JP3981632B2 - Hydrorefining catalyst and hydrorefining method - Google Patents

Hydrorefining catalyst and hydrorefining method Download PDF

Info

Publication number
JP3981632B2
JP3981632B2 JP2002501577A JP2002501577A JP3981632B2 JP 3981632 B2 JP3981632 B2 JP 3981632B2 JP 2002501577 A JP2002501577 A JP 2002501577A JP 2002501577 A JP2002501577 A JP 2002501577A JP 3981632 B2 JP3981632 B2 JP 3981632B2
Authority
JP
Japan
Prior art keywords
catalyst
pore
catalyst layer
volume
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002501577A
Other languages
Japanese (ja)
Other versions
JPWO2001094012A1 (en
Inventor
秀晶 熊谷
博紀 小山
中村  憲治
直治 五十嵐
雅之 森
高行 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority claimed from PCT/JP2001/004803 external-priority patent/WO2001094012A1/en
Publication of JPWO2001094012A1 publication Critical patent/JPWO2001094012A1/en
Application granted granted Critical
Publication of JP3981632B2 publication Critical patent/JP3981632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【技術分野】
【0001】
本発明は、石油残渣油のような重質油を水素化精製するのに好適な触媒を用いた水素化精製方法及び装置に関する。
【背景技術】
【0002】
石油残渣油のような重質油の硫黄分、メタル分などの不純物を低減するために、水素化精製が行われている。水素化精製は、水素の存在下の高温・高圧条件で重質油と触媒を接触させることで行われる。重質油は、メタル分などを多く含むため、水素化精製を継続して行うと、触媒上にメタル分、コーク分が堆積して、触媒の活性を次第に低下させ、触媒活性が実質的になくなり、触媒寿命が尽きることとなる。重質油の水素化精製では、不純物を除去する除去性能をより向上し、かつ、用いる触媒の寿命をさら延長することが望まれている。このため、水素化精製触媒自体の性能の向上がはかられると同時に、複数の触媒を組み合わせて用いる方法も検討されている。
【0003】
特に、脱硫特性と脱メタル特性の両方を十分に満足させる触媒は、従来存在していなかった。このため、水素化精製反応装置では、脱メタル特性に優れた触媒が充填された前段触媒層と、脱硫特性に優れた触媒が充填された後段触媒層とからなる二つの触媒層を組み合わせて用いていた。しかしながら、前段及び後段の触媒層に充填する触媒量を調整しても、脱メタル特性と脱硫特性の両方をバランスよくしかも長期間に渡って維持することは困難であった。
【発明の開示】
【発明が解決しようとする課題】
【0004】
従来の技術では、不純物の除去性能が十分に高く、かつ、長い触媒寿命が達成されるような水素化精製方法は提供されていなかった。たとえば、反応温度を上げることで、不純物の除去性能を向上できるが、そのような運転はコーク分などの堆積を促進し、触媒の活性が急速に低下するため、長期間安定して運転することはできなかった。さらに、水素化精製触媒の改良により個々の触媒性能は向上しているものの、それを組み合わせた際に触媒の性能は十分に発揮されない場合もあった。また、石油需要は重質油よりも軽質な灯油・軽油などの中間留分の需要が多いため、重質油の水素化精製時に同時に起こる分解反応により、より多くの軽質な留分を得ることが望まれている。
【0005】
本発明は、前記従来技術の問題点を解消するために達成されたものであり、その第1の目的は、脱メタル特性と脱硫特性の両方に優れた触媒を用い、金属及び硫黄分などの不純物の除去性能が高くかつ長期間に渡ってその性能を維持することができ、さらには、軽質留分が多く得られる水素化精製方法及び水素化精製装置を提供するものである。
【課題を解決するための手段】
【0006】
本発明に用いられる触媒は、図1の触媒#011の特性に示したように、細孔直径8〜30nmに渡って比較的ブロードなバンドを有する特徴的な細孔分布を有する。この特徴的な細孔分布により、この水素化精製触媒は脱硫特性及び脱メタル特性のいずれにおいても優れ、且つその性能を長期間に渡って維持することができることがわかっている。この触媒を、複数の触媒層を備える水素化精製装置に用いることで、脱硫性能を低下させることなく従来よりも高温で安定して運転することができ、それにより脱メタル性能も向上する。また、重質油の分解率も高くなるため、軽質な留分が多く得られる。また、上記のような細孔径分布を有する担体は、優れた機械的強度を有することがわかった。
【0007】
本発明の第1の態様に従えば、重質油の水素化精製装置であって:
第1触媒層と;
第1触媒層の下流に位置する第2触媒層と;
第2触媒層の下流に位置する第3触媒層と;を備え、
第1触媒層中の触媒の脱メタル反応の有効メタル堆積量が70以上であり、第2触媒層中の触媒の脱メタル反応の有効メタル堆積量が50以上であり且つ脱硫反応の有効メタル堆積量が50以上であり、第1触媒層と第2触媒層の触媒の合計容積が第1〜第3触媒層中の触媒の合計容積の45%以上であり、第2触媒層中の触媒の容積が第1〜第3触媒層中の触媒の合計容積の10%以上である水素化精製装置が提供される。
【0008】
本発明の水素化精製装置は、第1触媒層(上段触媒層)に脱メタル特性に優れた触媒を備えると共に、第2触媒層(中段触媒層)に脱メタル特性と脱硫特性の両方に優れた触媒を備えるために長期間に渡って優れた脱メタル特性と脱硫特性を維持することができる。また、この水素化精製装置から軽質な留分が多く得られる。
【0009】
本発明の水素化精製装置において、第1触媒層中の触媒は、耐火性多孔質担体と該担体に担持された水素化活性金属を有し且つ(a)窒素吸着法により求めた、細孔直径50nm以下の細孔の細孔容量が0.4ml/g以上であり;(b)水銀圧入法により求めた、細孔直径50nm以上の細孔の細孔容量が0.2ml/g以上であり;(c)水銀圧入法により求めた、細孔直径2000nm以上の細孔の細孔容量が0.1ml/g以下である細孔特性を有する触媒を用い得る。第2触媒層中の触媒としては、前述の本発明の触媒を用い得る。
【0010】
本発明の第2の態様に従えば、重質油を水素化精製する方法であって:第1触媒層とその下流に位置する第2触媒層とその下流に位置する第3触媒層とを用意し;重質油を水素の存在下で第1触媒層と第2触媒層と第3触媒層とに接触させることを含み;ここで、第1触媒層中の触媒の脱メタル反応の有効メタル堆積量が70以上であり、第2触媒層中の触媒の脱メタル反応の有効メタル堆積量が50以上であり且つ脱硫反応の有効メタル堆積量が50以上である水素化精製方法が提供される。
【発明を実施するための最良の形態】
【0011】
[上段触媒]
上段触媒層に充填される触媒(以下、上段触媒ともいう)は、脱メタル反応の有効メタル堆積量が70以上であり、好ましくは75以上、特に好ましくは80〜200である。脱メタル反応の有効メタル堆積量が70未満では、メタル分の堆積による触媒劣化が著しいため、長寿命とすることはできない。
【0012】
窒素吸着法により測定される上段触媒の好ましい細孔構造としては、細孔直径50nm以下の細孔容量が0.4cm/g以上、特には0.6〜1.1cm/gであり、細孔直径2〜60nmの細孔分布における中央細孔直径が6〜20nm、特には8〜15nmであり、比表面積が100〜350m/gであることが好ましい。この細孔直径50nm以下の細孔容量が0.4cm/g以上とすることで、メタル堆積による脱メタル活性の低下を少なくすることができる。
【0013】
なお、中央細孔直径は、窒素ガスの脱離過程における相対圧0.967の条件で得られる窒素ガスの吸着量を液体として換算した体積の値を細孔容積(V)として、BJH法によって算出された細孔容積と細孔直径との関係から、細孔直径の大きい側からの累積細孔容積が細孔容積の半分(V/2)となる細孔直径として測定することができる。窒素吸着法により細孔直径約2〜60nmの細孔分布を測定することができる。なお、BJH法は、Journal of the American Chemical Society, vol. 73, p.373- (1951)に開示されている。
【0014】
水銀圧入法により測定される上段触媒の好ましい細孔構造としては、細孔直径50nm以上の細孔容量が0.2cm/g以上、特には0.25〜0.40cm/gであり、細孔直径2000nm以上の細孔容量が0.1cm/g以下、特には0.05cm/g以下、さらには0.01cm/g以下である。細孔直径50nm以上の細孔容量が0.2cm/g以上とすることで、脱メタル活性を向上することができ、細孔直径2000nm以上の細孔容量が0.1cm/g以下とすることで、上段触媒の機械的強度を向上することができる。
【0015】
水銀圧入法による測定は、水銀の接触角度140°、表面張力480dyne/cmとし、2〜4225kg/cm(30.4〜60000psia)の範囲で行った。
【0016】
上段触媒を構成する多孔質無機酸化物担体としては、周期律表第2、第4、第13、及び第14族の元素の酸化物を用いることができる(周期律表はIUPAC1990年勧告による)。このうちでも、シリカ、アルミナ、マグネシア、ジルコニア、ボリア、カルシアなどが好ましい、これらは単独または2種類以上を組み合わせて使用してもよい。特には、アルミナ(γ、δ、η、χなどの結晶構造を有するもの)、シリカ-アルミナ、シリカ、アルミナ-マグネシア、シリカ-マグネシア、アルミナ-シリカ-マグネシアが、特には、γ−アルミナが好ましい。触媒中にしめるアルミナがAl重量に換算して50重量%以上、特には70重量%以上である担体が好ましい。
【0017】
多孔質無機酸化物担体に担持される水素化活性金属成分としては、周期律表第6族、第8族、第9族及び第10族元素を用いることができ、特に、モリブデン、タングステンを用いることが好ましく、加えて、ニッケル、コバルトを用いることもできる。これらの元素は、金属、酸化物状態、あるいは硫化物状態で担体に担持させるとよい。水素化活性金属成分の含有量は、金属元素として、触媒重量に対して0.1〜25重量%の範囲が好ましく、特には0.5〜15重量%の範囲が、さらには、1重量%〜15重量%の範囲が好ましい。さらに、リンおよび/またはホウ素の化合物(通常は、酸化物の形態)を触媒中に元素重量として0.1〜20重量%、特には、0.2〜5重量%加えることが好ましく、これにより、脱メタル活性が向上する。
【0018】
上段触媒は、γ-アルミナを主成分した原料粉体を混合・成形し、焼成することで好ましく製造される。原料粉体中のγ-アルミナが触媒重量に対し60%以上、特には75%以上含有されていることが好ましい。
【0019】
用いられる原料粉体は、窒素吸着法による細孔直径60nm以下の細孔容量が0.4cm/g以上(好ましくは0.6〜1.0cm/g)かつ平均粒子直径1μm以上の粉体を用いることが好ましい。原料粉体の細孔容量が0.4cm/gに満たない場合には、上段触媒の細孔直径50nm以下の細孔容量が少なくなるため、有効メタル堆積量が少なくなる。平均粒子直径が1μmに満たない場合には、上段触媒の細孔直径50nm以上の細孔容量が少なくなるため、脱メタル活性が低下する。平均粒子直径が300μmを超える場合には、上段触媒の細孔直径2000nm以上の細孔容量が大きくなるため、上段触媒の機械的強度が低下する。本明細書中での平均粒子直径とは、一般の湿式のレーザー光散乱法で測定される、メジアン直径として測定できる。
【0020】
この原料粉体としては、平均粒子直径は300μm以下、特には1〜100μm、さらには10〜100μmのγ-アルミナが好ましく用いられる。γ-アルミナとしては、擬ベーマイトを450〜850℃で焼成したものが好ましく、このような原料として、使用済みの触媒、特にはγ-アルミナに水素化活性金属成分担持した水素化精製触媒の使用済みのものを用いることができる。原料粉体は、必要な平均粒子径を得るためにボールミル、ローラミル、ジェットミル、パルべライザーなどを用いて粉砕することもある。
【0021】
原料粉体の成形は、特に限定されるものではなく、例えば、原料粉体に水、有機溶媒などを加えてペースト状または粘土状として成形することができる。この成形は、押し出し成形、加圧成形、加工シートへの塗布などで行うことができる。成形後に、乾燥および必要に応じて焼成することで成形された担体を得ることができる。ゲル状またはスラリー状とした原料粉体をスプレードライなどで乾燥気体中に分散させて乾燥させることで、球状に成形することもできる。さらに、ゾル状またはスラリー状とした原料粉体を液中で球状に成形することもできる。また、原料粉体をそのまま成形する成形方法としては、原料粉体に必要に応じて成形助剤を加えて、錠剤機により加圧成形する方法や、転動造粒により成形する方法がある。
【0022】
原料粉体と液体との混合は、一般に触媒調製に用いられている混合機、混練機などにより行うことができる。上述の原料粉体に水を加えて投入し、攪拌羽根で混合する方法が好ましく用いられる。通常、この際には液体として水を加えるが、加える液体としては、アルコールやケトンなどの有機化合物でもよい。また、硝酸、酢酸、蟻酸などの酸やアンモニアなどの塩基、有機化合物、界面活性剤、活性成分等を加えて混合してもよく、特には水溶性セルロースエーテルなどの有機化合物からなる成形助剤を原料粉体に対して0.2〜5重量%、特には0.5〜3重量%加えることが好ましい。
【0023】
成形は、プランジャー型押出機、スクリュー式押出機などの装置を用いて、容易にペレット状、ハニカム状などの形状とすることができる。通常、直径0.5〜6mmの球状、円柱状、円筒状、もしくは、断面が三葉または四葉の柱状などの形状が用いられる。成形した後、常温〜150℃で、特には100〜140℃で乾燥した後、350〜900℃で0.5時間以上、特には500〜850℃で0.5〜5時間焼成することが好ましい。
【0024】
上段触媒に水素化活性金属成分を担持させる方法としては、担持法、練り込み法などを用いることができ、担持させる段階としては、γ-アルミナ原料、原料粉体、および、原料粉体の成形・焼成後の少なくとも一つの段階で行うことができる。例えば、使用済みの水素化精製触媒をγ-アルミナ原料として用いる場合には、γ-アルミナ原料にすでに水素化活性金属成分が担持されている。水素化活性金属成分を担持する方法としては、通常用いられる含浸法、例えば、ポアフィリング(pore-filling)法、加熱含浸法、真空含浸法、浸漬法などの公知の手法を用いることができる。金属成分を含浸した後、80〜200℃の温度で10分〜24時間乾燥し、400〜600℃、特には、450〜550℃の温度で15分〜10時間焼成することが好ましい。練り込み法としては、水素化活性金属成分をあらかじめ原料に含ませておいてもよいし、原料とともに混練して練り込んでもよい。
【0025】
上段触媒には、本出願人によるWO00/33957(PCT/JP99/06760)で開示している水素化精製用触媒を好ましく用いることができる。
【0026】
[中段触媒]
中段触媒層に充填される触媒(以下、中段触媒ともいう)は、脱メタル反応の有効メタル堆積量が50以上かつ脱硫反応の有効メタル堆積量が50以上である。脱メタル反応の有効メタル堆積量は、55以上、特には60〜100が好ましい。脱硫反応の有効メタル堆積量は、55以上、特には60〜100が好ましい。脱メタル反応の有効メタル堆積量および脱硫反応の有効メタル堆積量が50未満では、メタル分の堆積による触媒劣化が著しいため、長寿命とすることはできない。中段触媒の難脱硫化合物についての反応速度定数kh2と、下段触媒の難脱硫化合物についての反応速度定数kh3の比(kh2/kh3、以下、難脱硫速度定数比ともいう)が0.5以上、好ましくは0.5〜0.9、特に好ましくは0.6〜0.8、さらに好ましくは0.6〜0.7である。難脱硫速度定数比が0.5未満では、脱硫特性が不十分となる。
【0027】
窒素吸着法により測定される中段触媒の好ましい細孔構造を表1にまとめる。このような細孔分布を持つことにより、脱メタル特性、脱硫特性に優れ、長い寿命の水素化精製触媒となる。また、細孔直径2〜60nmの細孔分布における中央細孔直径が10〜25nm、特には15〜20nmであり、比表面積が100〜350m/gであることが好ましい。
【0028】
【表1】

Figure 0003981632
【0029】
水銀圧入法により測定される中段触媒の好ましい細孔構造は、細孔直径50nm以上の細孔容量が0.2cm/g以下、特には0.1cm/g以下である。細孔直径50nm以上細孔容量が0.2cm/g以下とすることで、中段触媒の機械的強度を向上することができる。
【0030】
中段触媒を構成する多孔質無機酸化物担体および水素化活性金属成分は、上段触媒と同様であるが、水素化活性金属成分の含有量は、金属元素として、触媒重量に対して0.1〜25重量%の範囲が好ましく、特には0.5〜15重量%の範囲が、さらには、2.5重量%〜15重量%の範囲が好ましい。
【0031】
中段触媒は、擬ベーマイトなどのアルミナ(含水アルミナを含む)を主成分した原料を混合・成形し、焼成することで好ましく製造される。原料としては、擬ベーマイト粉体が好ましく用いられるが、γ−アルミナ粉体を加えることもできる。このようなγ−アルミナ粉体として、使用済みの触媒、特にはγ-アルミナに水素化活性金属成分を担持した水素化精製触媒の使用済みのものであって平均粒子直径は200μm以下、好ましくは1〜100μmに粉砕したものを用いることもできる。
【0032】
本発明者は、触媒の最終的な細孔分布は、原料である擬ベーマイト粉末及び混練成形物の細孔分布によって決定されるため、所望とする触媒の特定細孔分布を得るためには、原料である擬ベーマイト粉末の1次粒子(結晶子)の大きさを示す結晶子径や、混練時におけるほぐれ易さを示す解膠性指数が重要な因子となることに着目して、検討を進めた。その結果、中段触媒に必要な細孔分布を得るため、原料となる擬ベーマイト粉体は、解膠性指数が、0.05〜0.8の範囲、特には0.1〜0.5の範囲にあり、(020)方向の結晶子径が2.5〜6.0nm、特には2.5〜4.0nmの範囲にあり、かつ、(120)方向の結晶子径が4.0〜10nm、特には4.0〜6.0nmの範囲にあることが好ましいことを見出した。
【0033】
解膠性指数は、評価する擬ベーマイト粉体6g、水30cmと0.1規定硝酸60cmを容器に入れた後ブレンダーで解砕し、擬ベーマイトのスラリーとし、このスラリーを遠心管に移して3000rpmで3分間の遠心分離を行ない、懸濁部と沈降部をデカンテーションにより分離して別の容器に移し、乾燥後に固形分重量を測定した。懸濁部固形分重量と沈降部固形分重量の和である全固形分重量で懸濁部固形分重量を割った値を解膠性指数とした。結晶子径は、擬ベーマイト粉体のX線回折パターンから、擬ベーマイトの(020)、(120)方向のみかけの結晶子の大きさをシェラー法によって求めた。内部標準サンプルには、高純度な擬ベーマイトを1600℃で36時間焼成したα-アルミナを用いた。
【0034】
擬ベーマイト粉体は成形前に混練されることが好ましく、この混練は、一般に触媒調製に用いられている混合機、混練機などにより行うことができる。上述の原料粉体に水を加えて投入し、攪拌羽根で混合する方法が好ましく用いられる。通常、この際には液体として水を加えるが、加える液体としては、アルコールやケトンなどの有機化合物でもよい。また、硝酸、酢酸、蟻酸などの酸やアンモニアなどの塩基、有機化合物、界面活性剤、活性成分等を加えて混合してもよく、特にはアンモニア水、イオン交換水などのアルカリ性または中性の水溶液または水を加えて混練することが好ましい。原料の成形とその後の焼成および水素化活性金属成分の担持は、上段触媒と同様に行うことができる。
【0035】
[下段触媒]
下段触媒層に充填される触媒(以下、下段触媒ともいう)は、いわゆる脱硫触媒を用いることができる。窒素吸着法により測定される下段触媒の好ましい細孔構造としては、細孔直径60nm以下の細孔容量が0.5cm/g以上、特には0.6〜1.0cm/gであり、細孔直径2〜60nmの細孔分布における中央細孔直径が5〜15nm、特には7〜13nmであり、比表面積が150〜350m/gであることが好ましい。水銀圧入法により測定される下段触媒の好ましい細孔構造は、細孔直径50nm以上の細孔容量が0.2cm/g以下、特には0.1cm/g以下である。細孔直径50nm以上の細孔容量を0.2cm/g以下とすることで、下段触媒の機械的強度を向上することができる。
【0036】
下段触媒を構成する多孔質無機酸化物担体および水素化活性金属成分は、上段触媒と同様である。水素化活性金属成分の含有量は、金属元素として、触媒重量に対して0.1〜25重量%の範囲が好ましく、特には0.5〜15重量%の範囲が、さらには、2.5重量%〜15重量%の範囲が好ましい。
【0037】
下段触媒は、擬ベーマイトを主成分した原料を混合・成形し、焼成することで好ましく製造される。原料は成形前に混練されることが好ましく、この混練は、一般に触媒調製に用いられている混合機、混練機などにより行うことができる。上述の原料粉体に水を加えて投入し、攪拌羽根で混合する方法が好ましく用いられる。通常、この際には液体として水を加えるが、加える液体としては、アルコールやケトンなどの有機化合物でもよい。また、硝酸、酢酸、蟻酸などの酸やアンモニアなどの塩基、有機化合物、界面活性剤、水素化活性金属成分などを加えて混合してもよい。原料の成形とその後の焼成および水素化活性金属成分の担持は、上段触媒と同様に行うことができる。
【0038】
[水素化精製条件]
本発明は、処理対象の重質油を水素と共に上段触媒層、中段触媒層、下段触媒層の各触媒層に順次接触させることで水素化精製を行うものである。これらの触媒層は、同一の反応器に収納されていてもよいし、複数の反応器に分割して収納されていてもよい。各触媒層内へ水素を注入してもよい。この前段、後段でさらに他の水素化精製などの工程と組み合わされていてもよい。
【0039】
上段触媒層と中段触媒層の合計容積が全触媒層の45%以上であり、中段触媒層の容積を10%以上とすることが必要である。全触媒層の体積は、上段触媒層、中段触媒層および下段触媒層の合計の体積であり、いわゆるガード触媒、支持触媒などのような水素化精製触媒として十分な機能を持たない触媒、具体的には、上段触媒、中段触媒または下段触媒に必要な特性を満足しない触媒の容積は含まない。全触媒容量に対する各触媒層の好ましい容量%を表2に示す。なお、各触媒層は、同一種類の触媒のみが充填されていてもよいし、必要な特性を満足する複数の触媒を組み合わせて充填してもよい。また、好ましい反応条件を表2に示す。
【0040】
【表2】
Figure 0003981632
【0041】
[重質油]
水素化精製の対象となる重質油は、沸点が360℃以上の留分を主成分とする、好ましくは沸点360℃以上の留分を50%以上、特には70%以上含む留分である。このような重質油としては、原油、タールサンド、シェールオイルあるいは石炭液化油等を常圧蒸留または減圧蒸留することにより得られる各種の重質留分や残渣油、あるいはこれらに分解、異性化、改質、溶剤抽出等の処理を行った留分を例示することができる。メタル分として、バナジウム、ニッケルを金属元素重量として、45重量ppm以上、特には60重量ppm以上含有する重質油を処理対象とすることができる。
【0042】
上記のような水素化精製により、長期間にわたり、高い分解率を得ることが可能となり、具体的には、250日以上、特には300日以上の運転期間において、平均分解率が14%以上となる。平均分解率は、運転期間を平均しての分解率であり、分解率は、次の式(1)で定義される。
【数1】
Figure 0003981632
【0043】
[有効メタル堆積量]
脱メタル反応の有効メタル堆積量は、水素化精製により触媒にメタル分が堆積し、活性が低下して脱メタル率が50%となった時点のニッケルおよびバナジウムの堆積量であり、初期触媒100gあたりのニッケルおよびバナジウムの堆積量をg単位で表した値として定義される。脱硫反応の有効メタル堆積量は、水素化精製により触媒にメタル分が堆積し、活性が低下して脱硫率が40%となった時点のニッケルおよびバナジウムの堆積量であり、初期触媒100gあたりのニッケルおよびバナジウム堆積量をg単位で表した値として定義される。触媒評価の水素化精製は、反応温度390℃、水素分圧13.7MPa、液空間速度1.0hr−1、水素油比670L/Lの反応条件で行う。原料油としてボスカン原油を用いることが好ましい。
【0044】
[難脱硫化合物の反応速度定数]
含硫黄化合物を難脱硫化合物と易脱硫化合物の2種類に分割して、反応温度380℃における難脱硫化合物に対する反応速度定数k0を難脱硫化合物の反応速度定数とする。難脱硫化合物に対する反応速度定数k0および易脱硫化合物の反応速度定数k0は、含硫黄化合物による硫黄分濃度Cとその濃度変化ΔCの一次式反応として次の式(2)、(3)により示すことができる。
【数2】
Figure 0003981632
【数3】
Figure 0003981632
(ここで、ΔC、ΔCは、難脱硫化合物、易脱硫化合物の濃度変化;C0h、C0eは、原料油中の難脱硫化合物、易脱硫化合物の濃度;LHSVは液空間速度である。)
【0045】
少なくとも4つの異なったLHSVで硫黄分濃度変化ΔCを測定して、難脱硫化合物に対する反応速度定数k0を算出することができる。好ましいLHSVの範囲は、0.3〜2hr−1である。具体的には、次の式(4)に示すように、異なったLHSVでの生成油の硫黄分濃度を測定し、測定された転化率Xobsを求める。この値と式(5)で計算される転化率Xcalcとの差が最小になるように、最小自乗法により、難脱硫化合物に対する反応速度定数k0および易脱硫化合物の反応速度定数k0を算出することができる。
【数4】
Figure 0003981632
【数5】
Figure 0003981632
(ここで、ΔC、ΔCは、難脱硫化合物、易脱硫化合物の濃度変化;C0h、C0eは、原料油中の難脱硫化合物、易脱硫化合物の濃度;LHSVは液空間速度、aは原料油中の全硫黄化合物に占める易脱硫化合物の割合であり、(C0e/(C0e+C0h))である。)
【実施例】
【0046】
以下、実施例に基づき本発明を説明するが、本発明はこの実施例により限定して解釈されるものではない。
【0047】
[触媒#100の調製]
市販の擬ベーマイト粉体Xを600℃で焼成し、γ−アルミナからなる原料粉体を作製した。この擬ベーマイト粉体Xの(020)結晶子径は2.70nmであり、また、(120)結晶子径は4.50nmである。γ−アルミナからなる原料粉体の細孔直径60nm以下の細孔容量が0.82cm/g、平均粒子直径12μmである。このγ−アルミナからなる原料粉体1.5kgにイオン交換水2120cm、水溶性セルロースエーテル52gを加えて混練した混練物を押し出し双腕式成形機を用い、最大外径1.9mmの四つ葉状開口から押し出し、成形物とした。この成形物を、乾燥機を用いて130℃で15時間乾燥させた後、空気の気流下で800℃で1時間焼成を行い、担体とした。この担体に、モリブデン、ニッケルおよびリンを含む酸性水溶液をスプレー法で含浸し、130℃で20時間乾燥した。ついで、空気の気流下で450℃で25分焼成を行い、元素重量としてモリブデンを3.0重量%、ニッケルを1.0重量%、リンを0.6重量%含有する触媒#100を調製した。
【0048】
[触媒#011、#013の調製]
解膠性指数は0.20であり、(020)結晶子径は2.70nmであり、また、(120)結晶子径は4.50nmである市販の擬ベーマイト粉体Yを用いた。この擬ベーマイト粉体2kgに1重量%アンモニア水1Lと水0.9Lを加えて1時間混練して混練物を得た。これを双腕式押し出し成形機を用い、最大外径1.9mmの四つ葉状成形物とした。これを130℃で10時間乾燥した後、800℃で1時間焼成し、γ-アルミナからなる担体を得た。この担体に、触媒中の元素重量としてモリブデンが6重量%となるモリブデン酸アンモニウム水溶液をスプレー法で含浸し、130℃で15時間乾燥した後、さらに触媒中の元素重量としてニッケルが1.5重量%となる硝酸ニッケル水溶液をスプレー法で含浸し、130℃で15時間乾燥した。ついで、空気の気流下で450℃で25分焼成を行い、元素重量としてモリブデンを6重量%、ニッケルを1.5重量%含有する触媒#011を調製した。
【0049】
800℃での焼成時間を1.5時間とした以外は、触媒#011と同様の条件にて触媒#013を調製した。
【0050】
[他の触媒調製]
触媒#011と類似する触媒を以下のように調製した。
【0051】
[擬ベーマイト粉体の合成]
中和沈殿槽内の300Lの水を65℃となるように加熱し、その中和沈殿槽に60℃に加熱した1M濃度のアルミン酸ナトリウム水溶液125Lと0.5M濃度の硫酸アルミニウム水溶液127Lを同時に送液した。硫酸アルミニウムの送液速度は、中和沈殿槽内の混合溶液のpHが9.0で一定となるように微調整した。両溶液の送液の間、沈殿反応が起こり、沈殿生成時の溶液の温度を65℃に維持した。アルミン酸ナトリウム水溶液及び硫酸アルミニウム水溶液の送液を送液開始から22分で終了し、溶液の温度を60℃に下げた後、その温度で維持したまま溶液を攪拌して30分間熟成させた。熟成後、得られたスラリーを濾過し、洗浄して固形分を得た。固形分をスプレードライヤーにて乾燥して擬ベーマイト粉体Aを得た。
【0052】
擬ベーマイト粉体Aの解膠性指数は0.46、(020)方向の結晶子径は2.41nm、(120)方向の結晶子径は3.81nmであった。
【0053】
なお、原料であるアルミン酸ナトリウム水溶液及び硫酸アルミニウム水溶液は、アルミ合金(H4100で規定された化学成分を有するJIS6063合金)を水酸化ナトリウム及び硫酸にそれぞれ溶解した水溶液を使用した。
【0054】
沈殿生成時の溶液の温度を70℃に調節した以外は、擬ベーマイト粉体Aと同様の条件にて擬ベーマイト粉体Bを合成した。擬ベーマイト粉体Bの解膠性指数は0.22、(020)方向の結晶子径は2.83nm、(120)方向の結晶子径は4.57nmであった。
【0055】
沈殿生成時の溶液の温度を70℃に調節し、原料として市販のアルミン酸ナトリウム(昭和電工製)及び硫酸アルミニウム(日本軽金属製)を用いた以外は、擬ベーマイト粉体Aと同様の条件にて擬ベーマイト粉体Cを合成した。擬ベーマイト粉体Cの解膠性指数は0.41、(020)方向の結晶子径は3.32nm、(120)方向の結晶子径は4.94nmであった。
【0056】
擬ベーマイト粉体A、擬ベーマイト粉体Bおよび擬ベーマイト粉体Cを用い、この擬ベーマイト粉体1.5kgに水1.5Lを加えて混練した以外は、触媒#011と同様の条件にて触媒#5521、触媒#5523および触媒#5534をそれぞれ調製した。擬ベーマイト紛体Cを用い、この擬ベーマイト紛体1.5kgに水0.8Lと1%濃度の硝酸0.8Lを加えて混練した以外は、触媒#011と同様の条件にて、触媒#5535を調製した。
【0057】
[他の触媒の入手]
触媒#606はオリエントキャタリスト製HOP606(金属担持量:Moを3wt%、Niを1wt%)を、触媒#611はオリエントキャタリスト製HOP611(金属担持量:Moを6wt%、Niを1.5wt%、Pを1wt%)を、また、触媒#802はオリエントキャタリスト製HOP802(金属担持量:Moを8wt%、Niを2.2wt%)を用いた。なお、以下の触媒評価においては、二硫化炭素1重量%を溶解した軽油に触媒を事前に接触させることで、硫化処理を行った。
【0058】
[反応速度定数の評価]
100cmの触媒を内直径25mm、長さ1000mmのリアクターに充填し、表3の常圧残渣油を原料油とし、反応温度380℃、水素分圧14.0MPa、水素油比1000L/Lの反応条件で、平均液空間速度を0.33、0.66、1.0、2.0に変えて反応を行い、原料油硫黄濃度Cと硫黄濃度変化ΔCをそれぞれ測定し、転化率ΔC/Cを得た。この4点と原点の値である1/LHSV=0の時、ΔC/C=0の値を、式2〜5に代入して最小自乗法によりに難脱硫化合物に対する反応速度定数k0と易脱硫化合物の反応速度定数k0を求めた。
【0059】
【表3】
Figure 0003981632
【0060】
[有効メタル堆積量の評価]
200cmの触媒を内直径25mm、長さ1000mmのリアクター2本に等量ずつ充填し、反応温度390℃、水素分圧13.7MPa、液空間速度1.0hr−1、水素油比670L/Lの反応条件で、原料油として表3に示すボスカン原油を用い、ニッケルおよびバナジウムの堆積量に対する脱メタル率および脱硫率の関係をそれぞれ測定した。図2に各触媒(#011、#013、#5521、#5523、#5534のみ)のニッケルおよびバナジウムの堆積量に対する脱メタル率の変化を示す。また、図3に各触媒(#011、#013、#5521、#5523、#5534のみ)のニッケルおよびバナジウムの堆積量に対する脱硫率の変化を示す。
【0061】
[触媒の評価結果]
用いた触媒の評価結果を表4、表5にまとめる。60nm以下の細孔容量は窒素吸着法により、50nm以上、2000nm以上の細孔容量は水銀圧入法により測定した。窒素吸着法により測定した50nm以下の細孔容量は、触媒#100が0.70cm/g、触媒#606が0.76cm/gであった。各触媒(#011、#013、#5521、#5523、#5534及び#5535)の60nmまでの細孔径分布を図1に示す。本発明に従う触媒#011、#013、#5523、#5534及び#5535はいずれも、8〜60nmの範囲において極めてブロードなバンドを示していることがわかる。
【0062】
【表4】
Figure 0003981632
【0063】
【表5】
Figure 0003981632
【0064】
[触媒寿命の評価]
表6に示す3組の触媒組み合わせを、表3に示す混合残渣油を原料油として水素化精製を行うことで、触媒寿命を評価した。触媒の組み合わせを、図4に示すような水素化精製装置10に充填した。水素化精製装置10は、内直径25mm、長さ1000mmの第1リアクター2及び第2リアクター4を備える。第1リアクター2の上流側に位置する触媒層2aに上段触媒を、下流側に位置する触媒層2bに中段触媒をそれぞれ充填した。下段触媒を第2リアクター4の触媒層に充填した。各触媒層への触媒の充填量を表6に示す。各リアクターは温度調節器(不図示)をその周囲に備える。反応条件は、水素分圧14MPa、水素油比800L/Lとし、液空間速度は、加速試験モードでは0.36hr−1、実運転条件に近い評価条件モードでは0.27hr−1とした。評価は、加速試験モードの運転条件で、7300時間運転を行い、その間に、評価条件モードの運転を行い、触媒活性を評価した。反応生成油の360℃以上の留分に含まれる硫黄分を0.5%となるように触媒層の反応温度を調整し、下段触媒層は上段および中段触媒層よりも10℃高い温度に設定した。
【0065】
【表6】
Figure 0003981632
【0066】
評価条件モードでの触媒重量平均温度の推移を図5、図6に示す。組み合わせ1、2(実施例)は、組み合わせ3(比較例)と比べて、運転開始当初は温度が高いが、長期間運転しても温度の上昇は小さい。組み合わせ1、2(実施例)は、高温で長期間運転しても触媒劣化が少なく、長寿命であることがわかる。触媒重量平均温度が405℃に達するまでの運転日数を触媒寿命とすると、実施例では300日以上であるが、比較例では242日の触媒寿命であった。それまでの期間の平均脱メタル率および平均分解率でも、実施例は比較例よりも優れていることがわかる。
【産業上の利用可能性】
【0067】
本発明は、脱メタル特性と脱硫特性の両方に優れた触媒を用いて、金属及び硫黄分などの不純物の除去性能が高くかつ長期間に渡ってその性能を維持することができさらには軽質留分が多く得られる水素化精製方法及び水素化精製装置を提供することができる。
【図面の簡単な説明】
【0068】
【図1】図1は、本発明の実施例に従う触媒担体の細孔径分布を示すグラフである。
【図2】図2は、実施例で製造した触媒のニッケル及びバナジウムの堆積量に対する脱メタル率を示すグラフである。
【図3】図3は、実施例で製造したニッケル及びバナジウムの堆積量に対する脱硫率を示すグラフである。
【図4】図4は、本発明に従う水素化精製装置の具体例を示す概念図である。
【図5】図5は、本発明の実施例1と比較例による反応温度の経時変化を示す図である。
【図6】図6は、本発明の実施例2と比較例による反応温度の経時変化を示す図である。【Technical field】
[0001]
The present invention relates to a hydrorefining method and apparatus using a catalyst suitable for hydrorefining heavy oil such as petroleum residue oil.
[Background]
[0002]
Hydrorefining is performed to reduce impurities such as sulfur and metal in heavy oil such as petroleum residue oil. Hydrorefining is performed by contacting a heavy oil and a catalyst under high temperature and high pressure conditions in the presence of hydrogen. Since heavy oil contains a large amount of metal, etc., if hydrorefining is continued, metal and coke deposits on the catalyst, gradually reducing the activity of the catalyst, and the catalytic activity is substantially reduced. The catalyst life will be exhausted. In the hydrorefining of heavy oil, it is desired to further improve the removal performance for removing impurities and to further extend the life of the catalyst used. For this reason, while improving the performance of the hydrorefining catalyst itself, a method of using a plurality of catalysts in combination has also been studied.
[0003]
In particular, there has been no catalyst that sufficiently satisfies both the desulfurization characteristics and the demetalization characteristics. For this reason, the hydrorefining reaction apparatus uses a combination of two catalyst layers consisting of a pre-stage catalyst layer filled with a catalyst excellent in demetalization characteristics and a post-stage catalyst layer filled with a catalyst excellent in desulfurization characteristics. It was. However, even if the amount of catalyst charged in the upstream and downstream catalyst layers is adjusted, it has been difficult to maintain a balance between demetalization characteristics and desulfurization characteristics over a long period of time.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0004]
The prior art has not provided a hydrorefining method that has sufficiently high impurity removal performance and that achieves a long catalyst life. For example, it is possible to improve the removal performance of impurities by raising the reaction temperature, but such operation promotes the deposition of coke, etc., and the activity of the catalyst decreases rapidly, so it should operate stably for a long period of time. I couldn't. Furthermore, although the performance of each catalyst has been improved by improving the hydrorefining catalyst, the performance of the catalyst may not be fully exhibited when combined. Oil demand is higher for middle distillates such as kerosene and light oil, which are lighter than heavy oil, so that more light distillates can be obtained through cracking reactions that occur simultaneously during hydrorefining of heavy oil. Is desired.
[0005]
The present invention has been achieved in order to solve the problems of the prior art, and the first object of the present invention is to use a catalyst excellent in both demetalization characteristics and desulfurization characteristics, such as metal and sulfur content. It is an object of the present invention to provide a hydrorefining method and a hydrorefining apparatus that have a high impurity removal performance and can maintain the performance for a long period of time, and can obtain a large amount of light fractions.
[Means for Solving the Problems]
[0006]
The catalyst used in the present invention has a characteristic pore distribution having a relatively broad band over a pore diameter of 8 to 30 nm, as shown in the characteristics of catalyst # 011 in FIG. Due to this characteristic pore distribution, it has been found that this hydrorefining catalyst is excellent in both desulfurization characteristics and demetalization characteristics and can maintain its performance over a long period of time. By using this catalyst in a hydrorefining apparatus equipped with a plurality of catalyst layers, it is possible to operate stably at a higher temperature than before without desulfurization performance being lowered, thereby improving demetalization performance. Moreover, since the decomposition rate of heavy oil also becomes high, many light fractions are obtained. It was also found that the carrier having the pore size distribution as described above has excellent mechanical strength.
[0007]
According to a first aspect of the present invention, a heavy oil hydrorefining apparatus comprising:
A first catalyst layer;
A second catalyst layer located downstream of the first catalyst layer;
A third catalyst layer located downstream of the second catalyst layer;
The effective metal deposition amount of the catalyst demetallation reaction in the first catalyst layer is 70 or more, the effective metal deposition amount of the catalyst demetallation reaction in the second catalyst layer is 50 or more, and the effective metal deposition of the desulfurization reaction The total volume of the catalyst in the first catalyst layer and the second catalyst layer is 45% or more of the total volume of the catalyst in the first to third catalyst layers, and the amount of the catalyst in the second catalyst layer A hydrorefining apparatus having a volume of 10% or more of the total volume of the catalyst in the first to third catalyst layers is provided.
[0008]
The hydrotreating apparatus of the present invention includes a catalyst having excellent demetalization characteristics in the first catalyst layer (upper catalyst layer), and is excellent in both demetalization characteristics and desulfurization characteristics in the second catalyst layer (middle catalyst layer). Since the catalyst is provided, excellent demetalization characteristics and desulfurization characteristics can be maintained over a long period of time. Moreover, many light fractions can be obtained from this hydrorefining apparatus.
[0009]
In the hydrorefining apparatus of the present invention, the catalyst in the first catalyst layer has a refractory porous carrier and a hydrogenation active metal supported on the carrier, and (a) pores determined by a nitrogen adsorption method The pore volume of pores having a diameter of 50 nm or less is 0.4 ml / g or more; (b) The pore volume of pores having a diameter of 50 nm or more, determined by mercury porosimetry, is 0.2 ml / g or more. Yes; (c) A catalyst having a pore characteristic in which the pore volume of pores having a pore diameter of 2000 nm or more determined by a mercury intrusion method is 0.1 ml / g or less can be used. As the catalyst in the second catalyst layer, the catalyst of the present invention described above can be used.
[0010]
According to a second aspect of the present invention, there is provided a method for hydrorefining heavy oil comprising: a first catalyst layer, a second catalyst layer located downstream thereof, and a third catalyst layer located downstream thereof. Providing; contacting the heavy oil with the first catalyst layer, the second catalyst layer, and the third catalyst layer in the presence of hydrogen; wherein the effectiveness of the catalyst demetallation in the first catalyst layer; Provided is a hydrorefining method in which the metal deposition amount is 70 or more, the effective metal deposition amount of the demetallation reaction of the catalyst in the second catalyst layer is 50 or more, and the effective metal deposition amount of the desulfurization reaction is 50 or more. The
BEST MODE FOR CARRYING OUT THE INVENTION
[0011]
[Upper catalyst]
The catalyst charged in the upper catalyst layer (hereinafter also referred to as the upper catalyst) has an effective metal deposition amount of 70 or more, preferably 75 or more, particularly preferably 80 to 200 in the demetallation reaction. If the effective metal deposition amount of the demetallation reaction is less than 70, the catalyst deterioration due to the deposition of the metal component is significant, so that the long life cannot be achieved.
[0012]
Preferred pore structure in the upper catalyst as measured by nitrogen adsorption method, the following pore volume pore diameter 50nm is 0.4 cm 3 / g or more, particularly a 0.6~1.1cm 3 / g, It is preferable that the median pore diameter in the pore distribution having a pore diameter of 2 to 60 nm is 6 to 20 nm, particularly 8 to 15 nm, and the specific surface area is 100 to 350 m 2 / g. By setting the pore volume with a pore diameter of 50 nm or less to 0.4 cm 3 / g or more, it is possible to reduce a decrease in demetalization activity due to metal deposition.
[0013]
The median pore diameter is determined by the BJH method, where the volume of the nitrogen gas adsorbed obtained under the condition of a relative pressure of 0.967 in the desorption process of the nitrogen gas is defined as the volume of the pore as a volume of the pore (V). From the calculated relationship between the pore volume and the pore diameter, it can be measured as the pore diameter at which the cumulative pore volume from the larger pore diameter side is half the pore volume (V / 2). A pore distribution having a pore diameter of about 2 to 60 nm can be measured by a nitrogen adsorption method. The BJH method is disclosed in Journal of the American Chemical Society, vol. 73, p.373- (1951).
[0014]
Preferred pore structure in the upper catalyst as measured by mercury porosimetry, a pore volume of more pore diameter 50nm is 0.2 cm 3 / g or more, particularly a 0.25~0.40cm 3 / g, pore volume above pore diameter 2000nm is 0.1 cm 3 / g or less, and particularly 0.05 cm 3 / g or less, more or less 0.01 cm 3 / g. The demetalization activity can be improved by setting the pore volume with a pore diameter of 50 nm or more to 0.2 cm 3 / g or more, and the pore volume with a pore diameter of 2000 nm or more is 0.1 cm 3 / g or less. As a result, the mechanical strength of the upper catalyst can be improved.
[0015]
Measurement by mercury porosimetry, the contact angle 140 ° of the mercury, the surface tension of 480 dyne / cm, was carried out in the range of 2~4225kg / cm 2 (30.4~60000psia).
[0016]
As the porous inorganic oxide support constituting the upper catalyst, oxides of elements of Groups 2, 4, 13, and 14 of the periodic table can be used (the periodic table is according to the IUPAC 1990 recommendation). . Among these, silica, alumina, magnesia, zirconia, boria, calcia and the like are preferable. These may be used alone or in combination of two or more. In particular, alumina (having a crystal structure such as γ, δ, η, and χ), silica-alumina, silica, alumina-magnesia, silica-magnesia, and alumina-silica-magnesia are preferable, and γ-alumina is particularly preferable. . A support in which the alumina contained in the catalyst is 50% by weight or more, particularly 70% by weight or more in terms of Al 2 O 3 weight is preferred.
[0017]
As the hydrogenation active metal component supported on the porous inorganic oxide carrier, elements of Groups 6, 8, 9, and 10 of the periodic table can be used. In particular, molybdenum and tungsten are used. In addition, nickel and cobalt can also be used. These elements are preferably supported on the carrier in a metal, oxide state, or sulfide state. The content of the hydrogenation active metal component is preferably in the range of 0.1 to 25% by weight, particularly 0.5 to 15% by weight, more preferably 1% by weight, based on the catalyst weight, as the metal element. A range of ˜15% by weight is preferred. Further, it is preferable to add a phosphorus and / or boron compound (usually in the form of an oxide) as an element weight in the catalyst in an amount of 0.1 to 20% by weight, particularly 0.2 to 5% by weight. The demetalization activity is improved.
[0018]
The upper catalyst is preferably produced by mixing, forming, and firing raw material powder containing γ-alumina as a main component. It is preferable that γ-alumina in the raw material powder is contained in an amount of 60% or more, particularly 75% or more with respect to the catalyst weight.
[0019]
The raw material powder used is a powder having a pore volume of 60 nm or less by a nitrogen adsorption method of 0.4 cm 3 / g or more (preferably 0.6 to 1.0 cm 3 / g) and an average particle diameter of 1 μm or more. It is preferable to use a body. When the pore volume of the raw material powder is less than 0.4 cm 3 / g, the pore volume of the upper catalyst having a pore diameter of 50 nm or less decreases, and the effective metal deposition amount decreases. When the average particle diameter is less than 1 μm, the pore volume of the upper catalyst having a pore diameter of 50 nm or more is decreased, and the demetalization activity is lowered. When the average particle diameter exceeds 300 μm, the pore capacity of the upper catalyst having a pore diameter of 2000 nm or more is increased, and the mechanical strength of the upper catalyst is lowered. The average particle diameter in the present specification can be measured as a median diameter measured by a general wet laser light scattering method.
[0020]
As this raw material powder, γ-alumina having an average particle diameter of 300 μm or less, particularly 1 to 100 μm, more preferably 10 to 100 μm is preferably used. As γ-alumina, pseudoboehmite calcined at 450 to 850 ° C. is preferable, and as such a raw material, a used catalyst, in particular, a hydrotreating catalyst carrying a hydrogenation active metal component on γ-alumina is used. A used one can be used. The raw material powder may be pulverized using a ball mill, a roller mill, a jet mill, a pulverizer or the like in order to obtain a required average particle size.
[0021]
The forming of the raw material powder is not particularly limited. For example, the raw material powder can be formed into a paste or clay by adding water, an organic solvent or the like to the raw material powder. This molding can be performed by extrusion molding, pressure molding, application to a processed sheet, or the like. After molding, the molded carrier can be obtained by drying and, if necessary, firing. The raw material powder in the form of gel or slurry can be formed into a spherical shape by dispersing it in a dry gas by spray drying or the like and drying it. Furthermore, the raw material powder in the form of sol or slurry can be formed into a spherical shape in the liquid. In addition, as a molding method for directly molding the raw material powder, there are a method in which a molding aid is added to the raw material powder as needed, a pressure molding by a tablet machine, and a molding by rolling granulation.
[0022]
Mixing of the raw material powder and the liquid can be performed by a mixer, a kneader or the like generally used for catalyst preparation. A method in which water is added to the above raw material powder and mixed with a stirring blade is preferably used. In this case, water is usually added as a liquid, but the liquid to be added may be an organic compound such as alcohol or ketone. Further, an acid such as nitric acid, acetic acid or formic acid, a base such as ammonia, an organic compound, a surfactant, an active ingredient, etc. may be added and mixed, and in particular, a molding aid comprising an organic compound such as a water-soluble cellulose ether. Is preferably added in an amount of 0.2 to 5% by weight, particularly 0.5 to 3% by weight, based on the raw material powder.
[0023]
The molding can be easily formed into a pellet shape, a honeycomb shape, or the like using an apparatus such as a plunger type extruder or a screw type extruder. Usually, a spherical shape, a columnar shape, a cylindrical shape having a diameter of 0.5 to 6 mm, or a columnar shape having a cross-section of three leaves or four leaves is used. After molding, it is preferably dried at room temperature to 150 ° C., particularly 100 to 140 ° C., and then calcined at 350 to 900 ° C. for 0.5 hour or more, particularly 500 to 850 ° C. for 0.5 to 5 hours. .
[0024]
As a method for supporting the hydrogenation active metal component on the upper catalyst, a supporting method, a kneading method, or the like can be used. As the supporting step, γ-alumina raw material, raw material powder, and raw material powder molding -It can be performed in at least one stage after firing. For example, when the used hydrorefining catalyst is used as the γ-alumina raw material, the hydrogenation active metal component is already supported on the γ-alumina raw material. As a method for supporting the hydrogenation active metal component, a known method such as a commonly used impregnation method such as a pore-filling method, a heat impregnation method, a vacuum impregnation method, and an immersion method can be used. After impregnating the metal component, it is preferably dried at a temperature of 80 to 200 ° C. for 10 minutes to 24 hours, and calcined at a temperature of 400 to 600 ° C., particularly 450 to 550 ° C. for 15 minutes to 10 hours. As a kneading method, a hydrogenation active metal component may be included in the raw material in advance, or may be kneaded and kneaded with the raw material.
[0025]
As the upper catalyst, a hydrorefining catalyst disclosed in WO 00/33957 (PCT / JP99 / 06760) by the present applicant can be preferably used.
[0026]
[Middle stage catalyst]
The catalyst charged in the middle catalyst layer (hereinafter also referred to as a middle catalyst) has an effective metal deposition amount of 50 or more in the demetallation reaction and an effective metal deposition amount of 50 or more in the desulfurization reaction. The effective metal deposition amount of the demetallation reaction is preferably 55 or more, particularly 60 to 100. The effective metal deposition amount of the desulfurization reaction is preferably 55 or more, particularly 60 to 100. If the effective metal deposition amount of the demetallization reaction and the effective metal deposition amount of the desulfurization reaction are less than 50, the catalyst deterioration due to the deposition of the metal component is significant, so that it is not possible to extend the life. The ratio of the reaction rate constant k h2 for the hardly desulfurized compound of the middle catalyst to the reaction rate constant k h3 of the difficult desulfurized compound of the lower catalyst ( kh 2 / kh 3 , hereinafter also referred to as the difficult desulfurization rate constant ratio) is 0. It is 5 or more, preferably 0.5 to 0.9, particularly preferably 0.6 to 0.8, and further preferably 0.6 to 0.7. When the difficulty desulfurization rate constant ratio is less than 0.5, the desulfurization characteristics are insufficient.
[0027]
Table 1 summarizes the preferred pore structure of the middle stage catalyst measured by the nitrogen adsorption method. By having such a pore distribution, it becomes a hydrorefining catalyst having excellent demetalization characteristics and desulfurization characteristics and having a long life. Moreover, it is preferable that the median pore diameter in the pore distribution having a pore diameter of 2 to 60 nm is 10 to 25 nm, particularly 15 to 20 nm, and the specific surface area is 100 to 350 m 2 / g.
[0028]
[Table 1]
Figure 0003981632
[0029]
The preferable pore structure of the middle stage catalyst measured by the mercury intrusion method is such that the pore volume with a pore diameter of 50 nm or more is 0.2 cm 3 / g or less, particularly 0.1 cm 3 / g or less. By pore volume above pore diameter 50nm is less 0.2 cm 3 / g, it is possible to improve the mechanical strength of the middle catalyst.
[0030]
The porous inorganic oxide support and the hydrogenation active metal component constituting the middle catalyst are the same as those in the upper catalyst, but the content of the hydrogenation active metal component is 0.1 to 0.1 wt. A range of 25% by weight is preferable, a range of 0.5 to 15% by weight is particularly preferable, and a range of 2.5% to 15% by weight is more preferable.
[0031]
The middle catalyst is preferably produced by mixing, forming, and firing a raw material mainly containing alumina (including hydrous alumina) such as pseudoboehmite. Pseudo boehmite powder is preferably used as a raw material, but γ-alumina powder can also be added. As such a γ-alumina powder, a used catalyst, particularly a hydrorefining catalyst in which a hydrogenation active metal component is supported on γ-alumina, has an average particle diameter of 200 μm or less, preferably What grind | pulverized to 1-100 micrometers can also be used.
[0032]
Since the final pore distribution of the catalyst is determined by the pore distribution of the pseudo boehmite powder as a raw material and the kneaded molded product, in order to obtain the specific pore distribution of the desired catalyst, Focusing on the fact that the crystallite diameter, which indicates the size of the primary particles (crystallites) of the pseudoboehmite powder, which is the raw material, and the peptization index, which indicates the ease of loosening during kneading, are important factors. Proceeded. As a result, in order to obtain the pore distribution necessary for the middle catalyst, the raw pseudoboehmite powder has a peptization index in the range of 0.05 to 0.8, particularly 0.1 to 0.5. The crystallite size in the (020) direction is in the range of 2.5 to 6.0 nm, particularly 2.5 to 4.0 nm, and the crystallite size in the (120) direction is 4.0 to 4.0. It has been found that the thickness is preferably in the range of 10 nm, particularly 4.0 to 6.0 nm.
[0033]
Deflocculating index is pseudo-boehmite powder 6g to evaluate the water 30 cm 3 with 0.1 N nitric acid 60cm 3 were disintegrated in a blender was placed into a vessel and a slurry of boehmite, transferring the slurry to a centrifuge tube Centrifugation was performed at 3000 rpm for 3 minutes, the suspended portion and the sedimented portion were separated by decantation, transferred to another container, and the solid content weight was measured after drying. The value obtained by dividing the suspended solids weight by the total solids weight, which is the sum of the suspended solids weight and the settled solids weight, was defined as the peptization index. For the crystallite size, the apparent crystallite size of pseudoboehmite in the (020) and (120) directions was determined by the Scherrer method from the X-ray diffraction pattern of the pseudoboehmite powder. As the internal standard sample, α-alumina obtained by firing high-purity pseudoboehmite at 1600 ° C. for 36 hours was used.
[0034]
The pseudo boehmite powder is preferably kneaded before molding, and this kneading can be performed by a mixer, a kneader or the like generally used for catalyst preparation. A method in which water is added to the above raw material powder and mixed with a stirring blade is preferably used. In this case, water is usually added as a liquid, but the liquid to be added may be an organic compound such as alcohol or ketone. In addition, acids such as nitric acid, acetic acid, formic acid, bases such as ammonia, organic compounds, surfactants, active ingredients, etc. may be added and mixed, especially alkaline or neutral such as ammonia water or ion exchange water. It is preferable to add an aqueous solution or water and knead. The forming of the raw material, the subsequent calcination, and the supporting of the hydrogenation active metal component can be performed in the same manner as the upper catalyst.
[0035]
[Lower catalyst]
A so-called desulfurization catalyst can be used as the catalyst filled in the lower catalyst layer (hereinafter also referred to as the lower catalyst). Preferred pore structure in the lower catalyst as measured by nitrogen adsorption method, the following pore volume pore diameter 60nm is 0.5 cm 3 / g or more, particularly a 0.6~1.0cm 3 / g, In the pore distribution with a pore diameter of 2 to 60 nm, the median pore diameter is preferably 5 to 15 nm, particularly 7 to 13 nm, and the specific surface area is preferably 150 to 350 m 2 / g. The preferable pore structure of the lower catalyst measured by the mercury intrusion method is such that the pore volume having a pore diameter of 50 nm or more is 0.2 cm 3 / g or less, particularly 0.1 cm 3 / g or less. The pore volume of more pore diameter 50nm With 0.2 cm 3 / g or less, it is possible to improve the mechanical strength of the lower catalyst.
[0036]
The porous inorganic oxide support and the hydrogenation active metal component constituting the lower catalyst are the same as in the upper catalyst. The content of the hydrogenation active metal component is preferably in the range of 0.1 to 25% by weight, particularly in the range of 0.5 to 15% by weight, more preferably 2.5%, based on the catalyst weight as the metal element. A range of from 15% to 15% by weight is preferred.
[0037]
The lower catalyst is preferably produced by mixing, forming, and firing a raw material mainly composed of pseudoboehmite. The raw materials are preferably kneaded before molding, and this kneading can be performed by a mixer, a kneader or the like generally used for catalyst preparation. A method in which water is added to the above raw material powder and mixed with a stirring blade is preferably used. In this case, water is usually added as a liquid, but the liquid to be added may be an organic compound such as alcohol or ketone. Further, an acid such as nitric acid, acetic acid or formic acid, a base such as ammonia, an organic compound, a surfactant, a hydrogenation active metal component or the like may be added and mixed. The forming of the raw material, the subsequent calcination, and the supporting of the hydrogenation active metal component can be performed in the same manner as the upper catalyst.
[0038]
[Hydro-refining conditions]
The present invention performs hydrorefining by bringing the heavy oil to be treated into contact with the catalyst layers of the upper catalyst layer, middle catalyst layer, and lower catalyst layer together with hydrogen. These catalyst layers may be stored in the same reactor, or may be stored in a plurality of reactors. Hydrogen may be injected into each catalyst layer. The former stage and the latter stage may be combined with other processes such as hydrorefining.
[0039]
The total volume of the upper catalyst layer and the middle catalyst layer is 45% or more of the total catalyst layer, and the volume of the middle catalyst layer needs to be 10% or more. The volume of all catalyst layers is the total volume of the upper catalyst layer, middle catalyst layer, and lower catalyst layer, and is a catalyst that does not have sufficient functions as a hydrotreating catalyst, such as a so-called guard catalyst, support catalyst, etc. Does not include the volume of catalyst that does not satisfy the properties required for the upper, middle or lower catalyst. Table 2 shows the preferred volume percent of each catalyst layer relative to the total catalyst volume. Each catalyst layer may be filled with only the same type of catalyst, or may be filled with a combination of a plurality of catalysts satisfying necessary characteristics. Further, preferable reaction conditions are shown in Table 2.
[0040]
[Table 2]
Figure 0003981632
[0041]
[Heavy oil]
The heavy oil to be hydrorefined is a fraction containing a fraction having a boiling point of 360 ° C. or more as a main component, preferably a fraction having a boiling point of 360 ° C. or more, particularly 50% or more, particularly 70% or more. . Such heavy oils include various heavy fractions and residual oils obtained by atmospheric distillation or vacuum distillation of crude oil, tar sand, shale oil, or coal liquefied oil, or the like. Examples thereof include fractions subjected to treatment such as reforming and solvent extraction. As the metal component, heavy oil containing vanadium and nickel as metal element weights of 45 ppm by weight or more, particularly 60 ppm by weight or more can be used as a treatment target.
[0042]
By hydrorefining as described above, it becomes possible to obtain a high decomposition rate over a long period of time. Specifically, the average decomposition rate is 14% or more in an operation period of 250 days or more, particularly 300 days or more. Become. The average decomposition rate is a decomposition rate obtained by averaging the operation periods, and the decomposition rate is defined by the following equation (1).
[Expression 1]
Figure 0003981632
[0043]
[Effective metal deposition amount]
The effective metal deposition amount of the demetallization reaction is the amount of nickel and vanadium deposited when the metal content is deposited on the catalyst by hydrorefining, the activity is reduced, and the demetallation rate becomes 50%. The amount of nickel and vanadium deposited per unit is defined as a value expressed in g. The effective metal deposition amount of the desulfurization reaction is the deposition amount of nickel and vanadium when the metal component is deposited on the catalyst by hydrorefining and the activity decreases and the desulfurization rate becomes 40%. It is defined as the value of nickel and vanadium deposition in g. The hydrorefining for catalyst evaluation is performed under the reaction conditions of a reaction temperature of 390 ° C., a hydrogen partial pressure of 13.7 MPa, a liquid space velocity of 1.0 hr −1 , and a hydrogen oil ratio of 670 L / L. It is preferable to use Boscan crude oil as the raw material oil.
[0044]
[Reaction rate constant of difficult desulfurization compounds]
The sulfur-containing compound is divided into two types, a hard desulfurization compound and an easy desulfurization compound, and the reaction rate constant k0 h for the hard desulfurization compound at a reaction temperature of 380 ° C. is used as the reaction rate constant of the hard desulfurization compound. The reaction rate constant k0 h for the difficult-to-desulfurize compound and the reaction rate constant k0 e for the easily-desulfurized compound are expressed by the following equations (2) and (3) as a linear reaction of the sulfur concentration C by the sulfur-containing compound and its concentration change ΔC. Can show.
[Expression 2]
Figure 0003981632
[Equation 3]
Figure 0003981632
(Wherein, [Delta] C h, [Delta] C e is hardly desulfurized compound, change in concentration of the easily desulfurization compounds; C 0h, C 0e are hardly desulfurized compounds in the feedstock, the concentration of the easily desulfurized compounds; LHSV is the liquid hourly space velocity .)
[0045]
The reaction rate constant k0 h for the hard-to-desulfurize compound can be calculated by measuring the sulfur concentration change ΔC with at least four different LHSVs. The preferred LHSV range is 0.3-2 hr −1 . Specifically, as shown in the following formula (4), the sulfur content concentration of the product oil at different LHSV is measured, and the measured conversion rate X obs is obtained. The reaction rate constant k0 h for the difficult-to-desulfurize compound and the reaction rate constant k0 e for the easily-desulfurized compound are determined by the method of least squares so that the difference between this value and the conversion rate Xcalc calculated by Equation (5) is minimized. Can be calculated.
[Expression 4]
Figure 0003981632
[Equation 5]
Figure 0003981632
(Here, ΔC h and ΔC e are changes in the concentration of the hard desulfurization compound and the easy desulfurization compound; C 0h and C 0e are the concentrations of the hard desulfurization compound and the easy desulfurization compound in the feed oil; LHSV is the liquid space velocity, a Is the ratio of easily desulfurized compounds to the total sulfur compounds in the feedstock oil, and is (C 0e / (C 0e + C 0h )).
【Example】
[0046]
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is limited and interpreted by this Example.
[0047]
[Preparation of catalyst # 100]
A commercially available pseudo boehmite powder X was fired at 600 ° C. to prepare a raw material powder made of γ-alumina. The pseudoboehmite powder X has a (020) crystallite diameter of 2.70 nm and a (120) crystallite diameter of 4.50 nm. The following pore volume pore diameter 60nm raw material powder consisting of γ- alumina 0.82 cm 3 / g, an average particle diameter of 12 [mu] m. The kneaded material obtained by adding 2120 cm 3 of ion-exchanged water and 52 g of water-soluble cellulose ether to 1.5 kg of the raw material powder made of γ-alumina is extruded, and four pieces having a maximum outer diameter of 1.9 mm are used. Extruded from the leaf-shaped opening to obtain a molded product. The molded product was dried at 130 ° C. for 15 hours using a dryer, and then fired at 800 ° C. for 1 hour in an air stream to obtain a carrier. This support was impregnated with an acidic aqueous solution containing molybdenum, nickel and phosphorus by a spray method and dried at 130 ° C. for 20 hours. Next, firing was performed at 450 ° C. for 25 minutes under an air stream to prepare catalyst # 100 containing 3.0% by weight of molybdenum, 1.0% by weight of nickel and 0.6% by weight of phosphorus as element weights. .
[0048]
[Preparation of Catalysts # 011, # 013]
A commercially available pseudo boehmite powder Y having a peptization index of 0.20, a (020) crystallite size of 2.70 nm, and a (120) crystallite size of 4.50 nm was used. 1 L of 1 wt% ammonia water and 0.9 L of water were added to 2 kg of this pseudo boehmite powder and kneaded for 1 hour to obtain a kneaded product. This was formed into a four-leaf shaped molded article having a maximum outer diameter of 1.9 mm using a double-arm extrusion molding machine. This was dried at 130 ° C. for 10 hours and then calcined at 800 ° C. for 1 hour to obtain a carrier made of γ-alumina. This support was impregnated with an aqueous ammonium molybdate solution containing 6% by weight of molybdenum as an element weight in the catalyst by a spray method, dried at 130 ° C. for 15 hours, and then 1.5 weights of nickel as an element weight in the catalyst. % Nickel nitrate aqueous solution was impregnated by a spray method and dried at 130 ° C. for 15 hours. Next, calcination was performed at 450 ° C. for 25 minutes under an air stream to prepare Catalyst # 011 containing 6% by weight of molybdenum and 1.5% by weight of nickel as element weights.
[0049]
Catalyst # 013 was prepared under the same conditions as for Catalyst # 011, except that the calcination time at 800 ° C. was 1.5 hours.
[0050]
[Other catalyst preparation]
A catalyst similar to catalyst # 011 was prepared as follows.
[0051]
[Synthesis of pseudo-boehmite powder]
300 L of water in the neutralization precipitation tank is heated to 65 ° C., and 125 M of 1 M sodium aluminate aqueous solution and 127 L of 0.5 M aluminum sulfate aqueous solution heated to 60 ° C. are simultaneously added to the neutralization precipitation tank. Liquid was sent. The feeding rate of aluminum sulfate was finely adjusted so that the pH of the mixed solution in the neutralization precipitation tank was constant at 9.0. During the feeding of both solutions, a precipitation reaction occurred, and the temperature of the solution during the formation of the precipitate was maintained at 65 ° C. The feeding of the sodium aluminate aqueous solution and the aluminum sulfate aqueous solution was completed in 22 minutes from the start of feeding, and after the temperature of the solution was lowered to 60 ° C., the solution was stirred and aged for 30 minutes while maintaining the temperature. After aging, the resulting slurry was filtered and washed to obtain a solid content. The solid content was dried with a spray dryer to obtain pseudo boehmite powder A.
[0052]
Pseudoboehmite powder A had a peptization index of 0.46, a crystallite size in the (020) direction of 2.41 nm, and a crystallite size in the (120) direction of 3.81 nm.
[0053]
In addition, the sodium aluminate aqueous solution and aluminum sulfate aqueous solution which were raw materials used the aqueous solution which melt | dissolved the aluminum alloy (JIS6063 alloy which has the chemical component prescribed | regulated by H4100) in sodium hydroxide and sulfuric acid, respectively.
[0054]
Pseudo boehmite powder B was synthesized under the same conditions as pseudo boehmite powder A, except that the temperature of the solution at the time of precipitation was adjusted to 70 ° C. Pseudoboehmite powder B had a peptization index of 0.22, a crystallite size in the (020) direction of 2.83 nm, and a crystallite size in the (120) direction of 4.57 nm.
[0055]
The temperature of the solution during precipitation was adjusted to 70 ° C., and the conditions were the same as for pseudoboehmite powder A, except that commercially available sodium aluminate (made by Showa Denko) and aluminum sulfate (made by Nippon Light Metal) were used as raw materials. Thus, pseudo boehmite powder C was synthesized. Pseudoboehmite powder C had a peptization index of 0.41, a crystallite size in the (020) direction of 3.32 nm, and a crystallite size in the (120) direction of 4.94 nm.
[0056]
Except for using pseudo-boehmite powder A, pseudo-boehmite powder B, and pseudo-boehmite powder C and adding 1.5 L of water to 1.5 kg of this pseudo-boehmite powder, the same conditions as for catalyst # 011 Catalyst # 5521, Catalyst # 5523 and Catalyst # 5534 were prepared respectively. Catalyst # 5535 was prepared under the same conditions as for Catalyst # 011, except that pseudoboehmite powder C was used and kneaded by adding 0.8 L of water and 0.8 L of 1% nitric acid to 1.5 kg of this pseudoboehmite powder. Prepared.
[0057]
[Obtaining other catalysts]
Catalyst # 606 is HOP606 manufactured by Orient Catalyst (metal loading: 3 wt% Mo, 1 wt% Ni), and Catalyst # 611 is HOP611 manufactured by Orient Catalyst (metal loading: 6 wt% Mo, 1.5 wt% Ni) %, P was 1 wt%), and catalyst # 802 was HOP802 (metal loading: Mo 8 wt%, Ni 2.2 wt%) manufactured by Orient Catalyst. In the following catalyst evaluation, the sulfurating treatment was performed by bringing the catalyst into contact with gas oil in which 1% by weight of carbon disulfide was dissolved in advance.
[0058]
[Evaluation of reaction rate constant]
A reactor having an inner diameter of 25 mm and a length of 1000 mm is charged with a catalyst of 100 cm 3 , and a normal pressure residual oil shown in Table 3 is used as a raw material oil, a reaction temperature of 380 ° C., a hydrogen partial pressure of 14.0 MPa, and a hydrogen oil ratio of 1000 L / L. Under the conditions, the average liquid space velocity is changed to 0.33, 0.66, 1.0, and 2.0, the reaction is performed, the raw material oil sulfur concentration C and the sulfur concentration change ΔC are measured, and the conversion rate ΔC / C Got. When 1 / LHSV = 0, which is the value of these four points and the origin, the value of ΔC / C = 0 is substituted into Equations 2 to 5 and the reaction rate constant k0 h for the difficult-to-desulfurize compound is easily obtained by the least square method. The reaction rate constant k0 e of the desulfurized compound was determined.
[0059]
[Table 3]
Figure 0003981632
[0060]
[Evaluation of effective metal deposit]
An equal amount of 200 cm 3 of catalyst is packed in two reactors having an inner diameter of 25 mm and a length of 1000 mm, and the reaction temperature is 390 ° C., the hydrogen partial pressure is 13.7 MPa, the liquid space velocity is 1.0 hr −1 , and the hydrogen oil ratio is 670 L / L. Under the reaction conditions, Boskan crude oil shown in Table 3 was used as the raw material oil, and the relationship between the demetallation rate and the desulfurization rate with respect to the deposited amounts of nickel and vanadium was measured. FIG. 2 shows changes in the demetalization rate with respect to the amount of nickel and vanadium deposited on each catalyst (# 011, # 013, # 5521, # 5523, and # 5534 only). FIG. 3 shows changes in the desulfurization rate with respect to the amount of nickel and vanadium deposited on each catalyst (# 011, # 013, # 5521, # 5523, and # 5534 only).
[0061]
[Catalyst evaluation results]
The evaluation results of the catalysts used are summarized in Tables 4 and 5. The pore volume of 60 nm or less was measured by a nitrogen adsorption method, and the pore volume of 50 nm or more and 2000 nm or more was measured by a mercury intrusion method. 50nm The following pore volume measured by the nitrogen adsorption method, the catalyst # 100 0.70 cm 3 / g, catalyst # 606 was 0.76 cm 3 / g. The pore size distribution up to 60 nm of each catalyst (# 011, # 013, # 5521, # 5523, # 5534, and # 5535) is shown in FIG. It can be seen that all of the catalysts # 011, # 013, # 5523, # 5534, and # 5535 according to the present invention exhibit extremely broad bands in the range of 8 to 60 nm.
[0062]
[Table 4]
Figure 0003981632
[0063]
[Table 5]
Figure 0003981632
[0064]
[Evaluation of catalyst life]
The catalyst lifetime was evaluated by hydrotreating the three catalyst combinations shown in Table 6 using the mixed residue oil shown in Table 3 as a raw material oil. The catalyst combination was loaded into a hydrorefining apparatus 10 as shown in FIG. The hydrorefining apparatus 10 includes a first reactor 2 and a second reactor 4 having an inner diameter of 25 mm and a length of 1000 mm. The upper catalyst was filled in the catalyst layer 2a located on the upstream side of the first reactor 2, and the middle catalyst was filled in the catalyst layer 2b located on the downstream side. The lower catalyst was filled in the catalyst layer of the second reactor 4. Table 6 shows the amount of catalyst filled in each catalyst layer. Each reactor is provided with a temperature controller (not shown) around it. The reaction conditions, the hydrogen partial pressure 14 MPa, and a hydrogen oil ratio 800L / L, the liquid hourly space velocity was set to 0.36hr -1, 0.27hr -1 in close evaluation conditions mode to the actual operating conditions in the accelerated test mode. The evaluation was performed for 7300 hours under the operation conditions in the acceleration test mode, and during that time, the operation in the evaluation condition mode was performed to evaluate the catalyst activity. The reaction temperature of the catalyst layer is adjusted so that the sulfur content in the fraction of the reaction product oil at 360 ° C or higher is 0.5%, and the lower catalyst layer is set to a temperature 10 ° C higher than the upper and middle catalyst layers. did.
[0065]
[Table 6]
Figure 0003981632
[0066]
The transition of the catalyst weight average temperature in the evaluation condition mode is shown in FIGS. Combinations 1 and 2 (examples) are higher in temperature at the beginning of operation than combination 3 (comparative example), but the temperature rise is small even if they are operated for a long period of time. It can be seen that the combinations 1 and 2 (Examples) have little catalyst deterioration and long life even when operated at a high temperature for a long period of time. Assuming that the operation life until the catalyst weight average temperature reaches 405 ° C. is the catalyst life, the catalyst life is 300 days or more in the examples, but the catalyst life is 242 days in the comparative example. It turns out that an Example is superior to a comparative example also in the average demetalization rate and average decomposition rate of the period until then.
[Industrial applicability]
[0067]
The present invention uses a catalyst excellent in both demetalization characteristics and desulfurization characteristics, has a high performance for removing impurities such as metals and sulfur, and can maintain the performance over a long period of time. It is possible to provide a hydrorefining method and a hydrorefining apparatus in which a large amount can be obtained.
[Brief description of the drawings]
[0068]
FIG. 1 is a graph showing the pore size distribution of a catalyst carrier according to an embodiment of the present invention.
FIG. 2 is a graph showing the demetalization rate with respect to the amount of nickel and vanadium deposited in the catalyst produced in the example.
FIG. 3 is a graph showing the desulfurization rate with respect to the deposition amounts of nickel and vanadium produced in Examples.
FIG. 4 is a conceptual diagram showing a specific example of a hydrorefining apparatus according to the present invention.
FIG. 5 is a graph showing changes in reaction temperature over time according to Example 1 and a comparative example of the present invention.
FIG. 6 is a graph showing changes in reaction temperature over time according to Example 2 and a comparative example of the present invention.

Claims (8)

重質油の水素化精製装置であって:
第1触媒層と;
第1触媒層の下流に位置する第2触媒層と;
第2触媒層の下流に位置する第3触媒層と;を備え、
第1触媒層中の触媒の脱メタル反応の有効メタル堆積量が70以上であり、第2触媒層中の触媒の脱メタル反応の有効メタル堆積量が50以上であり且つ脱硫反応の有効メタル堆積量が50以上であり、第1触媒層と第2触媒層の触媒の合計容積が第1〜第3触媒層中の触媒の合計容積の45%以上であり、第2触媒層中の触媒の容積が第1〜第3触媒層中の触媒の合計容積の10%以上である水素化精製装置。
A heavy oil hydrorefining equipment comprising:
A first catalyst layer;
A second catalyst layer located downstream of the first catalyst layer;
A third catalyst layer located downstream of the second catalyst layer;
The effective metal deposition amount of the catalyst demetallation reaction in the first catalyst layer is 70 or more, the effective metal deposition amount of the catalyst demetallation reaction in the second catalyst layer is 50 or more, and the effective metal deposition of the desulfurization reaction The total volume of the catalyst in the first catalyst layer and the second catalyst layer is 45% or more of the total volume of the catalyst in the first to third catalyst layers, and the amount of the catalyst in the second catalyst layer The hydrorefining apparatus whose volume is 10% or more of the total volume of the catalyst in a 1st-3rd catalyst layer.
第1触媒層中の触媒は、耐火性多孔質担体と該担体に担持された水素化活性金属を有し且つ
(a)窒素吸着法により求めた、細孔直径50nm以下の細孔の細孔容量が0.4ml/g以上であり、
(b)水銀圧入法により求めた、細孔直径50nm以上の細孔の細孔容量が0.2ml/g以上であり、かつ、
(c)水銀圧入法により求めた、細孔直径2000nm以上の細孔の細孔容量が0.1ml/g以下である細孔特性を有する請求項1に記載の水素化精製装置。
The catalyst in the first catalyst layer has a refractory porous carrier and a hydrogenation active metal supported on the carrier, and (a) pores having a pore diameter of 50 nm or less determined by a nitrogen adsorption method The capacity is 0.4 ml / g or more,
(B) The pore volume of pores having a pore diameter of 50 nm or more determined by mercury porosimetry is 0.2 ml / g or more, and
(C) The hydrorefining apparatus according to claim 1, wherein the hydrorefining apparatus has pore characteristics such that the pore volume of pores having a pore diameter of 2000 nm or more determined by a mercury intrusion method is 0.1 ml / g or less.
第2触媒層中の触媒が、耐火性多孔質担体と該担体に担持された水素化活性金属を有し、且つ窒素吸着法により求められた細孔直径60nm以下の細孔の細孔容量の合計が0.5ml/g以上であり、
(i)細孔直径8nm以下の細孔の細孔容量が前記細孔容量の合計の8%以下であり、
(ii)細孔直径8〜13nmの細孔の細孔容量が前記細孔容量の合計の15%以上であり、
(iii)細孔直径13〜18nmの細孔の細孔容量が前記細孔容量の合計の30以下であり、
(iv)細孔直径18〜30nmの細孔の細孔容量が前記細孔容量の合計の35%以上であり、かつ、
(v)細孔直径30〜60nmの細孔容量が前記細孔容量の合計の10%以下である細孔特性を有する請求項1に記載の水素化精製装置。
The catalyst in the second catalyst layer has a refractory porous carrier and a hydrogenation active metal supported on the carrier, and has a pore volume of pores having a pore diameter of 60 nm or less determined by a nitrogen adsorption method. The total is 0.5 ml / g or more,
(I) The pore volume of pores having a pore diameter of 8 nm or less is 8% or less of the total pore volume,
(Ii) The pore volume of pores having a pore diameter of 8 to 13 nm is 15% or more of the total pore volume,
(Iii) The pore volume of pores having a pore diameter of 13 to 18 nm is 30 or less of the total pore volume,
(Iv) The pore volume of pores having a pore diameter of 18 to 30 nm is 35% or more of the total pore volume, and
(V) The hydrorefining apparatus according to claim 1, having a pore characteristic in which a pore volume having a pore diameter of 30 to 60 nm is 10% or less of the total pore volume.
重質油を水素化精製する方法であって:
第1触媒層とその下流に位置する第2触媒層とその下流に位置する第3触媒層とを用意し;
重質油を水素の存在下で第1、第2及び第3触媒層とに接触させることを含み;
ここで、第1触媒層中の触媒の脱メタル反応の有効メタル堆積量が70以上であり、第2触媒層中の触媒の脱メタル反応の有効メタル堆積量が50以上であり且つ脱硫反応の有効メタル堆積量が50以上であり、第1触媒層と第2触媒層の触媒の合計容積が第1〜第3触媒層中の触媒の合計容積の45%以上であり、第2触媒層中の触媒の容積が第1〜第3触媒層中の触媒の合計容積の10%以上である重質油の水素化精製方法。
A method for hydrorefining heavy oil comprising:
Providing a first catalyst layer, a second catalyst layer located downstream thereof, and a third catalyst layer located downstream thereof;
Contacting heavy oil with the first, second and third catalyst layers in the presence of hydrogen;
Here, the effective metal deposition amount of the catalyst demetallation reaction in the first catalyst layer is 70 or more, the effective metal deposition amount of the catalyst demetallation reaction in the second catalyst layer is 50 or more, and the desulfurization reaction The effective metal deposition amount is 50 or more, the total volume of the catalyst in the first catalyst layer and the second catalyst layer is 45% or more of the total volume of the catalyst in the first to third catalyst layers, and in the second catalyst layer A method for hydrorefining heavy oil in which the volume of the catalyst is 10% or more of the total volume of the catalyst in the first to third catalyst layers.
第3触媒層中の触媒の難脱硫化合物の反応速度定数に対する第2触媒層中の触媒の難脱硫化合物の反応速度定数の比が0.5以上である請求項4に記載の重質油の水素化精製方法。The ratio of the reaction rate constant of the difficult desulfurization compound of the catalyst in the second catalyst layer to the reaction rate constant of the difficult desulfurization compound of the catalyst in the third catalyst layer is 0.5 or more. Hydrorefining method. 第1触媒層中の触媒は、耐火性多孔質担体と該担体に担持された水素化活性金属を有し且つ
(a)窒素吸着法により求めた、細孔直径50nm以下の細孔の細孔容量が0.4ml/g以上であり、
(b)水銀圧入法により求めた、細孔直径50nm以上の細孔の細孔容量が0.2ml/g以上であり、かつ、
(c)水銀圧入法により求めた、細孔直径2000nm以上の細孔の細孔容量が0.1ml/g以下である細孔特性を有する請求項4に記載の重質油の水素化精製方法。
The catalyst in the first catalyst layer has a refractory porous carrier and a hydrogenation active metal supported on the carrier, and (a) pores having a pore diameter of 50 nm or less determined by a nitrogen adsorption method The capacity is 0.4 ml / g or more,
(B) The pore volume of pores having a pore diameter of 50 nm or more determined by mercury porosimetry is 0.2 ml / g or more, and
(C) The method for hydrorefining heavy oil according to claim 4, which has a pore characteristic in which the pore volume of pores having a pore diameter of 2000 nm or more determined by mercury porosimetry is 0.1 ml / g or less. .
第2触媒層中の触媒が、耐火性多孔質担体と該担体に担持された水素化活性金属を有し、且つ窒素吸着法により求められた細孔直径60nm以下の細孔の細孔容量の合計が0.5ml/g以上であり、
(i)細孔直径8nm以下の細孔の細孔容量が前記細孔容量の合計の8%以下であり、
(ii)細孔直径8〜13nmの細孔の細孔容量が前記細孔容量の合計の15%以上であり、
(iii)細孔直径13〜18nmの細孔の細孔容量が前記細孔容量の合計の30%以下であり、
(iv)細孔直径18〜30nmの細孔の細孔容量が前記細孔容量の合計の35%以上であり、かつ、
(v)細孔直径30〜60nmの細孔容量が前記細孔容量の合計の10%以下である細孔特性を有する請求項4に記載の重質油の水素化精製方法。
The catalyst in the second catalyst layer has a refractory porous carrier and a hydrogenation active metal supported on the carrier, and has a pore volume of pores having a pore diameter of 60 nm or less determined by a nitrogen adsorption method. The total is 0.5 ml / g or more,
(I) The pore volume of pores having a pore diameter of 8 nm or less is 8% or less of the total pore volume,
(Ii) The pore volume of pores having a pore diameter of 8 to 13 nm is 15% or more of the total pore volume,
(Iii) The pore volume of pores having a pore diameter of 13 to 18 nm is 30% or less of the total pore volume,
(Iv) The pore volume of pores having a pore diameter of 18 to 30 nm is 35% or more of the total pore volume, and
(V) The method for hydrorefining heavy oil according to claim 4, which has a pore characteristic in which a pore volume having a pore diameter of 30 to 60 nm is 10% or less of the total pore volume.
細孔直径13〜18nmの細孔の細孔容量が前記細孔容量の合計の15%〜30%である請求項7に記載の重質油の水素化精製方法。The method for hydrorefining heavy oil according to claim 7, wherein the pore volume of pores having a pore diameter of 13 to 18 nm is 15% to 30% of the total pore volume.
JP2002501577A 2001-06-07 2001-06-07 Hydrorefining catalyst and hydrorefining method Expired - Lifetime JP3981632B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/004803 WO2001094012A1 (en) 2000-06-08 2001-06-07 Hydrofining catalyst and hydrofining process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007134730A Division JP4902424B2 (en) 2007-05-21 2007-05-21 Hydrorefining catalyst and hydrorefining method

Publications (2)

Publication Number Publication Date
JPWO2001094012A1 JPWO2001094012A1 (en) 2004-06-17
JP3981632B2 true JP3981632B2 (en) 2007-09-26

Family

ID=38596018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002501577A Expired - Lifetime JP3981632B2 (en) 2001-06-07 2001-06-07 Hydrorefining catalyst and hydrorefining method

Country Status (1)

Country Link
JP (1) JP3981632B2 (en)

Also Published As

Publication number Publication date
JPWO2001094012A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
KR100781642B1 (en) Hydrofining catalyst and hydrofining process
JP5227134B2 (en) Method for producing hydrotreating catalyst
JP6396289B2 (en) Hydrotreating catalyst and method for treating heavy hydrocarbon feedstock
EP1663490A1 (en) Process and catalyst for the hydroconversion of a heavy hydrocarbon feedstock
KR102025447B1 (en) A low cost and high activity hydroprocessing catalyst
KR101353807B1 (en) A bulk catalyst comprising metal oxidic particles of group vi and viii and a process for the manufacture therof
KR102133607B1 (en) Extruded resid demetallation catalyst
JP6511553B2 (en) Self-activated hydrogenation catalyst and method for treating heavy hydrocarbon feedstocks
WO2003006156A1 (en) Hydro-refining catalyst, carrier for use therein and method for production thereof
JP4902424B2 (en) Hydrorefining catalyst and hydrorefining method
JP3981632B2 (en) Hydrorefining catalyst and hydrorefining method
JP5645652B2 (en) Hydrocarbon hydrotreating catalyst and hydrotreating method using the same
KR102203553B1 (en) Activation of a hydroprocessing catalyst with steam
JP2022156584A (en) Production method of hydrogenation catalyst for hydrocarbon oil, and hydrogenation method for hydrocarbon oil

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Ref document number: 3981632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term