JP3981615B2 - Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same - Google Patents

Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same Download PDF

Info

Publication number
JP3981615B2
JP3981615B2 JP2002285753A JP2002285753A JP3981615B2 JP 3981615 B2 JP3981615 B2 JP 3981615B2 JP 2002285753 A JP2002285753 A JP 2002285753A JP 2002285753 A JP2002285753 A JP 2002285753A JP 3981615 B2 JP3981615 B2 JP 3981615B2
Authority
JP
Japan
Prior art keywords
steel
martensite
yield ratio
water
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002285753A
Other languages
Japanese (ja)
Other versions
JP2004124113A (en
Inventor
伸彦 侭田
嘉秀 長井
秀範 深水
義之 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002285753A priority Critical patent/JP3981615B2/en
Publication of JP2004124113A publication Critical patent/JP2004124113A/en
Application granted granted Critical
Publication of JP3981615B2 publication Critical patent/JP3981615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に板厚15mm以下の比較的薄手で、かつAPI規格X70グレード相当以上の高張力鋼を非水冷型で、降伏比を87%以下に低く抑え得る鋼材およびその製造方法に関するもので、鉄鋼業においては、主として厚板への適用が最も好適である。本発明により得られる鋼材は、建築、土木、海洋構造物、造船、各種の貯槽タンク、建・産機、ラインパイプなどの溶接構造用鋼として広範な用途に適用できる。
【0002】
【従来の技術】
鋼材の高張力化は、鋼成分の調整ももちろんあるが、製造プロセス上ではTMCP(thermo−mechanical control process)と呼ばれる圧延温度の低温化、いわゆる制御圧延や、圧延後の加速冷却などが、過去多くの公開公報、特許公報などを含む公知文献でその技術が開示されており、当業者においては広く知られている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5など)。
【0003】
しかし、薄手、特に本発明が対象とする板厚15mm以下の鋼材においては、圧延後の加速冷却(一般には水冷)は、冷却の不均一に起因する形状あるいは残留応力の観点から問題が多い。形状はいうまでもなく、残留応力の不均一は切断後の変形などの問題が生じる。一方、非水冷の制御圧延ままによる方法では、降伏比が高くなるという問題があった。発明者らの経験によれば、板厚15mm以下でX70級の高張力鋼では降伏比は90%超となる。
【0004】
なお、当業者においては、低降伏比化のために、圧延後、フェライトとオーステナイトの二相域に再加熱する方法が広く知られており、これも過去多くの公開公報、特許公報などを含む公知文献でその技術が開示されている(例えば、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10、特許文献11など)。
【0005】
以上のように、降伏比の低い薄手の高張力鋼を得ることは、水冷型、非水冷型(制御圧延まま)を問わず極めて困難であった。
【0006】
【特許文献1】
特開昭56−166320号公報
【特許文献2】
特開昭57−134514号公報
【特許文献3】
特開昭58−77528号公報
【特許文献4】
特開昭62−93346号公報
【特許文献5】
特開平3−162521号公報
【特許文献6】
特開平3−162521号公報
【特許文献7】
特開昭55−115921号公報
【特許文献8】
特開昭55−131130号公報
【特許文献9】
特開平4−110422号公報
【特許文献10】
特開平3−162518号公報
【特許文献11】
特開2001−226713号公報
【0007】
【発明が解決しようとする課題】
本発明は、従来、極めて困難であった非水冷型すなわち制御圧延ままで降伏比の低い薄手の高張力鋼を工業的に安定して供給可能な方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明のポイントは、制御圧延でありながら降伏比の低い薄手の高張力鋼を得ることであり、そのために、C量をはじめとする各種合金元素の適正添加とともに炭素当量(Ceq)、溶接割れ感受性組成(PCM)範囲の限定と微視組織の制御を本発明の通り限定したものである。その要旨は以下に示す通りである。
【0009】
(1) 鋼成分が質量%で、
C:0.05〜0.12%、
Si:0.15〜0.6%、
Mn:1.0〜2.5%、
P:0.02%以下、
S:0.01%以下、
Nb:0.02〜0.1%、
Ti:0.005〜0.035%、
Al:0.06%以下、
N:0.006%以下、
の範囲内で、
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14、
CM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B、
と定義する炭素当量Ceqおよび溶接割れ感受性組成PCMがそれぞれ0.32〜0.45%、0.15〜0.24%となるように含有し、残部が鉄および不可避的不純物からなり、鋼の微視組織がフェライトとセメンタイトを含む組織であるパーライトまたはベイナイトを主たる構成組織として、さらにマルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)を組織構成比率で1〜10%を含むことを特徴とする非水冷型薄手低降伏比高張力鋼。
【0010】
(2) 上記鋼成分に加え、質量%で、
Cu:0.05〜0.7%、
Ni:0.05〜1.0%の範囲でCu添加量の1/2以上、
Cr:0.05〜1.0%、
Mo:0.05〜1.0%
の範囲内で1種または2種以上をさらに含有することを特徴とする(1)に記載の非水冷型薄手低降伏比高張力鋼。
【0011】
(3) 上記鋼成分に加え、さらに、質量%で、
V:0.005〜0.10%、
Ta:0.005〜0.10%
の範囲でいずれか1種または両者を含有することを特徴とする(1)または(2)に記載の非水冷型薄手低降伏比高張力鋼。
【0012】
(4) (1)〜(3)のいずれか1項に記載の鋼組成からなる鋳片または鋼片を、1100〜1300℃の温度に加熱し、950℃以下の温度での累積圧下量を50%以上として700℃以上の温度で熱間圧延を終了した後、放冷することを特徴とする、鋼の微視組織がフェライトとセメンタイトを含む組織であるパーライトまたはベイナイトを主たる構成組織として、さらにマルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)を組織構成比率で1〜10%を含む非水冷型薄手低降伏比高張力鋼の製造方法。
【0013】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
【0014】
本発明が、請求項の通りに鋼組成および製造方法を限定した理由について説明する。
【0015】
Cは鋼の溶接性に最も大きな影響を及ぼし、添加量が多くなるほど溶接性を劣化させるため、添加量は低いほど好ましい。また、鋼の靭性を向上させる上でもC量は低いほど好ましい。しかし、必要以上にC量を低減すると、強度確保の困難性、およびその結果としての強度補償のための合金添加が増えるため、下限を0.05%とした。一方、上限は、溶接性、母材および溶接部靭性の観点から0.12%に限定した。なお、溶接性などはC量のみによって決まるものではないことは周知の通りで、この上限値は必ずしも臨界的な意味を持つものではなく、工業上安定して上記の特性・特徴を享受する、いわば本発明の特徴を明確にするために限定したに過ぎない。
【0016】
Siは、一般にセメンタイト中に固溶しにくく、セメンタイトの析出を抑制するとされ、結果として圧延後放冷でも本発明が特徴とするマルテンサイトまたはマルテンサイト−オーステナイト混合相の生成を助長する傾向にある。この効果を享受するため、Siの下限を0.15%に限定した。一方、必要以上に多く添加すると溶接性、溶接部靭性が劣化するため、上限を0.6%に限定した。
【0017】
Mnは、母材の強度、靭性を確保する上で有用な元素である。比較的安価な元素でもあるので、強度確保の観点から1.0%以上の添加を必須とする。上限については、多すぎる添加は連続鋳造スラブの中心偏析を助長したり、溶接性を劣化させるため2.5%に限定する。
【0018】
Pは、本発明鋼においては不純物であり、P量の低減は溶接熱影響部における粒界破壊を減少させる傾向があるため、少ないほど好ましい。含有量が多いと母材、溶接部靭性を劣化させるため上限を0.02%とした。
【0019】
Sは、Pと同様本発明鋼においては不純物であり、母材の低温靭性の観点からは少ないほど好ましい。含有量が多いと母材、溶接部靭性を劣化させるため上限を0.01%とした。
【0020】
Nbは、本発明においては不可欠な添加元素の一つである。その作用は、まず、圧延に先立つ加熱時において全量または部分的に固溶させることで、オーステナイトの再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を享受することができる。また、Nb炭窒化物を形成することで、析出硬化としての作用も期待される。さらに、本発明においては、固溶Nbが鋼材の焼き入れ性を高めるため、放冷(制御圧延まま)でマルテンサイトまたはマルテンサイト−オーステナイト混合相を生成しやすくする。これらの効果を発揮する上で、少なくとも0.02%以上の添加が必須である。上限については、発明者らにおいても限界を把握したわけではないが、前記効果を実験室的に確認できた範囲であること、また、溶接熱影響部靭性への悪影響が懸念されること、さらには効果に対する合金コストなども勘案した上で、0.1%に限定した。したがって、この上限値は、必ずしも前記効果に対する臨界的な意味合いはない。
【0021】
Tiは、母材および溶接部靭性に対する要求が厳しい場合には、添加することが好ましい。なぜならばTiは、Al量が少ないとき(例えば0.003%以下)、Oと結合してTi23を主成分とする析出物を形成、粒内変態フェライト生成の核となり溶接部靭性を向上させる。また、TiはNと結合してTiNとしてスラブ中に微細析出し、加熱時のγ粒の粗大化を抑え圧延組織の細粒化に有効であり、また鋼板中に存在する微細TiNは、溶接時に溶接熱影響部組織を細粒化するためである。これらの効果を得るためには、Tiは最低0.005%必要である。しかし多すぎるとTiCを多量に形成し、低温靭性や溶接性を劣化させるので、その上限は0.035%に限定した。
【0022】
Alは、一般に脱酸上鋼に含まれる元素であるが、脱酸はSiまたはTiだけでも十分であり、本発明鋼においては、その下限は限定しない(0%を含む)。しかし、Al量が多くなると鋼の清浄度が悪くなるだけでなく、溶接金属の靭性が劣化するので、上限を0.06%とした。
【0023】
Nは、不可避的不純物として鋼中に含まれるものであるが、Tiを添加する本発明鋼においては、TiNを形成して鋼の性質を高めたり、Nbあるいは必要に応じて添加できるV、Taと結合して炭窒化物を形成して強度を増加させる。この目的のためには、N量として最低0.001%含有することが望ましい。しかしながら、N量の増加はHAZ靭性、溶接性に対して有害であり、歪み時効性の観点からも本発明鋼においてはその上限を0.006%に限定した。
【0024】
次に、必要に応じて含有することができるCu、Ni、Cr、MoおよびV、Taの添加理由について説明する。
【0025】
基本となる成分に、さらにこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、強度、靭性などの特性を向上させるためである。したがって、その添加量は自ずと制限されるべき性質のものである。
【0026】
Cuは、過剰に添加しなければ、溶接性、溶接熱影響部靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。これら効果を発揮させるためには、少なくとも0.05%以上の添加が必須である。しかし、Cuは析出硬化を示す元素としても知られ、多すぎる添加は析出硬化による材質変化が急激となって制御が困難になるのに加え、溶接性劣化や熱間圧延時にCu−クラックが発生し製造困難となるため、上限を0.7%に限定した。
【0027】
NiもCu同様、過剰に添加しなければ、溶接性、溶接熱影響部靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。これら効果を発揮させるためには、少なくとも0.05%以上の添加が必須である。一方、過剰な添加は高価なだけでなく、溶接性に好ましくないため、上限を1.0%とした。なお、Cuを添加する場合、熱間圧延時のCu−クラックを防止するため、前記添加範囲を満足すると同時に、Cu添加量の1/2以上とする必要がある。
【0028】
CrおよびMoは、母材の強度、靭性をともに向上させる。その効果を確実に享受できる最小量は0.05%である。しかし、両元素とも添加量が多すぎると母材、溶接部の靭性および溶接性を劣化させるため、それぞれの上限を1.0%とした。
【0029】
なお、Cu、Ni、Cr、Moの添加は、耐候性にも少なからず有利に作用する。
【0030】
VおよびTaは、Nbとほぼ同様の作用を有するものであるが、Nbに比べてその効果は小さい。Nbと同様の効果は0.005%未満では効果が少なく、上限は0.10%まで許容できる。これらの元素は、いずれか一方で良いが、両者を添加してもよく、それぞれ単独での効果が概ね加算的に発揮される。
【0031】
個々の元素の添加量を上述の如く限定した上で、さらに、それらの総量規制ともいうべき炭素当量Ceq、溶接割れ感受性組成PCMもそれぞれ0.32〜0.45%、0.15〜0.24%に限定する。Ceq、PCMはいずれも溶接性を表す指標として知られ、低いほど溶接性に優れるが、これらの上限は、溶接性に対して臨界的な意味合いをもつものではなく、本発明の特徴を明確にするために限定したものである。それぞれの指標の下限値については、板厚や目標とする強度レベルによって変わるものであるが、一方で強度は板厚や圧延条件によっても変わるほか、両指標に含まれない元素も強度に少なからず影響を及ぼすため、前記指標(Ceq、PCM)のみで一義的に決まるものではない。しかし、発明者らの実験により比較的容易に高張力が得られることが確認された結果をもとに、本発明の権利範囲を明確にするため、前記の通り下限値を限定した。
【0032】
両指標とも鋼成分で一義的に決まるため、強度とも比較的良い相関を有し、その低減は基本的には高張力化とは相反する。そこで、本発明の特徴をより明確に主張するため、各合金元素を前記の通り限定し、さらに鋼の微視組織および製造方法をも限定した。
【0033】
鋼の微視組織は、フェライトとセメンタイトを含む組織であるパーライトまたはベイナイトを主たる構成組織として、さらにマルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)を組織構成比率で1〜10%を含むこととする。一般に、制御圧延ままでは、フェライトとセメンタイトを含む組織であるパーライトまたはベイナイトの混合組織となるが、本発明ではさらに、マルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)を組織構成比率で1〜10%を含むことを最大の特徴としている。マルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)は硬くて脆いために靭性劣化要因となり、通常はその生成を極力避けることに注意が払われ、生成が避けられない場合には、それらを分解させるため焼き戻し処理が行われる。しかし、本発明では、意図的にマルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)を組織構成比率で1〜10%を生成させ、高張力化と低降伏比化に利用したものである。マルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)は比較的低温で変態するため、変態歪が多く導入され、引張試験時に降伏点が不明瞭となり、極端な場合には、荷重−伸び曲線が完全なラウンドな曲線を描くようになる。このようなケースでは、降伏強さとして0.2%オフセット耐力が採られるため、降伏比は極めて低くなる。このような現象を発現するために、マルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)は最低1%必要である。しかし、それらの生成量が多すぎると靭性を著しく劣化させるため、上限を10%とした。なお、これらの組織構成比率は、鋼材の圧延方向断面1/4板厚位置のもので、マルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)の識別は、LePera氏液によるエッチングで白色に現出されたものとした。
【0034】
次に、製造方法を本発明の通り限定する理由について以下に説明する。
【0035】
まず、前記鋼成分を有する鋳片または鋼片に対し、圧延に先立つ加熱温度は1100〜1300℃に限定する。構造用鋼においては、強度と靭性をバランスよく両立させることが、多くの場合最大の課題の一つとなっており、組織の微細化がその有効な解決手段の一つである。加熱時のオーステナイト粒を小さくすることは、圧延組織の微細化を図る上でも有効で、本発明が加熱温度の上限として規定する1300℃は加熱時のオーステナイトが極端に粗大化しない温度である。加熱温度がこれを超えるとオーステナイト粒が粗大混粒化し、変態後の組織も粗大化するため鋼の靭性が劣化する。一方、低い加熱温度は、加熱オーステナイト粒の細粒化の点では有利であるが、圧延負荷大きくなるばかりでなく、板厚によっては後述する圧延終了温度(700℃以上)の確保が困難となる。また、圧延に先立つ加熱時にNbを少なくとも一部を溶体化させることで、オーステナイトの再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を発揮させるため、加熱温度の下限を1100℃に限定した。
【0036】
前記温度範囲に再加熱した鋳片または鋼片を、圧延では950℃以下の温度での累積圧下量を50%以上として700℃以上で熱間圧延を終了する必要がある。マルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)を生成利用する本発明においては、靭性への悪影響を無害化する上でそれらを微細分散生成させる必要があり、このために950℃以下での累積圧下量を十分確保し、圧延オーステナイトを細粒化しなければならない。その条件として、950℃以下の温度での累積圧下量を50%以上としなければならない。また、圧延終了温度は、700℃を下回ると変態が一部開始する可能性が高まり、最終組織に加工(圧延)組織を残す恐れがあり、靭性上好ましくないばかりでなく、降伏比の上昇を招くため、圧延終了温度は700℃以上に限定する。好ましくは、圧延終了温度は700〜800℃である。なお、これらの温度は、モニタリングの関係上、表面温度であることはいうまでもない。
【0037】
圧延後放冷とするのは、本明細書【従来の技術】で述べたように、加速冷却とした場合の不均一冷却に起因する形状および残留応力問題を回避するためである。
【0038】
【実施例】
転炉−連続鋳造−厚板工程で種々の鋼成分の鋼板(厚さ6〜15mm)を制御圧延ままで製造し、その機械的性質を調査した。
【0039】
表1に比較鋼とともに本発明鋼の鋼成分を、表2に鋼板の製造条件および機械的性質の調査結果を示す。
【0040】
本発明法に則った成分および製造方法による鋼板(本発明鋼)は、すべてAPI規格X70グレードとして十分な特性(強度、靭性)を有し、かつ降伏比も低い。これに対し、鋼成分や製造条件が本発明の限定範囲を逸脱する比較鋼は、強度、靭性、降伏比のいずれかまたは複数で明らかに劣っている。
【0041】
すなわち、比較例16では、C量が低く、PCMも低いため、強度が低いばかりでなく、マルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)が生成せず降伏比も高い。なお、C量が低いため母材靭性は良好であるが、Tiが添加されていないために溶接継手靭性が本発明鋼に比較して劣ることが確認されている。比較例17は、Mn量が低く、Ceqも低いため強度が低く、マルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)の生成もないため、降伏比が高い。さらに、950℃以下の累積圧下量も小さいため、靭性にも劣る。なお、当該鋼ではCu添加量に対してNi添加量が低いため、熱間圧延時にクラックが生じ、製造が困難となった。比較例18は、Si量が低く、Nbも添加されていないため、マルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)が生成しないばかりでなく、圧延時の制御圧延の効果が十分ではなく、靭性に劣るとともに、降伏比も高めである。比較例19では、C量が高く、圧延終了温度も低いため、Ceq、PCMは適正でマルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)の生成もあるが、降伏比が高く、靭性にも劣る。
【0042】
なお、表2には、溶接性として、JIS Z 3158で規定される斜めy形溶接割れ試験を予熱なし(室温)で実施した結果も併記しているが、本発明例、比較例ともCeq、PCMが低いため、いずれもまったく問題なかったことを付記しておく。
【0043】
【表1】

Figure 0003981615
【0044】
【表2】
Figure 0003981615
【0045】
【発明の効果】
本発明により、API規格X70級の降伏比が低く、溶接性にも優れる高張力鋼の提供が可能となった。本発明による鋼は、比較的薄手材にも関わらず組織制御することで降伏比が低く抑えられたもので、非水冷型の制御圧延ままで得られるため、短工期で、大量かつ安価に供給できるようになった。このような鋼材を用いることにより、各種の溶接鋼構造物の安全性を一段と向上させることが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel material that can be kept relatively thin, with a plate thickness of 15 mm or less, and a high-tensile steel equivalent to API standard X70 grade or higher in a non-water-cooled type, and the yield ratio can be kept low to 87% or less, and a method for producing the same. In the steel industry, application to thick plates is the most suitable. The steel material obtained by the present invention can be applied to a wide range of applications as steel for welded structures such as architecture, civil engineering, offshore structures, shipbuilding, various storage tanks, construction / industrial machinery, and line pipes.
[0002]
[Prior art]
In order to increase the tensile strength of steel materials, of course, adjustment of the steel components is necessary, but in the manufacturing process, lowering of the rolling temperature called TMCP (thermo-mechanical control process), so-called controlled rolling, accelerated cooling after rolling, etc. The technology is disclosed in public literature including many publications and patent publications, and is widely known to those skilled in the art (for example, Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Reference 5).
[0003]
However, in a thin steel material, particularly a steel material having a thickness of 15 mm or less, which is a subject of the present invention, accelerated cooling after rolling (generally water cooling) has many problems from the viewpoint of shape or residual stress due to uneven cooling. Needless to say, the non-uniformity of the residual stress causes problems such as deformation after cutting. On the other hand, the method using non-water-cooled controlled rolling has a problem that the yield ratio becomes high. According to the experience of the inventors, the yield ratio is more than 90% in a high-tensile steel of X70 grade with a plate thickness of 15 mm or less.
[0004]
In addition, for those skilled in the art, in order to reduce the yield ratio, a method of reheating to a two-phase region of ferrite and austenite after rolling is widely known, which includes many past publications and patents. The technique is disclosed by well-known literature (for example, patent document 6, patent document 7, patent document 8, patent document 9, patent document 10, patent document 11, etc.).
[0005]
As described above, it has been extremely difficult to obtain a thin high-tensile steel with a low yield ratio regardless of whether it is a water-cooled type or a non-water-cooled type (as controlled rolling).
[0006]
[Patent Document 1]
JP 56-166320 A [Patent Document 2]
JP-A-57-134514 [Patent Document 3]
JP 58-77528 A [Patent Document 4]
JP 62-93346 A [Patent Document 5]
JP-A-3-162521 [Patent Document 6]
JP-A-3-162521 [Patent Document 7]
JP 55-115921 A [Patent Document 8]
JP-A-55-131130 [Patent Document 9]
JP-A-4-110422 [Patent Document 10]
JP-A-3-162518 [Patent Document 11]
Japanese Patent Laid-Open No. 2001-226713
[Problems to be solved by the invention]
The present invention provides a method capable of industrially and stably supplying a thin non-water-cooled type, that is, controlled rolling, and thin high-tensile steel having a low yield ratio, which has heretofore been extremely difficult.
[0008]
[Means for Solving the Problems]
The point of the present invention is to obtain a thin high-strength steel with a low yield ratio while being controlled rolling, and for that purpose, carbon equivalent (Ceq), weld cracking together with appropriate addition of various alloy elements including C amount The limitation of the sensitive composition (P CM ) range and the control of the microscopic tissue are limited as in the present invention. The summary is as follows.
[0009]
(1) The steel component is mass%,
C: 0.05 to 0.12%,
Si: 0.15 to 0.6%,
Mn: 1.0 to 2.5%
P: 0.02% or less,
S: 0.01% or less,
Nb: 0.02 to 0.1%,
Ti: 0.005 to 0.035%,
Al: 0.06% or less,
N: 0.006% or less,
Within the range of
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14,
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B,
Carbon equivalent Ceq and weld cracking susceptibility composition P CM, respectively from 0.32 to 0.45% defined as, contain such that 0.15 to 0.24 percent, the balance being iron and unavoidable impurities, the steel The microstructural structure of pearlite or bainite, which is a structure containing ferrite and cementite, further includes martensite or a martensite-austenite mixed phase (MA-constituent) in a composition ratio of 1 to 10%. Non-water-cooled, thin, low yield ratio, high strength steel.
[0010]
(2) In addition to the above steel components,
Cu: 0.05 to 0.7%,
Ni: 1/2 or more of Cu addition amount in the range of 0.05 to 1.0%,
Cr: 0.05 to 1.0%,
Mo: 0.05-1.0%
1 type or 2 types or more are further contained in the range of (1), The non-water cooling type thin low yield ratio high-tensile steel as described in (1) characterized by the above-mentioned.
[0011]
(3) In addition to the above steel components,
V: 0.005-0.10%,
Ta: 0.005 to 0.10%
The non-water-cooled thin low yield ratio high-tensile steel according to (1) or (2), which contains either one or both in the range of.
[0012]
(4) The slab or steel slab comprising the steel composition according to any one of (1) to (3) is heated to a temperature of 1100 to 1300 ° C, and the cumulative reduction amount at a temperature of 950 ° C or less is set. As the main structural structure of pearlite or bainite, the microstructure of the steel is a structure containing ferrite and cementite, which is characterized by cooling after the hot rolling at a temperature of 700 ° C. or higher as 50% or more. Furthermore, the manufacturing method of the non-water-cooled thin low yield ratio high-tensile steel which contains a martensite or a martensite-austenite mixed phase (MA-constituent) by 1-10% by structure structure ratio.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0014]
The reason why the present invention limited the steel composition and the manufacturing method as described in the claims will be described.
[0015]
C has the greatest influence on the weldability of steel, and as the added amount increases, the weldability deteriorates. Therefore, the lower the added amount, the better. In addition, the C content is preferably as low as possible to improve the toughness of the steel. However, if the amount of C is reduced more than necessary, it is difficult to secure the strength and, as a result, the addition of the alloy for strength compensation increases, so the lower limit was made 0.05%. On the other hand, the upper limit was limited to 0.12% from the viewpoints of weldability, base metal and weld zone toughness. In addition, it is well known that weldability and the like are not determined only by the amount of C, and this upper limit value does not necessarily have a critical meaning, and enjoys the above characteristics and features in an industrially stable manner. In other words, the present invention is only limited to clarify the characteristics of the present invention.
[0016]
Si is generally difficult to dissolve in cementite and is considered to suppress the precipitation of cementite. As a result, even when allowed to cool after rolling, it tends to promote the formation of the martensite or martensite-austenite mixed phase that is characteristic of the present invention. . In order to enjoy this effect, the lower limit of Si was limited to 0.15%. On the other hand, if it is added more than necessary, the weldability and weld zone toughness deteriorate, so the upper limit was limited to 0.6%.
[0017]
Mn is an element useful for securing the strength and toughness of the base material. Since it is a relatively inexpensive element, addition of 1.0% or more is essential from the viewpoint of securing strength. As for the upper limit, too much addition is limited to 2.5% because it promotes center segregation of the continuously cast slab and deteriorates weldability.
[0018]
P is an impurity in the steel of the present invention, and a reduction in the amount of P tends to reduce the grain boundary fracture in the weld heat affected zone, so the smaller the amount, the better. If the content is large, the base material and weld toughness are deteriorated, so the upper limit was made 0.02%.
[0019]
S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low temperature toughness of the base material. If the content is large, the base material and weld toughness are deteriorated, so the upper limit was made 0.01%.
[0020]
Nb is one of the indispensable additive elements in the present invention. First, the effect of the controlled rolling at the time of hot rolling can be enjoyed by raising the recrystallization temperature of austenite by dissolving all or part of the solid solution at the time of heating prior to rolling. Moreover, the effect | action as precipitation hardening is anticipated by forming Nb carbonitride. Furthermore, in the present invention, since the solid solution Nb enhances the hardenability of the steel material, it is easy to generate martensite or a martensite-austenite mixed phase by cooling (as controlled rolling). Addition of at least 0.02% or more is essential for exhibiting these effects. Regarding the upper limit, the inventors have not grasped the limit, but the range is a range in which the above-mentioned effect can be confirmed in the laboratory, and there is a concern about adverse effects on weld heat affected zone toughness, In consideration of the alloy cost for the effect, etc., it was limited to 0.1%. Therefore, this upper limit value does not necessarily have a critical meaning for the effect.
[0021]
Ti is preferably added when the requirements for the base material and weld toughness are severe. This is because when Ti has a small amount of Al (for example, 0.003% or less), it combines with O to form precipitates mainly composed of Ti 2 O 3 , and becomes the nucleus of intragranular transformation ferrite formation, resulting in weld toughness. Improve. Ti is combined with N and finely precipitated in the slab as TiN, which suppresses the coarsening of γ grains during heating and is effective for refining the rolled structure. The fine TiN present in the steel sheet is welded. This is to sometimes refine the weld heat affected zone structure. In order to obtain these effects, Ti needs to be at least 0.005%. However, if the amount is too large, a large amount of TiC is formed and the low temperature toughness and weldability are deteriorated, so the upper limit is limited to 0.035%.
[0022]
Al is an element generally contained in deoxidized steel, but Si or Ti is sufficient for deoxidation, and the lower limit is not limited (including 0%) in the steel of the present invention. However, when the amount of Al increases, not only the cleanliness of the steel deteriorates but also the toughness of the weld metal deteriorates, so the upper limit was made 0.06%.
[0023]
N is contained in the steel as an unavoidable impurity, but in the steel of the present invention to which Ti is added, TiN is formed to enhance the properties of the steel, or Nb or V, Ta which can be added as necessary Bonds with, forming carbonitride to increase strength. For this purpose, it is desirable that the N content is at least 0.001%. However, an increase in the amount of N is harmful to the HAZ toughness and weldability, and the upper limit is limited to 0.006% in the steel of the present invention from the viewpoint of strain aging.
[0024]
Next, the reason for adding Cu, Ni, Cr, Mo, V, and Ta that can be contained as necessary will be described.
[0025]
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount of addition is naturally limited.
[0026]
If Cu is not added excessively, it improves the strength and toughness of the base material without adversely affecting the weldability and weld heat affected zone toughness. In order to exert these effects, addition of at least 0.05% is essential. However, Cu is also known as an element showing precipitation hardening, and if it is added too much, the material change due to precipitation hardening becomes abrupt and control becomes difficult, and in addition, Cu-cracks occur during weldability deterioration and hot rolling. However, since the production becomes difficult, the upper limit is limited to 0.7%.
[0027]
If Cu is not added excessively like Cu, the strength and toughness of the base metal are improved without adversely affecting the weldability and weld heat affected zone toughness. In order to exert these effects, addition of at least 0.05% is essential. On the other hand, excessive addition is not only expensive but also unfavorable for weldability, so the upper limit was made 1.0%. In addition, when adding Cu, in order to prevent the Cu-crack at the time of hot rolling, it is necessary to satisfy the said addition range, and to make it more than 1/2 of Cu addition amount.
[0028]
Cr and Mo improve both the strength and toughness of the base material. The minimum amount that can surely enjoy the effect is 0.05%. However, if both elements are added in too large amounts, the base metal, the toughness of the welded portion and the weldability are deteriorated, so the upper limit of each element was set to 1.0%.
[0029]
Note that the addition of Cu, Ni, Cr, and Mo has an advantageous effect on the weather resistance.
[0030]
V and Ta have substantially the same action as Nb, but the effect is smaller than that of Nb. The effect similar to Nb is less if it is less than 0.005%, and the upper limit is allowable up to 0.10%. Any one of these elements may be used, but both may be added, and the effects of each of them can be exhibited in an additive manner.
[0031]
The addition amount of each element in terms of the limited as described above, further, their carbon equivalent should be called total amount control Ceq, respectively weld crack susceptibility composition P CM also from 0.32 to 0.45%, from 0.15 to 0 Limited to 24%. Ceq, Both P CM known as an index representing the weldability is excellent in low as weldability, these limits are not intended to have a critical implications with respect to weldability, clarify the features of the present invention It is limited to make it. The lower limit of each index varies depending on the plate thickness and target strength level, but on the other hand, the strength varies depending on the plate thickness and rolling conditions, and the elements not included in both indicators are not limited in strength. Therefore, it is not uniquely determined only by the indicators (Ceq, P CM ). However, in order to clarify the scope of rights of the present invention based on the results confirmed by the inventors' experiments that high tension can be obtained relatively easily, the lower limit value is limited as described above.
[0032]
Since both indicators are uniquely determined by the steel composition, they have a relatively good correlation with strength, and the reduction is basically contrary to the increase in tension. Therefore, in order to assert the features of the present invention more clearly, the alloy elements are limited as described above, and the microstructure and manufacturing method of steel are also limited.
[0033]
The microstructure of steel includes pearlite or bainite, which is a structure containing ferrite and cementite, as a main structural structure, and further includes martensite or a martensite-austenite mixed phase (MA-constituent) in a structural composition ratio of 1 to 10%. I will do it. In general, as it is controlled rolling, it becomes a mixed structure of pearlite or bainite, which is a structure containing ferrite and cementite. However, in the present invention, a martensite or martensite-austenite mixed phase (MA-constituent) is 1 in the structure composition ratio. It is characterized by containing -10%. Martensite or martensite-austenite mixed phase (MA-constituent) is hard and brittle and causes toughness deterioration. Usually, care is taken to avoid its generation as much as possible. A tempering process is performed for decomposition. However, in the present invention, martensite or a martensite-austenite mixed phase (MA-constituent) is intentionally generated in a structure composition ratio of 1 to 10%, and is used for increasing the tension and reducing the yield ratio. . Martensite or martensite-austenite mixed phase (MA-constituent) transforms at a relatively low temperature, so a lot of transformation strain is introduced, the yield point becomes unclear during tensile test, and in extreme cases, load-elongation curve Will draw a complete round curve. In such a case, since the yield strength is 0.2% offset proof stress, the yield ratio becomes extremely low. In order to develop such a phenomenon, a martensite or martensite-austenite mixed phase (MA-constituent) is required to be at least 1%. However, if the amount of production is too large, the toughness is remarkably deteriorated, so the upper limit was made 10%. In addition, these structure composition ratios are those of the steel sheet in the rolling direction cross section 1/4 thickness position, and the martensite or martensite-austenite mixed phase (MA-constituent) is identified as white by etching with LePera's liquid. It was assumed to have appeared.
[0034]
Next, the reason why the manufacturing method is limited according to the present invention will be described below.
[0035]
First, with respect to the slab or steel slab having the steel component, the heating temperature prior to rolling is limited to 1100 to 1300 ° C. In structural steels, balancing strength and toughness in a well-balanced manner is often one of the biggest problems, and refinement of the structure is one effective solution. Reducing the austenite grains during heating is also effective for achieving a finer rolled structure, and 1300 ° C. defined as the upper limit of the heating temperature by the present invention is a temperature at which the austenite during heating does not become extremely coarse. If the heating temperature exceeds this, the austenite grains become coarsely mixed and the microstructure after transformation becomes coarse, so that the toughness of the steel deteriorates. On the other hand, the low heating temperature is advantageous in terms of making the heated austenite grains finer, but it not only increases the rolling load, but also makes it difficult to secure the rolling end temperature (700 ° C. or higher) described later depending on the plate thickness. . Moreover, in order to raise the recrystallization temperature of austenite and to exhibit the effect of controlled rolling at the time of hot rolling by forming a solution of Nb at least partially during heating prior to rolling, the lower limit of the heating temperature is set to 1100 ° C. Limited.
[0036]
When rolling a slab or steel slab reheated to the above temperature range, it is necessary to end the hot rolling at 700 ° C. or higher by setting the cumulative reduction amount at a temperature of 950 ° C. or lower to 50% or higher. In the present invention in which martensite or martensite-austenite mixed phase (MA-constituent) is generated and used, it is necessary to finely disperse them in order to make harm to toughness harmless. It is necessary to ensure a sufficient amount of rolling reduction and to refine the rolled austenite. As the condition, the cumulative reduction amount at a temperature of 950 ° C. or lower must be 50% or more. In addition, when the rolling end temperature is below 700 ° C., there is a possibility that a part of the transformation starts, and there is a possibility that a processed (rolled) structure may be left in the final structure, which is not preferable in terms of toughness, but also increases the yield ratio. Therefore, the rolling end temperature is limited to 700 ° C. or higher. Preferably, the rolling end temperature is 700 to 800 ° C. Needless to say, these temperatures are surface temperatures in terms of monitoring.
[0037]
The reason for letting it cool after rolling is to avoid the shape and residual stress problems due to non-uniform cooling when accelerated cooling is used, as described in this specification [Prior Art].
[0038]
【Example】
In the converter-continuous casting-thick plate process, steel plates having various steel components (thickness 6-15 mm) were produced as they were under controlled rolling, and their mechanical properties were investigated.
[0039]
Table 1 shows the steel components of the steel of the present invention together with the comparative steel, and Table 2 shows the investigation results of the manufacturing conditions and mechanical properties of the steel sheet.
[0040]
Steel sheets (invention steels) produced by the components according to the method of the present invention and the production method all have sufficient characteristics (strength and toughness) as API standard X70 grade, and have a low yield ratio. On the other hand, comparative steels whose steel components and production conditions deviate from the limited range of the present invention are clearly inferior in one or more of strength, toughness, and yield ratio.
[0041]
That is, in Comparative Example 16, a low C content, since lower P CM, strength not only low, martensitic or martensitic - austenitic mixed phase (MA-constituent) yield ratio without producing even higher. In addition, since the amount of C is low, the base material toughness is good, but since Ti is not added, it has been confirmed that the weld joint toughness is inferior to the steel of the present invention. Since the comparative example 17 has a low Mn content and a low Ceq, the strength is low, and no yield of martensite or martensite-austenite mixed phase (MA-constituent) occurs, so the yield ratio is high. Furthermore, since the cumulative amount of rolling below 950 ° C. is small, the toughness is also poor. In addition, since the Ni addition amount was low with respect to the Cu addition amount in the steel, cracks were generated during hot rolling, making it difficult to manufacture. In Comparative Example 18, since the Si amount was low and Nb was not added, not only martensite or a martensite-austenite mixed phase (MA-constituent) was generated, but the effect of controlled rolling during rolling was not sufficient. In addition to poor toughness, the yield ratio is also high. In Comparative Example 19, high C content, for lower rolling end temperature, Ceq, P CM is proper martensite or martensite - also produce austenite mixed phase (MA-constituent), but high yield ratio, toughness Also inferior.
[0042]
Table 2 also shows the results of carrying out the oblique y-type weld cracking test prescribed in JIS Z 3158 without preheating (room temperature) as weldability. In both the inventive examples and the comparative examples, Ceq, since P CM is low, any it may be noted that there was no problem at all.
[0043]
[Table 1]
Figure 0003981615
[0044]
[Table 2]
Figure 0003981615
[0045]
【The invention's effect】
According to the present invention, it is possible to provide a high-tensile steel having a low yield ratio of API standard X70 class and excellent weldability. The steel according to the present invention has a low yield ratio by controlling the structure in spite of relatively thin material, and can be obtained in a non-water-cooled controlled rolling, so it can be supplied in large quantities and at low cost in a short construction period. I can do it now. By using such a steel material, it has become possible to further improve the safety of various welded steel structures.

Claims (4)

鋼成分が質量%で、
C:0.05〜0.12%、
Si:0.15〜0.6%、
Mn:1.0〜2.5%、
P:0.02%以下、
S:0.01%以下、
Nb:0.02〜0.1%、
Ti:0.005〜0.035%、
Al:0.06%以下、
N:0.006%以下、
の範囲内で、
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14、
CM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B、
と定義する炭素当量Ceqおよび溶接割れ感受性組成PCMがそれぞれ0.32〜0.45%、0.15〜0.24%となるように含有し、残部が鉄および不可避的不純物からなり、鋼の微視組織がフェライトとセメンタイトを含む組織であるパーライトまたはベイナイトを主たる構成組織として、さらにマルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)を組織構成比率で1〜10%を含むことを特徴とする非水冷型薄手低降伏比高張力鋼。
Steel component is mass%,
C: 0.05 to 0.12%,
Si: 0.15 to 0.6%,
Mn: 1.0 to 2.5%
P: 0.02% or less,
S: 0.01% or less,
Nb: 0.02 to 0.1%,
Ti: 0.005 to 0.035%,
Al: 0.06% or less,
N: 0.006% or less,
Within the range of
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14,
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B,
Carbon equivalent Ceq and weld cracking susceptibility composition P CM, respectively from 0.32 to 0.45% defined as, contain such that 0.15 to 0.24 percent, the balance being iron and unavoidable impurities, the steel The microstructural structure of pearlite or bainite, which is a structure containing ferrite and cementite, further includes martensite or a martensite-austenite mixed phase (MA-constituent) in a composition ratio of 1 to 10%. Non-water-cooled, thin, low yield ratio, high strength steel.
上記鋼成分に加え、質量%で、
Cu:0.05〜0.7%、
Ni:0.05〜1.0%の範囲でCu添加量の1/2以上、
Cr:0.05〜1.0%、
Mo:0.05〜1.0%
の範囲内で1種または2種以上をさらに含有することを特徴とする請求項1に記載の非水冷型薄手低降伏比高張力鋼。
In addition to the above steel components,
Cu: 0.05 to 0.7%,
Ni: 1/2 or more of Cu addition amount in the range of 0.05 to 1.0%,
Cr: 0.05 to 1.0%,
Mo: 0.05-1.0%
The non-water-cooled thin low yield ratio high-tensile steel according to claim 1, further comprising one or more types within the range.
上記鋼成分に加え、質量%で、
V:0.005〜0.1%、
Ta:0.005〜0.1%
の範囲でいずれか1種または両者を含有することを特徴とする請求項1または2に記載の非水冷型薄手低降伏比高張力鋼。
In addition to the above steel components,
V: 0.005 to 0.1%
Ta: 0.005 to 0.1%
The non-water-cooled thin low yield ratio high-tensile steel according to claim 1 or 2, wherein either one or both of them are contained within the range.
請求項1〜3のいずれか1項に記載の鋼組成からなる鋳片または鋼片を、1100〜1300℃の温度に加熱し、950℃以下の温度で累積圧下量を50%以上として700℃以上の温度で熱間圧延を終了した後、放冷することを特徴とする、鋼の微視組織がフェライトとセメンタイトを含む組織であるパーライトまたはベイナイトを主たる構成組織として、さらにマルテンサイトまたはマルテンサイト−オーステナイト混合相(MA−constituent)を組織構成比率で1〜10%を含む非水冷型薄手低降伏比高張力鋼の製造方法。The slab or steel slab comprising the steel composition according to any one of claims 1 to 3 is heated to a temperature of 1100 to 1300 ° C, and a cumulative reduction amount of 50% or more at a temperature of 950 ° C or less is 700 ° C. After the hot rolling at the above temperature is finished, the steel is allowed to cool, and the microstructure of the steel is pearlite or bainite, which is a structure containing ferrite and cementite, as a main structural structure, and further martensite or martensite. -The manufacturing method of the non-water-cooled thin low yield ratio high-tensile steel containing 1 to 10% of austenite mixed phase (MA-constituent) in the structure constitution ratio.
JP2002285753A 2002-09-30 2002-09-30 Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same Expired - Fee Related JP3981615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285753A JP3981615B2 (en) 2002-09-30 2002-09-30 Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285753A JP3981615B2 (en) 2002-09-30 2002-09-30 Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004124113A JP2004124113A (en) 2004-04-22
JP3981615B2 true JP3981615B2 (en) 2007-09-26

Family

ID=32278968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285753A Expired - Fee Related JP3981615B2 (en) 2002-09-30 2002-09-30 Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3981615B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439545C (en) * 2006-03-27 2008-12-03 宝山钢铁股份有限公司 800 MPa level thick steel plate with high toughness and low yield ratio and its making process
CN104294154B (en) * 2014-09-23 2017-01-11 武汉钢铁(集团)公司 Thick steel plate with excellent low-temperature toughness and Rm structure of 630MPa grade and production method of thick steel plates
CN105088082B (en) * 2015-08-28 2017-11-07 中国石油天然气集团公司 A kind of alitizing is modified P110 grades of oil annular tube steels and its tubing manufacture method
CN111057812A (en) * 2018-10-16 2020-04-24 五矿营口中板有限责任公司 High-toughness fire-resistant corrosion-resistant steel with 600MPa tensile strength and manufacturing method thereof
CN110306112A (en) * 2019-07-17 2019-10-08 张家港宏昌钢板有限公司 A kind of X65 grades of pipe line steel and its manufacturing method
CN110735085A (en) * 2019-09-25 2020-01-31 江苏沙钢集团有限公司 Manufacturing method of thin Q345qE and Q370qE steel plates
CN112048664B (en) * 2020-08-14 2022-07-01 江阴兴澄特种钢铁有限公司 Normalized-state delivery FH36 steel plate for 100-one 120 mm-thick offshore wind power pipe pile and preparation method thereof
CN112458365A (en) * 2020-11-06 2021-03-09 新余钢铁股份有限公司 Vanadium-free normalized high-toughness thick ship plate with thickness of more than or equal to 60mm and production method thereof
CN114150231B (en) * 2021-11-16 2022-09-16 中联先进钢铁材料技术有限责任公司 Steel plate with high fracture toughness and 420MPa grade for marine platform and preparation method
CN115074620A (en) * 2022-05-18 2022-09-20 包头钢铁(集团)有限责任公司 Q345qENH high-performance weather-proof bridge steel and production method thereof
CN116377328B (en) * 2023-04-03 2024-03-12 江苏沙钢集团有限公司 X60 steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004124113A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
KR100957963B1 (en) Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
EP1790749A1 (en) 490 MPa GRADE HIGH TENSILE STEEL FOR WELDED STRUCTURE EXHIBITING EXCELLENT HIGH TEMPERATURE STRENGTH AND METHOD FOR PRODUCTION THEREOF
JP2006336065A (en) Low yield-ratio high tensile-strength steel, and method for producing low yield-ratio high tensile-strength steel
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
JP2017197787A (en) High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor
KR102164112B1 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
JP2007119861A (en) Method for producing high tensile-strength steel for welding structure excellent in high temperature strength and low temperature toughness
JP2004084068A (en) Non-haettreated low yield ratio high tensile strength steel having excellent high temperature strength and production method therefor
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP6691967B2 (en) High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same
KR101546154B1 (en) Oil tubular country goods and method of manufacturing the same
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP4362219B2 (en) Steel excellent in high temperature strength and method for producing the same
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP2002173734A (en) Steel having excellent weldability and its production method
KR101767771B1 (en) The steel sheet for welding structure having excellent heat affected zone toughness and method for manufacturing the same
JP4264296B2 (en) Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
KR20200061921A (en) Hot-rolled steel sheet for earthquake-resistant steel pipe and method for manufacturing the same
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees