JP3982166B2 - Anion exchange resin - Google Patents

Anion exchange resin Download PDF

Info

Publication number
JP3982166B2
JP3982166B2 JP2000312063A JP2000312063A JP3982166B2 JP 3982166 B2 JP3982166 B2 JP 3982166B2 JP 2000312063 A JP2000312063 A JP 2000312063A JP 2000312063 A JP2000312063 A JP 2000312063A JP 3982166 B2 JP3982166 B2 JP 3982166B2
Authority
JP
Japan
Prior art keywords
anion exchange
exchange resin
group
ion
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000312063A
Other languages
Japanese (ja)
Other versions
JP2002119872A (en
Inventor
敦郎 清水
隆 石村
舘  正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000312063A priority Critical patent/JP3982166B2/en
Publication of JP2002119872A publication Critical patent/JP2002119872A/en
Application granted granted Critical
Publication of JP3982166B2 publication Critical patent/JP3982166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は陰イオン交換樹脂、特にイオン交換基が塩型であり、かつ金属イオンの含有量が著るしく少ない陰イオン交換樹脂に関するものである。
【0002】
【従来の技術】
陰イオン交換樹脂は、陽イオン交換樹脂と共に、水処理その他の分野で広く用いられている。市場で入手できる代表的な陰イオン交換樹脂は、モノビニルモノマーとポリビニルモノマーとの架橋共重合体を母体とし、1級ないし3級アンモニウム基又は第4級アンモニウム基をイオン交換基とするものである。これらの陰イオン交換樹脂のなかでも最も大量に消費されているのは、第4級アンモニウム基をイオン交換基とする強塩基性陰イオン交換樹脂である。第4級アンモニウム基は遊離型(OH型)よりも塩型の方が安定なので、この陰イオン交換樹脂は専ら塩型、特に塩素イオン型として市場に供給されている。
【0003】
第4級アンモニウム基をイオン交換基とする陰イオン交換樹脂の最も一般的な製造法では、先ずモノビニルモノマーとポリビニルモノマー、通常はスチレンとジビニルベンゼン、を共重合させて架橋共重合体からなる母体を製造する。次いでこれにハロアルキル基を導入したのち、3級アミン、通常はトリメチルアミン又はジメチルエタノールアミンを反応させて、母体に第4級アンモニウム基を導入する。3級アミンの代りにアンモニア又は1〜2級アミンを反応させると、1〜3級アミノ基を導入することができる。得られた陰イオン交換樹脂は、ハロアルキル基に由来するハロゲンイオンを対イオンとする塩型なので、通常は水洗して未反応アミンなどを除去しただけで製品として市場に供給される。
【0004】
【発明が解決しようとする課題】
母体へのハロアルキル基の導入法として最も一般的な方法は、塩化亜鉛、塩化鉄、塩化アルミニウム、塩化錫などのルイス酸の存在下に、クロロメチルメチルエーテルを母体に反応させて、母体にクロロメチル基を導入する方法である。従って生成する陰イオン交換樹脂中には、これらの金属が含まれている。そしてアミンを反応させた後に行われている通常の水洗では、これらの金属の含有量を十分に低減させることは不可能であり、陰イオン交換樹脂は一般に数百ppmないし数千ppmもの金属を含有した状態で市場に供給されている。しかしながら、陰イオン交換樹脂の用途によっては、使用中に樹脂中の金属が溶出して製品を汚染することがある。また陰イオン交換樹脂は一般に遊離型に転換して用いるが、その際に樹脂中に多量の金属が含有されていると、この金属が流出して環境を汚染する。
従って本発明は、金属含有量の著るしく少ない塩型の陰イオン交換樹脂を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明に係る陰イオン交換樹脂の製造方法は、(1)モノビニルモノマーとポリビニルモノマーとの架橋共重合体を母体とし、(2)1級ないし3級アミノ基又は第4級アンモニウム基をイオン交換基とし、(3)イオン交換基が塩型であり、かつ(4)金属含有量が100ppm以下である陰イオン交換樹脂の製造方法であって、下記(A)〜(D)の各工程を経ることを特徴とする陰イオン交換樹脂の製造方法、にある。
(A)モノビニルモノマーとポリビニルモノマーとを共重合させて架橋共重合体を生成させる共重合工程、
(B)得られた架橋共重合体にルイス酸の存在下にハロアルキル基を導入するハロアルキル化工程、
(C)ハロアルキル基の導入された架橋共重合体にアミンを反応させてハロゲンイオン型の陰イオン交換樹脂を生成させるイオン交換基導入工程、及び
(D)得られた陰イオン交換樹脂を酸水溶液で洗浄して含有している金属を除去する酸洗浄工程
【0006】
【発明の実施の形態】
本発明に係る陰イオン交換樹脂は、常法に従って陰イオン交換樹脂を製造し、次いで得られた陰イオン交換樹脂から含有されている金属を溶出させることにより製造される。先ずモノビニルモノマーとポリビニルモノマー、通常はスチレンとジビニルベンゼン、とを共重合させて架橋共重合体を製造する。モノマー混合物に占めるポリビニルモノマーの比率は、陰イオン交換樹脂の用途により異なるが、通常は数%(重量)である。共重合反応は通常は懸濁重合方式で行われるが、製品に要求される形状によっては他の重合方式によることもできる。
【0007】
得られた架橋共重合体には、イオン交換基を導入する前段階として、先ずハロアルキル基を導入する。通常は共重合体を乾燥したのち、ベンゼン、トルエン、二塩化エタンなどの架橋共重合体を膨潤させることのできる溶媒中で、触媒の存在下にクロロメチルメチルエーテルを反応させ、架橋共重合体にクロロメチル基を導入する。触媒としては塩化亜鉛、塩化鉄、塩化アルミニウム、塩化錫などのルイス酸が用いられる。ハロアルキル基が導入された架橋共重合体は、水洗して残留しているクロロメチルメチルエーテルや触媒などを除去したのち、アンモニア又はアミンを反応させて、ハロアルキル基のハロゲン原子とアンモニア又はアミンの窒素原子とを置換させる。通常はトリメチルアミン又はジメチルエタノールアミンを反応させ、第4級アンモニウム基を有する強塩基性陰イオン交換樹脂とする。
【0008】
この陰イオン交換樹脂中には、触媒由来の金属が数百〜数千ppm含まれており、水洗するだけではその含有量はあまり低下しない。また、一般にゲル型樹脂よりもポーラス型樹脂、特に乾燥状態における比表面積が5m2/g以上の高比表面積の樹脂の方が、金属含有量が多い傾向がある。
【0009】
本発明では、この多量の金属を含有する陰イオン交換樹脂を酸水溶液で洗浄することにより、その金属含有量を100ppm以下まで低下させる。酸水溶液としては通常は塩酸を用いるが、硫酸などを用いてもよい。洗浄は陰イオン交換樹脂をカラムに充填し、これに酸水溶液を常温で通液するだけでよい。酸水溶液としては通常は5N以下、好ましくは1〜2Nのものを用いる。通液速度は0.1〜5hr-1程度が好ましい。通液量は通常は1BV(BED VOLUME)以上であり、具体的には陰イオン交換樹脂の金属含有量をどこまで低減させるかにより決定すればよい。通液量を増すことにより金属含有量を10ppm以下にすることは容易であり、所望ならば金属含有量を5ppm以下とか3ppm以下とかの極微量にまで低減させることもできる。酸水溶液の通液により所望のレベルにまで金属含有量を低下させたならば、引続き酸水溶液を純水に切替えて通液し、残留している酸を除去して製品の陰イオン交換樹脂とする。なお、酸水溶液で洗浄する代りに、苛性ソーダ水溶液などのアルカリ性水溶液で洗浄しても金属含有量を低減させることはできるが、樹脂が遊離型となるので塩型に再転換しなければならず、操作上不利である。
【0010】
【実施例】
以下に実施例により本発明を更に具体的に説明する。
実施例1
スチレンと工業用ジビニルベンゼンとを懸濁重合させて、ポーラス型の架橋共重合体を得た(平均粒径680μm、比表面積40m2/g、ジビニルベンゼン含有量6重量%)。この架橋共重合体100gをガラス製フラスコに入れ、クロロメチルメチルエーテル315mLを加えて、室温で1時間撹拌して膨潤させた。これに塩化亜鉛51gを添加し、室温で30分間撹拌したのち2時間かけて50℃まで昇温させ、この温度で8時間保持してクロロメチル化反応を行わせた。フラスコを室温まで冷却したのち純水500mLを4時間かけて添加し、触媒を失活させると共に未反応のクロロメチルメチルエーテルを分解した。濾過してクロロメチル化された共重合体を回収し、よく水洗した。
【0011】
このクロロメチル化された架橋共重合体100g、トルエン230mL及び純水380mLをガラス製フラスコに入れ、50℃で1時間撹拌して膨潤させたのち放冷した。次いでトリメチルアミンの30%水溶液226mLを加え、2時間かけて50℃まで昇温させ、この温度で8時間保持してアミノ化反応を行わせた。
蒸留してトルエンを留去し、架橋共重合体にトリメチルアンモニウムメチル基が結合した陰イオン交換樹脂を取得した。
【0012】
この樹脂をガラスカラムに充填し、2N−塩酸20BVを5.7時間かけて室温で通液し、含有されている金属を溶出させたのち水洗した。
この陰イオン交換樹脂約1gを秤量して石英三角フラスコに入れ、これに濃硫酸9g、濃硝酸約13mL及び30%過酸化水素水約1.5mLを加え、加熱して樹脂を湿式分解した。次いで分解物に純水を加えて50mLとし、ICPで亜鉛の含有量を測定した。樹脂の亜鉛含有量は1ppm(乾量基準)であった。なお、2N−塩酸で洗浄する前の樹脂中の亜鉛含有量は1290ppmであった。
【0013】
実施例2
実施例1において、クロルメチル化反応の触媒として塩化亜鉛51gの代りに塩化第2鉄60gを用いた以外は、実施例1と全く同様にして架橋共重合体にトリメチルアンモニウムメチル基が結合した陰イオン交換樹脂を得た。この樹脂の鉄含有量は964ppmであった。またこの樹脂を実施例1と全く同様にして2N−塩酸で洗浄したものの鉄含有量は1ppm以下であった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anion exchange resin, and more particularly to an anion exchange resin in which the ion exchange group is in a salt form and the content of metal ions is extremely low.
[0002]
[Prior art]
Anion exchange resins are widely used in water treatment and other fields together with cation exchange resins. A typical anion exchange resin available on the market is based on a cross-linked copolymer of a monovinyl monomer and a polyvinyl monomer, and has a primary to tertiary ammonium group or a quaternary ammonium group as an ion exchange group. . Of these anion exchange resins, the most consumed are strong basic anion exchange resins having a quaternary ammonium group as an ion exchange group. Since the quaternary ammonium group is more stable in the salt type than in the free type (OH type), this anion exchange resin is supplied to the market exclusively as a salt type, particularly a chlorine ion type.
[0003]
In the most general production method of an anion exchange resin having a quaternary ammonium group as an ion exchange group, a matrix comprising a cross-linked copolymer obtained by first copolymerizing a monovinyl monomer and a polyvinyl monomer, usually styrene and divinylbenzene. Manufacturing. Next, after introducing a haloalkyl group into this, a tertiary amine, usually trimethylamine or dimethylethanolamine is reacted to introduce a quaternary ammonium group into the matrix. When ammonia or a primary or secondary amine is reacted instead of a tertiary amine, a primary to tertiary amino group can be introduced. Since the obtained anion exchange resin is a salt type having a halogen ion derived from a haloalkyl group as a counter ion, it is usually supplied to the market as a product simply by washing with water to remove unreacted amine and the like.
[0004]
[Problems to be solved by the invention]
The most common method for introducing a haloalkyl group into a matrix is to react chloromethyl methyl ether with the matrix in the presence of a Lewis acid such as zinc chloride, iron chloride, aluminum chloride, tin chloride, etc. This is a method of introducing a methyl group. Therefore, these metals are contained in the produced anion exchange resin. In ordinary water washing performed after reacting amines, it is impossible to sufficiently reduce the content of these metals, and anion exchange resins generally contain several hundred to several thousand ppm of metal. It is supplied to the market in a contained state. However, depending on the use of the anion exchange resin, the metal in the resin may elute during use and contaminate the product. In general, anion exchange resins are used after being converted to a free form. If a large amount of metal is contained in the resin, the metal flows out and pollutes the environment.
Accordingly, the present invention is intended to provide a salt-type anion exchange resin having a remarkably low metal content.
[0005]
[Means for Solving the Problems]
The method for producing an anion exchange resin according to the present invention comprises (1) a cross-linked copolymer of a monovinyl monomer and a polyvinyl monomer as a base material, and (2) ion exchange of a primary to tertiary amino group or a quaternary ammonium group. And (3) a method for producing an anion exchange resin in which the ion exchange group is in a salt form and (4) the metal content is 100 ppm or less, and the following steps (A) to (D) are carried out: A method for producing an anion exchange resin, characterized in that:
(A) a copolymerization step in which a monovinyl monomer and a polyvinyl monomer are copolymerized to form a crosslinked copolymer;
(B) a haloalkylation step for introducing a haloalkyl group into the obtained crosslinked copolymer in the presence of a Lewis acid,
(C) an ion exchange group introduction step of reacting an amine with the haloalkyl group-introduced crosslinked copolymer to produce a halogen ion type anion exchange resin, and
(D) An acid washing step of removing the metal contained by washing the obtained anion exchange resin with an aqueous acid solution.
DETAILED DESCRIPTION OF THE INVENTION
The anion exchange resin according to the present invention is produced by producing an anion exchange resin according to a conventional method and then eluting the contained metal from the obtained anion exchange resin. First, a monovinyl monomer and a polyvinyl monomer, usually styrene and divinylbenzene, are copolymerized to produce a crosslinked copolymer. The ratio of the polyvinyl monomer in the monomer mixture varies depending on the use of the anion exchange resin, but is usually several percent (weight). The copolymerization reaction is usually performed by a suspension polymerization method, but other polymerization methods may be used depending on the shape required for the product.
[0007]
First, a haloalkyl group is introduced into the obtained cross-linked copolymer as a step before introducing an ion exchange group. Usually, after the copolymer is dried, it is reacted with chloromethyl methyl ether in the presence of a catalyst in a solvent that can swell the crosslinked copolymer such as benzene, toluene, ethane dichloride, etc. Introduce a chloromethyl group. As the catalyst, Lewis acid such as zinc chloride, iron chloride, aluminum chloride and tin chloride is used. The cross-linked copolymer into which the haloalkyl group has been introduced is washed with water to remove residual chloromethyl methyl ether and catalyst, and then reacted with ammonia or amine to react the halogen atom of the haloalkyl group with ammonia or amine nitrogen. Replace with an atom. Usually, trimethylamine or dimethylethanolamine is reacted to form a strongly basic anion exchange resin having a quaternary ammonium group.
[0008]
This anion exchange resin contains hundreds to thousands ppm of metal derived from the catalyst, and the content does not decrease so much only by washing with water. In general, a porous resin, particularly a resin having a high specific surface area of 5 m 2 / g or more in a dry state, tends to have a higher metal content than a gel resin.
[0009]
In the present invention, the metal content is reduced to 100 ppm or less by washing the anion exchange resin containing a large amount of metal with an acid aqueous solution. As the acid aqueous solution, hydrochloric acid is usually used, but sulfuric acid or the like may be used. For washing, an anion exchange resin is packed in a column and an acid aqueous solution is passed through the column at room temperature. The acid aqueous solution is usually 5N or less, preferably 1 to 2N. The flow rate is preferably about 0.1 to 5 hr −1 . The liquid passing amount is usually 1 BV (BED VOLUME) or more, and specifically, it may be determined depending on how much the metal content of the anion exchange resin is reduced. It is easy to reduce the metal content to 10 ppm or less by increasing the liquid flow rate. If desired, the metal content can be reduced to a very small amount of 5 ppm or less or 3 ppm or less. Once the metal content has been reduced to the desired level by passing the aqueous acid solution, the aqueous acid solution is subsequently switched to pure water, and the remaining acid is removed to remove the anion exchange resin of the product. To do. Note that instead of washing with an aqueous acid solution, the metal content can be reduced by washing with an alkaline aqueous solution such as an aqueous caustic soda solution, but since the resin becomes a free form, it must be reconverted to a salt form. It is disadvantageous in operation.
[0010]
【Example】
The present invention will be described more specifically with reference to the following examples.
Example 1
Styrene and industrial divinylbenzene were subjected to suspension polymerization to obtain a porous crosslinked copolymer (average particle size of 680 μm, specific surface area of 40 m 2 / g, divinylbenzene content of 6% by weight). 100 g of this crosslinked copolymer was put into a glass flask, 315 mL of chloromethyl methyl ether was added, and the mixture was stirred at room temperature for 1 hour to swell. To this was added 51 g of zinc chloride, and the mixture was stirred at room temperature for 30 minutes, then heated to 50 ° C. over 2 hours, and kept at this temperature for 8 hours to carry out a chloromethylation reaction. After cooling the flask to room temperature, 500 mL of pure water was added over 4 hours to deactivate the catalyst and decompose unreacted chloromethyl methyl ether. The copolymer chloromethylated by filtration was recovered and washed thoroughly with water.
[0011]
100 g of this chloromethylated cross-linked copolymer, 230 mL of toluene and 380 mL of pure water were placed in a glass flask, stirred at 50 ° C. for 1 hour to swell, and then allowed to cool. Next, 226 mL of a 30% aqueous solution of trimethylamine was added, the temperature was raised to 50 ° C. over 2 hours, and this temperature was maintained for 8 hours to carry out the amination reaction.
Toluene was distilled off to obtain an anion exchange resin in which a trimethylammonium methyl group was bonded to the crosslinked copolymer.
[0012]
This resin was filled in a glass column, and 2N hydrochloric acid 20BV was passed through it for 5.7 hours at room temperature to elute the contained metal, followed by washing with water.
About 1 g of this anion exchange resin was weighed and placed in a quartz Erlenmeyer flask, 9 g of concentrated sulfuric acid, about 13 mL of concentrated nitric acid, and about 1.5 mL of 30% hydrogen peroxide were added and heated to wet decompose the resin. Subsequently, pure water was added to the decomposition product to 50 mL, and the zinc content was measured by ICP. The zinc content of the resin was 1 ppm (dry basis). The zinc content in the resin before washing with 2N hydrochloric acid was 1290 ppm.
[0013]
Example 2
In Example 1, an anion in which a trimethylammonium methyl group was bonded to a crosslinked copolymer in exactly the same manner as in Example 1 except that 60 g of ferric chloride was used instead of 51 g of zinc chloride as a catalyst for the chloromethylation reaction. An exchange resin was obtained. The iron content of this resin was 964 ppm. The resin was washed with 2N-hydrochloric acid in the same manner as in Example 1, and the iron content was 1 ppm or less.

Claims (6)

(1)モノビニルモノマーとポリビニルモノマーとの架橋共重合体を母体とし、(2)1級ないし3級アミノ基又は第4級アンモニウム基をイオン交換基とし、(3)イオン交換基が塩型であり、かつ(4)金属含有量が100ppm以下である陰イオン交換樹脂の製造方法であって、下記(A)〜(D)の各工程を経ることを特徴とする陰イオン交換樹脂の製造方法。
(A)モノビニルモノマーとポリビニルモノマーとを共重合させて架橋共重合体を生成させる共重合工程、
(B)得られた架橋共重合体にルイス酸の存在下にハロアルキル基を導入するハロアルキル化工程、
(C)ハロアルキル基の導入された架橋共重合体にアミンを反応させてハロゲンイオン型の陰イオン交換樹脂を生成させるイオン交換基導入工程、及び
(D)得られた陰イオン交換樹脂を酸水溶液で洗浄して含有している金属を除去する酸洗浄工程
(1) A cross-linked copolymer of a monovinyl monomer and a polyvinyl monomer is used as a base, (2) a primary to tertiary amino group or a quaternary ammonium group is used as an ion exchange group, and (3) the ion exchange group is in a salt form. And (4) a method for producing an anion exchange resin having a metal content of 100 ppm or less, comprising the steps (A) to (D) below, Method.
(A) a copolymerization step in which a monovinyl monomer and a polyvinyl monomer are copolymerized to form a crosslinked copolymer;
(B) a haloalkylation step for introducing a haloalkyl group into the obtained crosslinked copolymer in the presence of a Lewis acid,
(C) an ion exchange group introduction step of reacting an amine with the haloalkyl group-introduced crosslinked copolymer to produce a halogen ion type anion exchange resin, and
(D) The acid washing process which removes the metal which wash | cleans the obtained anion exchange resin with acid aqueous solution, and contains it
陰イオン交換樹脂の金属含有量が10ppm以下であることを特徴とする請求項1記載の陰イオン交換樹脂の製造方法 The method for producing an anion exchange resin according to claim 1 , wherein the metal content of the anion exchange resin is 10 ppm or less. 陰イオン交換樹脂の金属含有量が5ppm以下であることを特徴とする請求項1記載の陰イオン交換樹脂の製造方法 The method for producing an anion exchange resin according to claim 1 , wherein the metal content of the anion exchange resin is 5 ppm or less. 陰イオン交換樹脂のイオン交換基の対イオンが塩素イオンであることを特徴とする請求項1ないし3のいずれかに記載の陰イオン交換樹脂の製造方法 The method for producing an anion exchange resin according to any one of claims 1 to 3, wherein a counter ion of an ion exchange group of the anion exchange resin is a chlorine ion. 陰イオン交換樹脂のイオン交換基が式(1)
(式中、R1及びR2はメチル基であり、R3はメチル基又は2−ヒドロキシエチル基である)で表される第4級アンモニウム基であることを特徴とする請求項1ないし4のいずれかに記載の陰イオン交換樹脂の製造方法
The ion exchange group of the anion exchange resin is represented by the formula (1)
5. A quaternary ammonium group represented by the formula: wherein R 1 and R 2 are methyl groups, and R 3 is a methyl group or a 2-hydroxyethyl group. The manufacturing method of the anion exchange resin in any one of.
酸水溶液の濃度が5N以下であることを特徴とする請求項1ないし5のいずれかに記載の陰イオン交換樹脂の製造方法。6. The method for producing an anion exchange resin according to claim 1, wherein the concentration of the acid aqueous solution is 5 N or less.
JP2000312063A 2000-10-12 2000-10-12 Anion exchange resin Expired - Fee Related JP3982166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000312063A JP3982166B2 (en) 2000-10-12 2000-10-12 Anion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000312063A JP3982166B2 (en) 2000-10-12 2000-10-12 Anion exchange resin

Publications (2)

Publication Number Publication Date
JP2002119872A JP2002119872A (en) 2002-04-23
JP3982166B2 true JP3982166B2 (en) 2007-09-26

Family

ID=18791726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000312063A Expired - Fee Related JP3982166B2 (en) 2000-10-12 2000-10-12 Anion exchange resin

Country Status (1)

Country Link
JP (1) JP3982166B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931044B2 (en) * 2006-04-28 2012-05-16 公立大学法人大阪府立大学 Modification method of cross-linked organic polymer
JP4931043B2 (en) * 2006-04-28 2012-05-16 公立大学法人大阪府立大学 Modification method of cross-linked organic polymer
JP2008284545A (en) * 2007-04-19 2008-11-27 Kurita Water Ind Ltd Method for manufacturing anion exchange resin, anion exchange resin, mixed bed resin and method for manufacturing ultrapure water for cleaning electronic parts/material
JP5499433B2 (en) * 2007-11-06 2014-05-21 栗田工業株式会社 Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
CN109641206A (en) * 2016-08-30 2019-04-16 罗门哈斯公司 Low sodium resin
WO2018200621A1 (en) * 2017-04-28 2018-11-01 Dow Global Technologies Llc Treatment of sugar solutions

Also Published As

Publication number Publication date
JP2002119872A (en) 2002-04-23

Similar Documents

Publication Publication Date Title
EP0278411B1 (en) Gel-type chelating resins and a process for removal of multivalent, alkaline earth or heavy metal cations from solutions
JP4150442B2 (en) Macroporous chelate ion exchange resin
JP3982166B2 (en) Anion exchange resin
JP2017008313A (en) Iminodiacetic acid type chelate resin and manufacturing method therefor
TW200402439A (en) Process for producing coarse-particle anion-exchanger gels
JPH02149348A (en) Ion-exchange resin bead and manufacture thereof
JP2579773B2 (en) Purification method of alkaline solution
JPS59500274A (en) Method for producing alkylaminophosphonic acid type chelating resin
JP2002363216A (en) Method for producing heterodisperse chelating resin
CN107849179B (en) Novel aluminum-doped, iminoacetic acid group-containing chelate resins
JPS59155406A (en) Production of chelate resin
JP2008080333A (en) Heat-stable anion exchanger
JPS5810404B2 (en) Production method of functional crosslinked copolymer
EP0525645B1 (en) Process for producing an aminophosphoric acid-type chelate resin
TWI721218B (en) Purification method and purification device of hydrogen peroxide aqueous solution
US6667349B1 (en) Method for producing osmotically and mechanically stable gel-like anion exchangers
JP3375984B2 (en) Manufacturing method of chelate resin
JPH05239236A (en) Resin having improved exchange kinetic
JPH09255730A (en) Production of cross-linked copolymer
US11370852B2 (en) Making low-sodium resin
JPS61261215A (en) Recovery of molyblenum
SU499272A1 (en) The method of obtaining low-base anion exchange resin
JP3147941B2 (en) Crosslinked anion exchanger for ultrapure water production
JPH10277404A (en) Production of strong basic anionic exchanger using ethylene oxide
KR101762845B1 (en) A method for recovering Indium using an adsorption-desorption cycle and macroporous ion-exchange resin therefor having iminodiacetic acid as a functional group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3982166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees