in each Example and Comparative Example. used.
[0022]
(4) 100 parts by weight of core component propylene homopolymer (MFR: 9 g / 10 min), 0.05 parts by weight of lrganox 1010 and lrgafos 168 manufactured by Ciba Geigy as antioxidants, and 0.05 of calcium stearate as a neutralizing agent After blending parts by weight and mixing with a Henschel mixer, the pellets were granulated with a single screw extruder (temperature 230 ° C.) of 50 mmφ.
[0023]
(5) sheath component ethylene content 3% by weight, MFR: 100 parts by weight of a propylene-ethylene random copolymer of 9 g / 10 min, 0.05 parts by weight of lrganox 1010 and lrgafos 168 manufactured by Ciba Geigy as antioxidants, neutralizer As a mixture, 0.05 part by weight of calcium stearate and 0.05 part by weight of homopolypropylene prepolymerized separately prepared 3-methyl-1-butene polymer (final concentration 10 ppm by weight) are mixed with a Henschel mixer. Then, it was granulated into pellets with a single screw extruder (temperature 230 ° C.) of 50 mmφ.
[0024]
Using the core component and the sheath component obtained above, melt spinning was performed using a core-sheath type composite spinneret having 50 holes.
Melt spinning is performed at a spinning temperature of 250 ° C., a discharge rate of 0.8 g / min / hole, and a core / sheath composite ratio of 1/1, and then drawn by air soccer to obtain a composite long fiber having a fineness of 2 denier. It was. The composite long fibers were accumulated on a conveyor below the air soccer ball, and then the fibers were fused together by an embossing roll set at 130 ° C. to obtain a nonwoven fabric having a basis weight of 20 g / m 2 . Table 1 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0025]
Example 2 (Reference Example)
A nonwoven fabric was obtained in the same manner as in Example 1 except that the ethylene content of the propylene-ethylene random copolymer of the sheath component was changed to 4.2% by weight. Table 1 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0026]
Example 3 (Reference Example)
Implemented except that the core component homopolypropylene MFR was 30 g / 10 min, the sheath component propylene-ethylene random copolymer had an ethylene content of 4.5 wt%, the MFR was 30 g / 10 min, and the spinning temperature was 230 ° C. A nonwoven fabric was obtained in the same manner as in Example 1. Table 1 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0027]
Example 4 (Reference Example)
A nonwoven fabric was obtained in the same manner as in Example 3 except that the core-sheath composite ratio was 7/3. Table 1 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0028]
Example 5 (Reference Example)
A nonwoven fabric was obtained in the same manner as in Example 3 except that the core-sheath composite ratio was 3/7. Table 1 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0029]
Example 6 (Reference Example)
Example 1 except that the core component homopolypropylene had an MFR of 50 g / 10 min, the sheath component propylene-ethylene random copolymer had an ethylene content of 4.3 wt%, and the MFR was 50 g / 10 min. A nonwoven fabric was obtained. Table 1 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0030]
Example 7
The core component is a propylene-ethylene random copolymer having an ethylene content of 0.8% by weight and MFR of 30 g / 10 min. The ethylene content of the propylene-ethylene random copolymer in the sheath component is 4.5% by weight and the MFR is 30 g / 10. A non-woven fabric was obtained in the same manner as in Example 1 except that the minute amount was used. Table 1 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0031]
Example 8
A nonwoven fabric was obtained in the same manner as in Example 7 except that the ethylene content of the propylene-ethylene random copolymer of the sheath component was 3% by weight. Table 1 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0032]
Comparative Example 1
Homopolypropylene (MFR 30 g / 10 min) as core component, propylene-ethylene random copolymer as ethylene sheath 4.5 wt% and MFR 30 g / 10 min as sheath component, crystal nucleating agent NA11UY (manufactured by Asahi Denka Co., Ltd.) 0.2% by weight was added and a resin composition was used.
These resin components were melt-spun using a core-sheath type composite spinneret having 50 holes. Spinning was performed at a spinning temperature of 230 ° C., a discharge rate of 0.8 g / min / hole, and a core-sheath composite ratio of 1/1, and then drawn by air soccer to obtain a composite long fiber having a fineness of 2 denier. . The composite long fibers were accumulated on a conveyor below the air soccer ball, and then the fibers were fused together with an embossing roll set at 130 ° C. to obtain a nonwoven fabric. Table 2 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0033]
Comparative Example 2
A nonwoven fabric was obtained in the same manner as in Comparative Example 1, except that the sheath component crystal nucleating agent was 0.2% by weight of Gelol MD (manufactured by Shin Nippon Rika Co., Ltd.). Table 2 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0034]
Comparative Example 3
Except for not adding a crystal nucleating agent to the sheath component, an attempt was made to obtain a non-woven fabric in the same manner as in Comparative Example 1, but the non-woven fabric was not obtained because the fiber group was fused during spinning. Table 2 shows the physical property values of the core component and the sheath component.
[0035]
Comparative Example 4
A nonwoven fabric was obtained in the same manner as in Example 3 except that the ethylene content of the propylene-ethylene random copolymer of the sheath component was 6% by weight and the MFR was 30 g / 10 min. Because it was worn, no nonwoven fabric was obtained. Table 2 shows the physical property values of the core component and the sheath component.
[0036]
Comparative Example 5
Example 3 except that the ethylene content of the propylene-ethylene random copolymer of the sheath component was 0.8% by weight, the MFR was 30 g / 10 min, and the embossing roll temperature at the time of forming the nonwoven fabric was 140 ° C. A nonwoven fabric was obtained. Table 2 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0037]
Comparative Example 6
A nonwoven fabric was obtained in the same manner as in Example 3 except that the core / sheath ratio of the core component / sheath component was set to 8/2. Table 2 shows the physical property values of the core component and the sheath component. Moreover, Table 3 shows the evaluation results of the obtained nonwoven fabric.
[0038]
[Table 1]
Figure 0003984721
[0039]
[Table 2]
Figure 0003984721
[0040]
[Table 3]
Figure 0003984721
[0041]
As is apparent from Tables 1 to 3, in Examples 1 to 8, nonwoven fabrics satisfying the spinnability, spinning odor, nonwoven fabric strength, touch, and nonwoven fabric odor were obtained. On the other hand, Comparative Examples 1, 5, and 6 have poor touch of the nonwoven fabric, Comparative Example 2 has a problem with odor during spinning and nonwoven fabric odor (odor of nucleating agent), and Comparative Examples 3 and 4 have a group of fibers during spinning. As a result, the nonwoven fabric could not be formed.
[0042]
【The invention's effect】
The propylene-based non-woven fabric of the present invention is produced by formulating a specific crystal nucleating agent into a propylene-ethylene random copolymer used as a low melting point component of the composite fiber forming the non-woven fabric, thereby producing smoke during spinning and contamination of the spinneret. At the same time, the crystallization speed at the time of melt spinning is increased, the fusion of the fibers is prevented, the nonwoven fabric has high strength and good texture, and is used as sanitary materials such as paper diapers. Suitable for.

Claims (2)

メルトフローレイトが5〜100g/10分を満たすプロピレン−エチレンランダム共重合体からなる芯成分と、メルトフローレイトが5〜100g/10分を満たすプロピレン−エチレンランダム共重合体に3−メチル−1−ブテン重合体1〜500重量ppmを含有する鞘成分とで形成された芯鞘型複合繊維を構成繊維とし、芯成分と鞘成分の量比が3:7〜7:3であり、該芯成分と鞘成分の示差走査型熱量計(DSC)による測定から求まる熱特性が以下の式;
0.72<(ΔHm2/Tm2)/(ΔHm1/Tm1)<0.92
(ただし、ΔHm1は芯成分の融解熱量、ΔHm2は鞘成分の融解熱量、Tm1は芯成分の融点、Tm2は鞘成分の融点を表す。)
を満たし、かつ鞘成分が溶融固化することにより、複合繊維同士が結合していることを特徴とするポリプロピレン系不織布。
Melt flow rate is up to meet the 5 to 100 g / 10 min propylene - ethylene random copolymer core component consisting of propylene melt flow rate satisfies 5 to 100 g / 10 min - ethylene random copolymer of 3-methyl A sheath-shell type composite fiber formed with a sheath component containing 1-500 ppm by weight of -1-butene polymer is a constituent fiber, and the quantitative ratio of the core component to the sheath component is 3: 7 to 7: 3, The thermal characteristics obtained from the measurement by the differential scanning calorimeter (DSC) of the core component and the sheath component are as follows:
0.72 <(ΔHm 2 / Tm 2 ) / (ΔHm 1 / Tm 1 ) <0.92
(However, ΔHm 1 represents the heat of fusion of the core component, ΔHm 2 represents the heat of fusion of the sheath component, Tm 1 represents the melting point of the core component, and Tm 2 represents the melting point of the sheath component.)
And a composite fiber is bonded to each other by melting and solidifying the sheath component.
不織布の引張強度が1.6kg/5cm〜3.5kg/5cmであることを特徴とする請求項1記載のポリプロピレン系不織布。  The polypropylene nonwoven fabric according to claim 1, wherein the nonwoven fabric has a tensile strength of 1.6 kg / 5 cm to 3.5 kg / 5 cm.
JP24657098A 1998-08-17 1998-08-17 Polypropylene nonwoven fabric Expired - Fee Related JP3984721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24657098A JP3984721B2 (en) 1998-08-17 1998-08-17 Polypropylene nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24657098A JP3984721B2 (en) 1998-08-17 1998-08-17 Polypropylene nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2000064168A JP2000064168A (en) 2000-02-29
JP3984721B2 true JP3984721B2 (en) 2007-10-03

Family

ID=17150389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24657098A Expired - Fee Related JP3984721B2 (en) 1998-08-17 1998-08-17 Polypropylene nonwoven fabric

Country Status (1)

Country Link
JP (1) JP3984721B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544725B2 (en) * 2000-11-02 2010-09-15 三井化学株式会社 Flexible nonwoven fabric
WO2023090200A1 (en) * 2021-11-18 2023-05-25 東レ株式会社 Spunbond nonwoven fabric

Also Published As

Publication number Publication date
JP2000064168A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP3368013B2 (en) Nonwoven fiber materials from blends of propylene polymer materials and olefin polymer compositions
CN111548566B (en) Melt-blown polypropylene material and preparation method and application thereof
JP5938149B2 (en) Method for producing drawn composite fiber and drawn composite fiber
US5585172A (en) Polymeric composition for soft polypropylene fibers, fibers obtained from this composition and manufactured articles derived from these fibers
AU618566B2 (en) Microporous filaments and fibers, process of making of same, and articles made therefrom
EP2925796A1 (en) Propylene polymers
CN112760820B (en) Melt-blown polypropylene material with long-acting soft hand feeling and preparation method and application thereof
CN110183559A (en) A kind of production method of high fluidity spun-bonded non-woven acrylic resin
JPH0375645B2 (en)
JP4690131B2 (en) Polypropylene resin composition for long fiber nonwoven fabric
EP1169500B1 (en) Polypropylene fibres
EP1299584B2 (en) Polypropylene fibres
KR20170134652A (en) Spunbond fabrics comprising propylene-based elastomer composition and method of making same
EP1169499B1 (en) Polypropylene fibres
JP3984721B2 (en) Polypropylene nonwoven fabric
DE60118978T2 (en) NON-COATED POLYOLEFIN FIBERS HIGH TENSILE STRENGTH
JPH1088459A (en) Nonwoven fabric of filament
JP2543548B2 (en) Polypropylene extra fine fiber non-woven fabric
JP2001020132A (en) Polypropylene fiber and its production
EP1297203B2 (en) Polypropylene fibres
CA2399424A1 (en) Fibers and fabrics prepared with propylene impact copolymers
JP2002235237A (en) Polypropylene fiber and hot-melt type nonwoven fabric made of the same
JPH11200138A (en) Propylene resin for spun-bonded nonwoven fabric and spun-bonded nonwoven fabric
JP4544725B2 (en) Flexible nonwoven fabric
JP3032075B2 (en) Hydrophilic polyolefin fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees