JP3984431B2 - Electrolyte composition for steel materials and method for analyzing inclusions or precipitates thereby - Google Patents

Electrolyte composition for steel materials and method for analyzing inclusions or precipitates thereby Download PDF

Info

Publication number
JP3984431B2
JP3984431B2 JP2001106155A JP2001106155A JP3984431B2 JP 3984431 B2 JP3984431 B2 JP 3984431B2 JP 2001106155 A JP2001106155 A JP 2001106155A JP 2001106155 A JP2001106155 A JP 2001106155A JP 3984431 B2 JP3984431 B2 JP 3984431B2
Authority
JP
Japan
Prior art keywords
precipitates
inclusions
steel
steel sample
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001106155A
Other languages
Japanese (ja)
Other versions
JP2002303620A (en
Inventor
薫 水野
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001106155A priority Critical patent/JP3984431B2/en
Publication of JP2002303620A publication Critical patent/JP2002303620A/en
Application granted granted Critical
Publication of JP3984431B2 publication Critical patent/JP3984431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄鋼材料用電解液組成物およびそれによる介在物または析出物の分析方法に関わるものである。
【0002】
【従来の技術】
鉄鋼中に含まれる介在物や析出物はその大きさや数量、化学組成などによって鉄鋼材料の特性に大きな影響を及ぼし、粒径が数十マイクロメートルオーダーの比較的大きな介在物は鉄鋼材料の特性を劣化させる有害なものとして扱われてきた。しかし、近年マイクロメートルオーダーあるいはそれ以下の大きさの析出物を積極的に利用して鋼の組織を制御することにより製品特性を向上させる技術が発展し、微小な析出物の定量や粒度分布測定に対するニーズが高まってきている。
【0003】
従来、比較的大きな酸化物系の介在物の抽出には第一鉄水溶液中で電解するスライム法、塩酸中等で加熱溶解する酸溶解法、ハロゲン−有機溶剤溶解法、非水溶媒系電気分解法などがあった。
このうち、スライム法、酸溶解法、ハロゲン−有機溶剤溶解法は比較的溶解速度が速く、大量の鉄鋼試料からアルミナなどのきわめて安定な酸化物の抽出には有効であるが、硫化物や、微小な析出物についてはこれを溶解してしまうという問題点がある。
【0004】
これに対して、非水溶媒系電気分解法は、分解速度は他の方法に比べて遅いが、抽出の対象物質によって溶媒と電位を選ぶことにより、選択的抽出が可能であるという特長がある。
しかしながら、例えば、従来からメタノール中にアセチルアセトンとテトラメチルアンモニウムクロライドを含む電解液や、メタノール中にサリチル酸メチルとサリチル酸およびテトラメチルアンモニウムクロライドを含む電解液など、主に酸性の電解液が用いられることが多く、たとえば、硫化物やCaOなど有効な析出物が溶解されることが知られている。
【0005】
また、メタノール中にトリエタノールアミンとテトラメチルアンモニウムクロライドを含む電解液はアルカリ性であり、CaOなどはほとんど溶解しないが、バルクの鉄から抽出された析出物は電解液中に分散するので、析出物だけを分離するためには電解後に残渣を電解液から濾別する必要があった。しかしながら、濾別の際に粒子の凝集やフィルターの目詰まりなどにより、微小な粒子を定量的に分離するのは実質的に困難である。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような問題点を解決し、鉄鋼試料のマトリクスを電解し、介在物または析出物を鉄鋼試料表面に残存付着させることのできる鉄鋼材料用電解液組成物およびそれによる介在物または析出物の分析方法を提供することをその課題とするものである。
【0007】
【課題を解決するための手段】
発明者らは、非水系電解液の成分の組み合わせを種々検討してきた結果、電解質、トリエタノールアミン、無水マイン酸を含有させたアルコールからなる電解液組成物が、上記課題を解決できることを見出した。本発明はこれに基づき、電解液の最適な組成などをさらに特定するに至って完成されたものであって、その要旨とするところは以下の通りである。
(1)鉄鋼試料のマトリクスを電解しその中の介在物または析出物を抽出するための電解液であって、トリエタノールアミン:0.5〜10体積%、無水マレイン酸:0.5〜6.4質量%、テトラメチルアンモニウムクロライド:0.3〜3質量%を含有し、残部が溶媒であるアルコールからなることを特徴とする鉄鋼材料用電解液組成物。
(2)トリエタノールアミン:1〜3体積%、無水マレイン酸:0.5〜3質量%を含有することを特徴とする前記(1)に記載の鉄鋼材料用電解液組成物。
(3)前記(1)または(2)に記載の鉄鋼材料用電解液組成物により鉄鋼試料のマトリクスを電解し、鉄鋼試料表面に残存付着したままの介在物または析出物を対象とすることを特徴とする介在物または析出物の分析方法。
(4)前記電解における電流密度が、鉄鋼試料の表面積1平方センチメートルあたり1〜50mAであることを特徴とする前記(3)に記載の介在物または析出物の分析方法。
(5)鉄鋼試料表面に残存付着したまま観察した画像を処理することにより介在物または析出物の粒度分布を測定することを特徴とする前記(3)または(4)に記載の介在物または析出物の分析方法。
【0008】
【発明の実施の形態】
鉄鋼試料中の介在物または析出物の定量分析や粒度分布測定のための抽出法において、アルコールを溶媒とし、電解質およびトリエタノールアミンおよび無水マレイン酸を含有する電解液を用い、鉄鋼試料のマトリクスを前記電解液により電解し、残存した介在物または析出物を鉄鋼試料表面に付着せしめ、走査型電子顕微鏡により介在物または析出物の観察および分析を行うことを特徴とする。
【0009】
まず、電解により鉄は陽イオンとして液相に溶け出し、電解液中のトリエタノールアミンおよび無水マレイン酸と錯体を形成する。このうち鉄マレイン酸錯体は試料の周囲に次第に高電気抵抗・高粘度領域を形成していく。一方、酸化物などの介在物または析出物は溶解せずに次第に鉄鋼試料表面に露出する。従来の非水溶媒系電解液は酸性のものが多く、硫化物やCaOなどを溶解したが、電解液にアルカリ性のトリエタノールアミンを加えることによりこれらの介在物または析出物が溶解しにくくなる。
【0010】
トリエタノールアミンの添加量は、0.5体積%より少ないと、介在物または析出物が鉄鋼試料の表面に付着せず、10体積%を超えると、電解速度が遅くなりすぎる。析出物付着性と電解速度のバランスの観点から1〜3体積%が好ましい。
多くの酸化物などの析出物または介在物粒子の表面は溶液中でOH基を有することが知られており、酸性の溶液中ではプロトン付加により正の電荷を帯びるのに対し、アルカリ性の溶液中ではOH基からプロトンが引き抜かれて負の電荷を帯びる。アルカリ性の溶液の中で負の電荷を帯びた粒子はアノードすなわち鉄鋼試料からの引力を受ける。無水マレイン酸を添加することにより、電解液と鉄鋼試料表面との境界近傍に電解液の電気抵抗および粘度が高くなる領域が生じ、粒子を試料表面に残留させる効果がある。
【0011】
無水マレイン酸の添加量は、0.5質量%以上で粒子を試料表面に残留させる効果が得られる。逆に、3質量%を超えると電気抵抗が高くなりすぎて、電解速度が遅くなるため好ましくない。さらに、6.4%を超えるとメタノールには溶解しなくなる。
テトラメチルアンモニウムクロライドは、電解質として添加するもので、その添加量は、0.3〜3質量%の範囲とする。0.3質量%より少ないと十分な電流が流れないため電解できない。一方で3質量%を超えて添加すると電解速度が速くなりすぎ、前記トリエタノールアミンや無水マレイン酸の添加効果が得られ難く、介在物または析出物が鉄鋼試料の表面に残存付着しなくなる。トリエタノールアミンや無水マレイン酸の好ましい添加量との組み合わせを考慮すると0.5〜2質量%の範囲がテトラメチルアンモニウムクロライドの添加量として好ましい。
【0012】
このように、電解によって分解した鉄マトリクスから露出した介在物または析出物の粒子が、鉄鋼試料表面近傍の粘性および電気抵抗の高い電解液中で、鉄鋼試料表面近傍に留まったまま、電気的な引力により再び鉄鋼試料表面に付着することにより、鉄鋼試料を電解液から取りだし乾燥後、そのままの状態で観察や分析が可能である。
【0013】
本発明の鉄鋼材料用電解液組成物によって鉄鋼試料のマトリクスを電解するにあたり、最適な電流密度は鉄鋼試料の表面積1平方センチメートルあたり1〜50mAである。電流密度が1mA/cm2を下回ると電解に時間がかかりすぎ実用的でなくなる。一方、試料の組成や析出物の種類にもよるが50mA/cm2を上回ると微細な粒子が十分に試料表面に残留しない懸念がある。したがって、1〜50mA/cm2を好ましい電流密度とした。
【0014】
既に説明したように、本発明の電解液組成物を利用する電解方法によれば介在物や析出物が試料表面に留まっているので、電解試料を電解液から取りだし乾燥すれば、そのままでその上に残存している介在物や析出物の観察が可能である。特に、走査型電子顕微鏡で観察する試料として最適であり、走査型電子顕微鏡の2次電子像によれば鉄鋼材料中の介在物や析出物をマトリクス上に粒子として確認できる。
【0015】
この粒子像は、2値化などの画像処理をおこなえば、その画像から粒子の面積率や粒度分布などを計算して求めることが可能である。画像処理や計算方法はいかなる従来技術やその組み合わせによってもよいことはいうまでもない。この粒子の面積率や粒度分布などのデータは、残渣を電解液から濾別する場合より遙かに鉄鋼材料中に分散していた状態に近いことが期待できるから、介在物や析出物を利用する鉄鋼材料の開発には極めて有用な情報となる。
【0016】
また、EPMAなどの元素分析と組み合わせれば、特定の元素のみを含有する粒子について前記画像処理から面積率や粒度分布などの計算処理を行うことができ、さらに、これを複数の元素について行うことにより、分散粒子の成分の解析も可能となる。
【0017】
【実施例】
以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
微小な析出物が存在していることをあらかじめ透過型電子顕微鏡で確認した試料を準備し、この試料を、メタノールを溶媒とし、電解質としてテトラメチルアンモニウムクロライドを1質量%、トリエタノールアミンを2体積%、および無水マレイン酸を1質量%含有する電解液の中で電解後、乾燥して走査型電子顕微鏡で観察した。図1は、2次電子像(SEI)を撮影した写真を粒子とマトリクスが明確となるよう画像解析処理により2値化した画像をもとに、個別の粒子を画像認識した上で各粒子の面積から円の直径に換算したものを粒度として計算し、粒度分布として表したものである。図1から明らかなように、本発明によれば1〜2μmにピークを有する明確な粒度分布を求めることができた。
【0018】
比較例として、メタノールを溶媒とし、電解質としてテトラメチルアンモニウムクロライドを1質量%、アセチルアセトンを10体積%含有する電解液の中で実施例で用いたものと同一の鉄鋼試料を実施例と同一量電解後、乾燥して実施例と同一面積を走査型電子顕微鏡で観察し、撮影した写真を画像解析装置により粒度分布測定を行った結果を図2に示す。
【0019】
図1と比較すると、鉄鋼試料表面に残存している介在物または析出物の数が少ないことが明白である。これは従来の酸性の電解液により介在物または析出物が溶解したか、または電解液中に脱離したためと考えられる。この結果同一の試料であるにもかかわらず粒度に関する具体的な情報は本発明を適用した場合に比べると極めて限られたものであった。
【0020】
【発明の効果】
本発明により、従来の電解質では溶解または脱離する介在物または析出物を鉄鋼表面に付着せしめ、残渣を電解液から濾別することなく、電解試料をそのまま走査型電子顕微鏡などで観察することにより、介在物または析出物に含有される元素やその粒度分布などの分析が可能となった。
【図面の簡単な説明】
【図1】本発明によって得られた鉄鋼試料中の介在物または析出物の粒度分布を示す図である。
【図2】従来の技術によって得られた鉄鋼試料中の介在物または析出物の粒度分布を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic solution composition for steel materials and a method for analyzing inclusions or precipitates thereby.
[0002]
[Prior art]
Inclusions and precipitates contained in steel greatly affect the properties of steel materials due to their size, quantity, chemical composition, etc., and relatively large inclusions with a particle size on the order of several tens of micrometers can affect the properties of steel materials. It has been treated as harmful and deteriorating. However, in recent years, technology has been developed to improve the product characteristics by actively using precipitates of the order of micrometer or smaller to control the structure of steel, and quantitative determination and particle size distribution measurement of fine precipitates. The need for is increasing.
[0003]
Conventionally, relatively large oxide inclusions have been extracted by the slime method for electrolysis in ferrous aqueous solution, the acid dissolution method for heating and dissolving in hydrochloric acid, etc., the halogen-organic solvent dissolution method, and the non-aqueous solvent electrolysis method. There was.
Among these, the slime method, the acid dissolution method, and the halogen-organic solvent dissolution method have a relatively high dissolution rate and are effective in extracting very stable oxides such as alumina from a large amount of steel samples. There is a problem that fine precipitates are dissolved.
[0004]
In contrast, the non-aqueous solvent electrolysis method has a feature that the decomposition rate is slower than other methods, but selective extraction is possible by selecting the solvent and potential depending on the substance to be extracted. .
However, for example, an electrolytic solution containing acetylacetone and tetramethylammonium chloride in methanol or an electrolytic solution containing methyl salicylate, salicylic acid and tetramethylammonium chloride in methanol is conventionally used. In many cases, it is known that effective precipitates such as sulfides and CaO are dissolved.
[0005]
In addition, the electrolytic solution containing triethanolamine and tetramethylammonium chloride in methanol is alkaline and CaO and the like are hardly dissolved, but the precipitate extracted from the bulk iron is dispersed in the electrolytic solution. In order to separate only the residue, it was necessary to separate the residue from the electrolytic solution after electrolysis. However, it is practically difficult to quantitatively separate fine particles due to particle aggregation or filter clogging during filtration.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, electrolyzes a matrix of a steel sample, and allows an inclusion or precipitate to remain and adhere to the surface of the steel sample, and an electrolyte composition therefor Another object is to provide a method for analyzing precipitates.
[0007]
[Means for Solving the Problems]
The inventors have studied various combinations of components of the nonaqueous electrolytic solution, and as a result, have found that an electrolytic solution composition comprising an electrolyte, triethanolamine, and an alcohol containing maleic anhydride can solve the above problems. . Based on this, the present invention has been completed by further specifying the optimal composition of the electrolytic solution, and the gist thereof is as follows.
(1) An electrolytic solution for electrolyzing a matrix of a steel sample and extracting inclusions or precipitates therein, triethanolamine: 0.5 to 10% by volume, maleic anhydride: 0.5 to 6 4% by mass, tetramethylammonium chloride: 0.3 to 3% by mass, and the balance is made of an alcohol that is a solvent.
(2) Triethanolamine: 1 to 3% by volume, maleic anhydride: 0.5 to 3% by mass, The electrolyte composition for steel materials according to (1) above,
(3) Electrolyzing a matrix of a steel sample with the electrolyte composition for a steel material according to (1) or (2) above, and targeting inclusions or precipitates that remain adhered to the surface of the steel sample. A characteristic method for analyzing inclusions or precipitates.
(4) The method for analyzing inclusions or precipitates according to (3), wherein the current density in the electrolysis is 1 to 50 mA per square centimeter of the surface area of the steel sample.
(5) Inclusions or precipitation as described in (3) or (4) above, wherein the particle size distribution of inclusions or precipitates is measured by processing an image observed while remaining attached to the steel sample surface Analytical method.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In an extraction method for quantitative analysis of inclusions or precipitates in steel samples and particle size distribution measurement, an alcohol is used as a solvent, and an electrolyte and an electrolyte containing triethanolamine and maleic anhydride are used. Electrolytically using the electrolytic solution, the remaining inclusions or precipitates are adhered to the surface of the steel sample, and the inclusions or precipitates are observed and analyzed with a scanning electron microscope.
[0009]
First, iron is dissolved into the liquid phase as a cation by electrolysis, and forms a complex with triethanolamine and maleic anhydride in the electrolytic solution. Among these, the iron maleic acid complex gradually forms a high electrical resistance / high viscosity region around the sample. On the other hand, inclusions or precipitates such as oxides are gradually not exposed to the surface of the steel sample without dissolving. Conventional nonaqueous solvent electrolytes are often acidic and dissolve sulfides, CaO, and the like, but these inclusions or precipitates are difficult to dissolve by adding alkaline triethanolamine to the electrolyte.
[0010]
When the amount of triethanolamine added is less than 0.5% by volume, inclusions or precipitates do not adhere to the surface of the steel sample, and when it exceeds 10% by volume, the electrolysis rate becomes too slow. From the viewpoint of the balance between deposit adhesion and electrolysis rate, 1 to 3% by volume is preferable.
The surface of many oxides and other precipitates or inclusion particles are known to have OH groups in the solution, and in an acidic solution, the surface is charged positively by protonation while in an alkaline solution. Then, protons are extracted from the OH group and are negatively charged. The negatively charged particles in the alkaline solution receive an attractive force from the anode or steel sample. By adding maleic anhydride, a region in which the electrical resistance and viscosity of the electrolytic solution increase near the boundary between the electrolytic solution and the steel sample surface is effective in causing particles to remain on the sample surface.
[0011]
The amount of maleic anhydride added is 0.5% by mass or more, and the effect of allowing particles to remain on the sample surface is obtained. On the other hand, if it exceeds 3% by mass, the electric resistance becomes too high and the electrolysis rate becomes slow, which is not preferable. Furthermore, if it exceeds 6.4%, it will not dissolve in methanol.
Tetramethylammonium chloride is added as an electrolyte, and the amount added is in the range of 0.3 to 3% by mass. If the amount is less than 0.3% by mass, sufficient current does not flow and electrolysis cannot be performed. On the other hand, when the amount exceeds 3% by mass, the electrolysis rate becomes too fast, the effect of adding triethanolamine or maleic anhydride is difficult to obtain, and inclusions or precipitates do not remain on the surface of the steel sample. Considering a combination with preferable addition amounts of triethanolamine and maleic anhydride, a range of 0.5 to 2% by mass is preferable as the addition amount of tetramethylammonium chloride.
[0012]
In this way, inclusions or precipitate particles exposed from the iron matrix decomposed by electrolysis remain in the vicinity of the steel sample surface in an electrolytic solution having a high viscosity and electrical resistance near the steel sample surface. By attaching to the surface of the steel sample again by attractive force, the steel sample can be taken out of the electrolytic solution, dried, and then observed and analyzed as it is.
[0013]
In electrolyzing the matrix of the steel sample with the electrolytic solution composition for steel material of the present invention, the optimum current density is 1 to 50 mA per square centimeter of the surface area of the steel sample. If the current density is less than 1 mA / cm 2 , electrolysis takes too much time and is not practical. On the other hand, although it depends on the composition of the sample and the kind of the precipitate, if it exceeds 50 mA / cm 2 , there is a concern that fine particles do not remain sufficiently on the sample surface. Therefore, 1 to 50 mA / cm 2 is set as a preferable current density.
[0014]
As already explained, according to the electrolysis method using the electrolytic solution composition of the present invention, inclusions and precipitates remain on the surface of the sample. Therefore, if the electrolytic sample is taken out from the electrolytic solution and dried, it is left as it is. It is possible to observe inclusions and precipitates remaining in the film. In particular, it is optimal as a sample to be observed with a scanning electron microscope, and inclusions and precipitates in the steel material can be confirmed as particles on the matrix according to the secondary electron image of the scanning electron microscope.
[0015]
If image processing such as binarization is performed, the particle image can be obtained by calculating the particle area ratio, particle size distribution, and the like from the image. It goes without saying that image processing and calculation methods may be based on any conventional technique or a combination thereof. Data such as the area ratio and particle size distribution of the particles can be expected to be much closer to the state of being dispersed in the steel material than when the residue is filtered from the electrolyte, so inclusions and precipitates are used. This is extremely useful information for the development of steel materials.
[0016]
In addition, when combined with elemental analysis such as EPMA, it is possible to perform calculation processing such as area ratio and particle size distribution from the image processing for particles containing only a specific element, and to perform this for a plurality of elements. Thus, it becomes possible to analyze the components of the dispersed particles.
[0017]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to these examples.
Prepare a sample that has been confirmed with a transmission electron microscope in advance to confirm the presence of minute precipitates, and use 1% by mass of tetramethylammonium chloride as an electrolyte and 2 volumes of triethanolamine as an electrolyte. %, And electrolysis in an electrolytic solution containing 1% by mass of maleic anhydride, dried and observed with a scanning electron microscope. FIG. 1 shows an image obtained by recognizing individual particles based on an image obtained by binarizing a photograph taken of a secondary electron image (SEI) by image analysis processing so that the particles and matrix are clear. The particle size converted from the area to the diameter of the circle is calculated as the particle size and expressed as a particle size distribution. As apparent from FIG. 1, according to the present invention, a clear particle size distribution having a peak at 1 to 2 μm could be obtained.
[0018]
As a comparative example, the same steel sample as that used in the examples in the electrolytic solution containing 1% by mass of tetramethylammonium chloride and 10% by volume of acetylacetone as the electrolyte was used as the electrolyte. Then, it dried and observed the same area as an Example with a scanning electron microscope, and the result of having performed the particle size distribution measurement with the image analyzer for the taken photograph is shown in FIG.
[0019]
Compared with FIG. 1, it is clear that the number of inclusions or precipitates remaining on the steel sample surface is small. This is presumably because inclusions or precipitates were dissolved by the conventional acidic electrolyte solution or were desorbed in the electrolyte solution. As a result, the specific information regarding the particle size was extremely limited as compared with the case where the present invention was applied even though the samples were the same.
[0020]
【The invention's effect】
According to the present invention, inclusions or precipitates that are dissolved or desorbed in a conventional electrolyte are adhered to the steel surface, and the electrolytic sample is directly observed with a scanning electron microscope or the like without separating the residue from the electrolytic solution. Analysis of elements contained in inclusions or precipitates and their particle size distribution is now possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing the particle size distribution of inclusions or precipitates in a steel sample obtained by the present invention.
FIG. 2 is a graph showing the particle size distribution of inclusions or precipitates in a steel sample obtained by a conventional technique.

Claims (5)

鉄鋼試料のマトリクスを電解しその中の介在物または析出物を抽出するための電解液であって、
トリエタノールアミン:0.5〜10体積%、
無水マレイン酸:0.5〜6.4質量%、
テトラメチルアンモニウムクロライド:0.3〜3質量%を含有し、残部が溶媒であるアルコールからなることを特徴とする鉄鋼材料用電解液組成物。
An electrolyte for electrolyzing a matrix of a steel sample and extracting inclusions or precipitates therein,
Triethanolamine: 0.5 to 10% by volume,
Maleic anhydride: 0.5-6.4% by mass,
Tetramethylammonium chloride: An electrolytic solution composition for a steel material, comprising 0.3 to 3% by mass, the balance being an alcohol as a solvent.
トリエタノールアミン:1〜3体積%、無水マレイン酸:0.5〜3質量%を含有することを特徴とする請求項1に記載の鉄鋼材料用電解液組成物。2. The electrolytic solution composition for a steel material according to claim 1, comprising triethanolamine: 1 to 3% by volume and maleic anhydride: 0.5 to 3% by mass. 請求項1または2に記載の鉄鋼材料用電解液組成物により鉄鋼試料のマトリクスを電解し、鉄鋼試料表面に残存付着したままの介在物または析出物を対象とすることを特徴とする介在物または析出物の分析方法。An inclusion or deposit characterized by electrolyzing a matrix of a steel sample with the electrolyte composition for a steel material according to claim 1 or 2 and targeting inclusions or precipitates remaining on the surface of the steel sample. Method for analyzing precipitates. 前記電解における電流密度が、鉄鋼試料の表面積1平方センチメートルあたり1〜50mAであることを特徴とする請求項3に記載の介在物または析出物の分析方法。The method for analyzing inclusions or precipitates according to claim 3, wherein the current density in the electrolysis is 1 to 50 mA per square centimeter of the surface area of the steel sample. 鉄鋼試料表面に残存付着したまま観察した画像を処理することにより介在物または析出物の粒度分布を測定することを特徴とする請求項3または4に記載の介在物または析出物の分析方法。The method for analyzing inclusions or precipitates according to claim 3 or 4, wherein the particle size distribution of the inclusions or precipitates is measured by processing an image observed while remaining attached to the surface of the steel sample.
JP2001106155A 2001-04-04 2001-04-04 Electrolyte composition for steel materials and method for analyzing inclusions or precipitates thereby Expired - Fee Related JP3984431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106155A JP3984431B2 (en) 2001-04-04 2001-04-04 Electrolyte composition for steel materials and method for analyzing inclusions or precipitates thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001106155A JP3984431B2 (en) 2001-04-04 2001-04-04 Electrolyte composition for steel materials and method for analyzing inclusions or precipitates thereby

Publications (2)

Publication Number Publication Date
JP2002303620A JP2002303620A (en) 2002-10-18
JP3984431B2 true JP3984431B2 (en) 2007-10-03

Family

ID=18958711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106155A Expired - Fee Related JP3984431B2 (en) 2001-04-04 2001-04-04 Electrolyte composition for steel materials and method for analyzing inclusions or precipitates thereby

Country Status (1)

Country Link
JP (1) JP3984431B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163450B2 (en) * 2008-11-28 2013-03-13 Jfeスチール株式会社 Steel manufacturing method
JP5163451B2 (en) * 2008-11-28 2013-03-13 Jfeスチール株式会社 Steel design method
JP5569445B2 (en) * 2011-03-17 2014-08-13 新日鐵住金株式会社 Method for separating inclusions in steel and analysis method for particle size distribution
CN108139306B (en) 2016-02-18 2021-03-26 日本制铁株式会社 Method for extracting and analyzing metal compound particles, and electrolyte used therefor
TWI642935B (en) 2016-02-18 2018-12-01 日商新日鐵住金股份有限公司 Device for electrolytic etching and method for extracting metal compound particles
CN107167487A (en) * 2017-06-26 2017-09-15 北京科技大学 The integrating device and method of second phase particles in a kind of electroextraction steel
EP4047343A4 (en) * 2019-11-25 2023-01-18 JFE Steel Corporation Method for extracting precipitates and/or inclusions, method for quantitatively analyzing precipitates and/or inclusions, and electrolyte

Also Published As

Publication number Publication date
JP2002303620A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
CN102213654B (en) Electrolytic extraction and detection method of nonmetallic inclusion in steel by utilizing organic solution
CN102016543B (en) Method of determining particle size distribution of fine particles contained in metallic material
Laborda et al. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples
Flores et al. Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS)
EP2360469B1 (en) Method for analyzing metallic material
KR100736252B1 (en) Fabrication of mesoporous metal electrodes in non-liquid-crystalline phase and its application
Bøckman et al. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes
JP3984431B2 (en) Electrolyte composition for steel materials and method for analyzing inclusions or precipitates thereby
Song et al. Selective electrochemical extraction of copper from multi-metal e-waste leaching solution and its enhanced recovery mechanism
CN106660829A (en) Method and technical process for the treatment of solids and liquids, and of contaminated soil and bodies of water
CN105928996A (en) Preparation of graphene oxide and polyaniline-modified electrode and assembled electrochemical detection device
CN109738499A (en) The electrochemical method that heavy metal ion is detected based on bismuthino metal-organic framework materials modified glassy carbon electrode
CN108896643A (en) A kind of method of one's own department or unit observation nonmetallic inclusionsin steel stereoscopic pattern
Holbrook et al. An investigation into LA-spICP-ToF-MS uses for in situ measurement of environmental multi-elemental nanoparticles
Marc et al. Fast-lysis cell traps for chemical cytometry
CN106596669A (en) Device and method for nondestructive testing of sulfide inclusions in steel
JP7020447B2 (en) A method for analyzing inclusions and / or precipitates in a metal sample, and a method for collecting inclusions and / or precipitates in a metal sample.
JP6943264B2 (en) A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution.
Ma et al. Combined SECM and spectroscopy investigation of the interfacial chemistry of chalcopyrite during anodic oxidation
JP4103661B2 (en) Electrolytic solution for extraction analysis of precipitates and / or inclusions in steel, and method for electrolytic extraction of precipitates and / or inclusions in steel using the same
Kenna et al. The cementation of gold by iron from cyanide solutions
CN113447509A (en) Sample preparation method of scanning electron microscope sample for inclusions in rare earth weathering steel
JP5359244B2 (en) Method for analyzing precipitates and / or inclusions in a metal sample
CN107268031B (en) The electrochemistry recovery method of heavy rare earth metalloid
Petersen et al. On the nature of poly (chlorotrifluoroethylene) composite electrode surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3984431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees