JP3981564B2 - Hydrodynamic bearing device and manufacturing method thereof - Google Patents

Hydrodynamic bearing device and manufacturing method thereof Download PDF

Info

Publication number
JP3981564B2
JP3981564B2 JP2002042624A JP2002042624A JP3981564B2 JP 3981564 B2 JP3981564 B2 JP 3981564B2 JP 2002042624 A JP2002042624 A JP 2002042624A JP 2002042624 A JP2002042624 A JP 2002042624A JP 3981564 B2 JP3981564 B2 JP 3981564B2
Authority
JP
Japan
Prior art keywords
bearing
thrust
housing
thrust bearing
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002042624A
Other languages
Japanese (ja)
Other versions
JP2003239974A (en
Inventor
信好 山下
正明 戸田
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2002042624A priority Critical patent/JP3981564B2/en
Publication of JP2003239974A publication Critical patent/JP2003239974A/en
Application granted granted Critical
Publication of JP3981564B2 publication Critical patent/JP3981564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Powder Metallurgy (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸受隙間に生じる潤滑油の動圧作用で回転部材を非接触支持する動圧軸受装置に関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。
【0002】
【従来の技術】
上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。
【0003】
例えば、HDD等のディスク装置のスピンドルモータに組込まれる動圧軸受装置では、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられ、これら軸受部として、軸受面に動圧発生用の溝(動圧溝)を有する動圧軸受が用いられる。ラジアル軸受部の動圧溝は、軸受スリーブの内周面又は軸部材の外周面に形成され、スラスト軸受部の動圧溝は、フランジ部を備えた軸部材を用いる場合、そのフランジ部の両端面、又は、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面等)にそれぞれ形成される。通常、軸受スリーブはハウジングの内周の所定位置に固定され、また、ハウジングの底部をスラスト部材で構成する場合は、該スラスト部材を位置決めするためのインロー部(段状の部位)をハウジングに設ける場合が多い(スラスト部材をインロー部に嵌め合わせることで、ハウジングに対するスラスト部材の位置決めを行う。)。さらに、ハウジングの内部空間に注油した潤滑油が外部に漏れるのを防止するために、ハウジングの開口部にシール部材を配設する場合が多い。
【0004】
【発明が解決しようとする課題】
上記構成の動圧軸受装置は、ハウジング、軸受スリーブ、軸部材、スラスト部材、及びシール部材といった部品で構成され、情報機器の益々の高性能化に伴って必要とされる高い軸受性能を確保すべく、各部品の加工精度や組立精度を高める努力がなされている。特に、スラスト軸受隙間の大きさは、軸部材のフランジ部の軸方向寸法や両端面の面精度、スラスト軸受面となる軸受スリーブおよびスラスト部材の端面の面精度といった部品精度と、軸受スリーブとスラスト部材との間の軸方向スペースといった組立精度の影響を受けることから、所望値に管理するのが難しく、そのために、必要以上に高精度な部品加工や複雑な組立作業を強いられているのが実状である。一方、情報機器の低価格化の傾向に伴い、この種の動圧軸受装置に対するコスト低減の要求も益々厳しくなっている。
【0007】
本発明の課題は、この種の動圧軸受装置におけるスラスト軸受隙間を簡易かつ精度良く設定することができる方法を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明は、側部および底部を有するコップ状のハウジングと、ハウジングの内周に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、軸受スリーブの内周面と軸部の外周面との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で軸部をラジアル方向に非接触支持するラジアル軸受部と、軸受スリーブの一端面とこれに対向するフランジ部の一端面との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用でフランジ部をスラスト方向に非接触支持する第1スラスト軸受部と、ハウジングの底部の内底面とこれに対向するフランジ部の他端面との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用でフランジ部をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置、の製造方法であって、ハウジングの内底面にフランジ部の他端面を当接させると共に、フランジ部の一端面に軸受スリーブの一端面を当接させ、フランジ部の一端面に軸受スリーブの一端面を当接させた状態で、軸受スリーブを、フランジ部と伴に、第1スラスト軸受部及び第2スラスト軸受部のスラスト軸受隙間の合計量に相当する寸法だけ、ハウジングに対して軸方向に相対移動させて、第1スラスト軸受部及び第2スラスト軸受部のスラスト軸受隙間を所定寸法に形成する構成を提供する。
【0010】
上記構成において、ハウジングは金属製又は樹脂製とすることができる。前者の場合、マグネシウム等の金属粉末の射出成形、アルミ合金等のダイキャスト、金属板のプレス加工(板材又はパイプ材の絞り成形)等の型成形によりハウジングを形成することができる。また、後者の場合、樹脂の射出成形等の型成形によりハウジングを形成することができる。
【0011】
第2スラスト軸受部を構成する動圧溝はハウジングの内底面およびフランジ部の他端面のうち一方に設ければよいが、ハウジングの内底面に設ける場合、該動圧溝を側部および底部と共に型成形により形成することができる。これにより、該動圧溝の別途加工を不要として、加工コストの低減を図ることができる。
【0012】
ここで、上記の金属粉末の射出成形法は「メタル・インジェクション・モールディング」(MIM:Metal Injection Molding)と呼ばれている。このMIM法は、一般に、金属粉末と樹脂バインダとを混練後、金型に射出して成形し、続いて脱脂してバインダを除いた成形体を焼結して完成品とする成形法であり(焼結後、必要に応じて後処理を行う。)、次のような特長を有している。すなわち、▲1▼複雑な形状の小物部品をニア・ネット・シェイプで形成することができ、▲2▼金型形状を転写し同一形状のものを量産することができ、▲3▼成型時の収縮率、脱脂・焼結時の収縮率などを見極めることにより、寸法精度の高い部品を生産することができ、▲4▼金型形状を転写するので、金型の仕上精度と同一の面精度(面粗度等)を確保することができ、▲5▼ステンレス鋼等の難加工材のニア・ネット・シェイプ化が可能である。
【0013】
ハウジングを上記のMIM法で形成することにより、生産性が高まると共に、スラスト軸受面となる内底面の面粗度等を精度良く仕上げることができるので、加工コストの低減になる。また、成形金型の所要部位に動圧溝の形状を加工しておくことにより、内底面に動圧溝を成形と同時に形成(転写)することができるので、その後の動圧溝加工を不要として、加工コスト低減を図ることもできる。
【0015】
例えば、スラスト部材を具備し、その位置設定をハウジングに設けたインロー部(段状の部位)で行う(スラスト部材をインロー部に嵌め合わせることで、ハウジングに対するスラスト部材の位置決めを行う。)構成では、ハウジングに対する軸受スリーブの位置決めを専用の治具で行う必要があるので、各部品を最終的に組立み合わせたとき、スラスト軸受隙間が、スラスト面(フランジ部の両端面、軸受スリーブおよびスラスト部材の端面)の面精度の影響を受ける。これに対して、本発明の構成では、ハウジングの内底面にフランジ部の他端面を当接させると共に、フランジ部の一端面に軸受スリーブの一端面を当接させた状態、すなわち第1スラスト軸受部及び第2スラスト軸受部のスラスト軸受隙間がゼロの状態からフランジ部の一端面に軸受スリーブの一端面を当接させた状態で、軸受スリーブをフランジ部と伴に相対移動させて、軸受スリーブのハウジングに対する位置設定するので、スラスト軸受隙間がスラスト面の面精度の影響を受けない。そのため、スラスト軸受隙間を精度良く形成することができ、これにより軸受性能の一層の向上を図ることができる。しかも、スラスト軸受隙間を精度良く形成するために、必要以上に高精度な部品加工や複雑な組立作業を行う必要がないので、動圧軸受装置の製造コスト低減にもなる。
【0016】
上記構成において、軸受スリーブをハウジングに固定する手段として、エポキシ系接着剤等による接着、圧入、レーザビーム溶接(ハウジングの外径側から軸受スリーブの固定部位にレーザビームを照射する。あるいは、軸受スリーブの固定部位に直接レーザビームを照射する。)、高周波パルス接合、加締め等を採用することができる。
【0017】
上記構成において、軸受スリーブの他端面の側に、ハウジングの内部空間をシールするシール手段を設けることができる。このシール手段は、シール部材をハウジングに固定することによって形成することができる。この場合、シール部材の固定手段として、エポキシ系接着剤等による接着、圧入、レーザビーム溶接(ハウジングの外径側からシール部材の固定部位にレーザビームを照射する。あるいは、シール部材の固定部位に直接レーザビームを照射する。)、高周波パルス接合、加締め等を採用することができる。
【0018】
上記構成において、軸受スリーブは焼結金属で形成することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0023】
図1は、この実施形態に係る動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたモータステータ4およびモータロータ5とを備えている。ステータ4はケーシング6の外周に取付けられ、ロータ5はディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ステータ4とロータ5との間の励磁力でロータ5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。
【0024】
図2は、動圧軸受装置1を示している。この動圧軸受装置1は、ハウジング7と、軸受スリーブ8と、軸部材2と、シール部材10とを構成部品して構成される。
【0025】
軸受スリーブ8の内周面8aと軸部材2の軸部2aの外周面2a1との間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸受スリーブ8の下側端面8cと軸部材2のフランジ部2bの上側端面2b1との間に第1スラスト軸受部S1が設けられ、ハウジング7の底部7cの内底面7c1とフランジ部2bの下側端面2b2との間に第2スラスト軸受部S2が設けられる。尚、説明の便宜上、ハウジング7の開口部7aの側を上側、底部7cの側を下側として説明を進める。
【0026】
図4(a)に示すように、ハウジング7は、例えば、マグネシウム等の金属粉末からMIM法でコップ状に形成され、円筒状の側部7bと、底部7cとを一体に備えている。側部7bの上端は開口部7aになっている。また、第2スラスト軸受部S2のスラスト軸受面となる、底部7cの内底面7c1には、例えば図4(b)に示すようなヘリングボーン形状の動圧溝7c2が形成される。この動圧溝7c2は、側部7bおよび底部7cと共にMIM法の金型で成形(成形金型で転写)されたものである。尚、動圧溝の形状として、スパイラル形状や放射溝形状等を採用しても良い。
【0027】
軸部材2は、例えば、ステンレス鋼等の金属材で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。
【0028】
軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成され、接着、圧入、レーザビーム溶接、高周波パルス接合等の適宜の手段により、ハウジング7の内周の所定位置に固定される。軸受スリーブ8の上側端面8bはシール部材10に当接している。
【0029】
この焼結金属で形成された軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3(a)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。尚、動圧溝の形状として、スパイラル形状や軸方向溝形状等を採用しても良い。
【0030】
また、第1スラスト軸受部S1のスラスト軸受面となる、軸受スリーブ8の下側端面8cには、例えば図3(b)に示すようなスパイラル形状の動圧溝8c1が形成される。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。
【0031】
軸部材2の軸部2aは軸受スリーブ8の内周面8aに挿入され、フランジ部2bは軸受スリーブ8の下側端面8cとハウジング7の内底面7c1との間の空間部に収容される。
【0032】
シール部材10は、接着、圧入、レーザビーム溶接、高周波パルス接合等の適宜の手段によりハウジング7の開口部7aに固定され、その内周面10aは、軸部2aの外周面2a1と所定のシール空間を介して対向する。そして、シール部材10で密封されたハウジング7の内部空間に潤滑油が給油される。
【0033】
軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。また、軸受スリーブ8の下側端面8cのスラスト軸受面となる領域はフランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、ハウジング7の内底面7c1のスラスト軸受面となる領域はフランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部2aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2のフランジ部2bが上記スラスト軸受隙間内に形成される潤滑油の油膜によって両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部S1と第2スラスト軸受部S2とが構成される。
【0034】
この実施形態の動圧軸受装置1は、例えば、図5〜図8に示すような態様で組立てる。
【0035】
まず、図5に示すように、軸部材2に軸受スリーブ8を装着し、ハウジング7の内周に挿入する。尚、軸受スリーブ8はハウジング7の内周に圧入しても良い。
【0036】
つぎに、図6に示すように、軸受スリーブ8を軸部材2と伴に下方に推し進めて、フランジ部2bの下側端面2b2をハウジング7の内底面7c1に当接させ、同時に、軸受スリーブ8の下側端面8cをフランジ部2bの上側端面2b1に当接させる。この状態が、スラスト軸受隙間ゼロ(第1スラスト軸受部S1および第2スラスト軸受部S2のスラスト軸受隙間がゼロ)の状態である。尚、軸部材2を先にハウジング7の内周に挿入し、その後、軸受スリーブ8を軸部材2に装着すると共にハウジング7の内周に挿入(又は圧入)して、図6に示す状態を達成しても良い。
【0037】
つぎに、図7に示すように、ハウジング7の開口部7aにシール部材10を挿入(又は圧入)して、軸受スリーブ8の上側端面8bに当接させる。
【0038】
つぎに、図8に示すように、軸部材2を軸受スリーブ8およびシール部材10と伴に、第1スラスト軸受部S1のスラスト軸受隙間(大きさをδ1とする。)と第2スラスト軸受部S2のスラスト軸受隙間(大きさをδ2とする。)の合計量に相当する寸法δ(δ=δ1+δ2)だけ、ハウジング7に対して軸方向(同図では上方)に相対移動させる。そして、軸受スリーブ8およびシール部材10をその位置でハウジング7に固定すると、所定のスラスト軸受隙間δ(δ=δ1+δ2)が形成される。尚、シール部材10は、所定のスラスト軸受隙間δ(δ=δ1+δ2)を形成した後、ハウジング7の開口部7aに挿入(又は圧入)しても良い。
【0039】
上記の方法によれば、動圧軸受装置1の各構成部品を実際に組み合わせてスラスト軸受隙間ゼロの状態を一旦実現し、その状態から、ハウジング7と軸受スリーブ8とを軸方向に所定量相対移動させてスラスト軸受隙間を形成するので、上記の軸方向相対移動量δ(δ=δ1+δ2)を管理するだけで、スラスト面(8c、7c1、2b1、2b2)の面精度、フランジ部2bの軸方向寸法精度等の影響を受けることなく、スラスト軸受隙間を精度良く形成することができる。
【0040】
【発明の効果】
本発明によれば、部品精度の影響を受けることなく、スラスト軸受隙間を精度良くかつ簡易に設定することができる。これにより、部品の加工コストや組立コストを低減することができる
【図面の簡単な説明】
【図1】本発明の実施形態に係る動圧軸受装置を有するスピンドルモータの断面図である。
【図2】本発明の実施形態に係る動圧軸受装置を示す断面図である。
【図3】軸受スリーブの断面図{図3(a)}、下側端面を示す図{図3(b)}である。
【図4】ハウジングの断面図{図4(a)}、内底面の平面図{図4(b)}である。
【図5】図2に示す動圧軸受装置の組立工程を示す断面図である。
【図6】図2に示す動圧軸受装置の組立工程を示す断面図である。
【図7】図2に示す動圧軸受装置の組立工程を示す断面図である。
【図8】図2に示す動圧軸受装置の組立工程を示す断面図である。
【符号の説明】
1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
2b1 上側端面
2b2 下側端面
7 ハウジング
7b 側部
7c 底部
7c1 内底面
8 軸受スリーブ
8a 内周面
8b 上側端面
8c 下側端面
10 シール部材
R1 第1ラジアル軸受部
R2 第2ラジアル軸受部
S1 第1スラスト軸受部
S2 第2スラスト軸受部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic bearing device that supports a rotating member in a non-contact manner by the hydrodynamic action of lubricating oil generated in a bearing gap. This bearing device is a spindle of information equipment such as magnetic disk devices such as HDD and FDD, optical disk devices such as CD-ROM, CD-R / RW and DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. It is suitable for a motor, a polygon scanner motor of a laser beam printer (LBP), or an electric device such as a small motor such as an axial fan.
[0002]
[Prior art]
In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor, and in recent years, as this type of bearing, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied. Or it is actually used.
[0003]
For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk device such as an HDD, a radial bearing portion that supports a shaft member in a non-contact manner in a radial direction and a shaft member is supported in a non-contact manner in a thrust direction. A thrust bearing portion is provided, and a dynamic pressure bearing having a dynamic pressure generating groove (dynamic pressure groove) on the bearing surface is used as these bearing portions. The dynamic pressure groove of the radial bearing portion is formed on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member, and the dynamic pressure groove of the thrust bearing portion uses both ends of the flange portion when a shaft member having a flange portion is used. It is formed on a surface or a surface facing the surface (an end surface of the bearing sleeve, an end surface of a thrust member fixed to the housing, etc.). Usually, the bearing sleeve is fixed at a predetermined position on the inner periphery of the housing, and when the bottom portion of the housing is constituted by a thrust member, an inlay portion (stepped portion) for positioning the thrust member is provided in the housing. There are many cases (the thrust member is positioned with respect to the housing by fitting the thrust member to the inlay portion). Furthermore, in order to prevent the lubricating oil injected into the internal space of the housing from leaking to the outside, a seal member is often provided at the opening of the housing.
[0004]
[Problems to be solved by the invention]
The hydrodynamic bearing device having the above-described configuration is composed of parts such as a housing, a bearing sleeve, a shaft member, a thrust member, and a seal member, and ensures high bearing performance required as the performance of information equipment increases. Therefore, efforts are being made to increase the processing accuracy and assembly accuracy of each part. In particular, the size of the thrust bearing gap includes the axial dimensions of the flange portion of the shaft member, the surface accuracy of both end surfaces, the bearing sleeve that becomes the thrust bearing surface and the surface accuracy of the end surface of the thrust member, the bearing sleeve and the thrust. Because it is affected by the assembly accuracy such as the axial space between the members, it is difficult to manage it to the desired value. For this reason, it is compelling to process parts with higher precision and complex assembly work than necessary. It's real. On the other hand, with the trend toward lower prices of information equipment, the demand for cost reduction for this type of hydrodynamic bearing device has become increasingly severe.
[0007]
An object of the present invention is to provide a method capable of easily and accurately setting a thrust bearing gap in this type of hydrodynamic bearing device.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a cup-shaped housing having side portions and a bottom portion, a bearing sleeve fixed to the inner periphery of the housing, a shaft member having a shaft portion and a flange portion, and an inner portion of the bearing sleeve. A radial bearing portion that is provided between the peripheral surface and the outer peripheral surface of the shaft portion, and that supports the shaft portion in a non-contact manner in the radial direction by the dynamic pressure action of lubricating oil generated in the radial bearing gap, and one end surface of the bearing sleeve and A first thrust bearing portion provided between one end surfaces of the opposing flange portions and supporting the flange portions in a non-contact manner in the thrust direction by a dynamic pressure action of lubricating oil generated in a thrust bearing gap; and an inner bottom surface of a bottom portion of the housing; A second thrust bearing portion provided between the other end surface of the flange portion facing this and supporting the flange portion in the thrust direction in a non-contact manner by the dynamic pressure action of lubricating oil generated in the thrust bearing gap. Dynamic pressure bearing device, a method of manufacturing, is brought into contact with the other end surface of the flange portion on the inner bottom surface of the housing, is brought into contact with one end face of the bearing sleeve on one end surface of the flange portion, one end surface of the flange portion With the one end surface of the bearing sleeve in contact with the bearing sleeve, the bearing sleeve is attached to the housing by a dimension corresponding to the total amount of the thrust bearing clearance of the first thrust bearing portion and the second thrust bearing portion together with the flange portion. A configuration is provided in which the thrust bearing gap between the first thrust bearing portion and the second thrust bearing portion is formed in a predetermined dimension by relatively moving in the axial direction .
[0010]
In the above configuration, the housing can be made of metal or resin. In the former case, the housing can be formed by molding such as injection molding of metal powder such as magnesium, die casting of aluminum alloy or the like, press working of a metal plate (drawing molding of a plate material or pipe material), and the like. In the latter case, the housing can be formed by molding such as resin injection molding.
[0011]
The dynamic pressure groove constituting the second thrust bearing portion may be provided on one of the inner bottom surface of the housing and the other end surface of the flange portion. When the dynamic pressure groove is provided on the inner bottom surface of the housing, the dynamic pressure groove is formed together with the side portion and the bottom portion. It can be formed by molding. This eliminates the need for separate processing of the dynamic pressure grooves, and can reduce processing costs.
[0012]
Here, the above-described metal powder injection molding method is called “metal injection molding” (MIM). This MIM method is generally a molding method in which a metal powder and a resin binder are kneaded and then injected and molded into a mold, followed by degreasing and sintering the molded body from which the binder has been removed to obtain a finished product. (After sintering, post-treatment is performed as necessary.), It has the following features. In other words, (1) small parts with complicated shapes can be formed with near net shapes, (2) mold shapes can be transferred and mass-produced with the same shapes, and (3) molding By determining the shrinkage rate, shrinkage rate during degreasing and sintering, etc., it is possible to produce parts with high dimensional accuracy. (4) Since the mold shape is transferred, the same surface accuracy as the finish accuracy of the mold (Roughness, etc.) can be ensured, and (5) near-net-shape of difficult-to-work materials such as stainless steel can be made.
[0013]
By forming the housing by the above-described MIM method, productivity is increased and surface roughness of the inner bottom surface serving as the thrust bearing surface can be finished with high accuracy, thereby reducing processing costs. Also, by processing the shape of the dynamic pressure groove in the required part of the molding die, the dynamic pressure groove can be formed (transferred) on the inner bottom at the same time as molding, so subsequent dynamic pressure groove processing is unnecessary As a result, the processing cost can be reduced.
[0015]
For example, in a configuration in which a thrust member is provided and its position is set by an inlay portion (stepped portion) provided in the housing (the thrust member is positioned with respect to the housing by fitting the thrust member to the inlay portion). Because the bearing sleeve needs to be positioned with respect to the housing with a dedicated jig, the thrust bearing gaps are the thrust surfaces (the two end surfaces of the flange portion, the bearing sleeve and the thrust member) when the parts are finally assembled. It is affected by the surface accuracy of the edge surface. On the other hand, in the configuration of the present invention, the other end surface of the flange portion is brought into contact with the inner bottom surface of the housing, and the one end surface of the bearing sleeve is brought into contact with one end surface of the flange portion, that is, the first thrust bearing. The bearing sleeve is moved relative to the flange portion in a state where the thrust bearing gap between the first and second thrust bearing portions is zero and the one end surface of the bearing sleeve is in contact with the one end surface of the flange portion. because setting a position relative to the housing of the sleeve, the thrust bearing gap is not affected by the surface accuracy of the thrust face. For this reason, the thrust bearing gap can be formed with high accuracy, thereby further improving the bearing performance. In addition, in order to form the thrust bearing gap with high accuracy, it is not necessary to perform parts processing or complicated assembly work with higher precision than necessary, so that the manufacturing cost of the hydrodynamic bearing device can be reduced.
[0016]
In the above configuration, as means for fixing the bearing sleeve to the housing, bonding with an epoxy adhesive, press-fitting, laser beam welding (laser beam is irradiated to the fixing portion of the bearing sleeve from the outer diameter side of the housing, or the bearing sleeve. The laser beam is directly irradiated to the fixed part of the substrate.), High-frequency pulse bonding, caulking, etc. can be employed.
[0017]
In the above configuration, sealing means for sealing the internal space of the housing can be provided on the other end face side of the bearing sleeve. This sealing means can be formed by fixing the sealing member to the housing. In this case, as a means for fixing the seal member, bonding with an epoxy adhesive or the like, press-fitting, laser beam welding (irradiating a laser beam to a fixing portion of the sealing member from the outer diameter side of the housing. Direct laser beam irradiation), high-frequency pulse bonding, caulking, etc. can be employed.
[0018]
In the above configuration, the bearing sleeve can be formed of sintered metal.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0023]
FIG. 1 shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to this embodiment. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radial direction, for example. The motor stator 4 and the motor rotor 5 are provided to face each other through the gap. The stator 4 is attached to the outer periphery of the casing 6, and the rotor 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the casing 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor 5 is rotated by the exciting force between the stator 4 and the rotor 5, whereby the disk hub 3 and the shaft member 2 are rotated together.
[0024]
FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 is configured by constituting a housing 7, a bearing sleeve 8, a shaft member 2, and a seal member 10.
[0025]
Between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2, the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. A first thrust bearing portion S1 is provided between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b of the shaft member 2, and the inner bottom surface 7c1 and the flange portion 2b of the bottom portion 7c of the housing 7 are provided. A second thrust bearing portion S2 is provided between the lower end surface 2b2. For convenience of explanation, the description will proceed with the opening 7a side of the housing 7 as the upper side and the bottom 7c side as the lower side.
[0026]
As shown in FIG. 4A, the housing 7 is formed in a cup shape by a MIM method from, for example, metal powder such as magnesium, and integrally includes a cylindrical side portion 7b and a bottom portion 7c. The upper end of the side portion 7b is an opening 7a. Further, for example, a herringbone-shaped dynamic pressure groove 7c2 as shown in FIG. 4B is formed on the inner bottom surface 7c1 of the bottom portion 7c, which is the thrust bearing surface of the second thrust bearing portion S2. The dynamic pressure groove 7c2 is formed with the MIM method mold (transferred with the mold) together with the side portion 7b and the bottom portion 7c. In addition, you may employ | adopt spiral shape, a radiation groove shape, etc. as a shape of a dynamic pressure groove.
[0027]
The shaft member 2 is formed of a metal material such as stainless steel, for example, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a.
[0028]
The bearing sleeve 8 is formed, for example, in a cylindrical shape with a porous body made of sintered metal, particularly a sintered body made of sintered metal mainly composed of copper, and appropriately used for bonding, press-fitting, laser beam welding, high-frequency pulse bonding, and the like. By this means, the housing 7 is fixed at a predetermined position on the inner periphery. The upper end surface 8 b of the bearing sleeve 8 is in contact with the seal member 10.
[0029]
On the inner peripheral surface 8a of the bearing sleeve 8 formed of this sintered metal, two upper and lower regions serving as radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart in the axial direction. In these two regions, for example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3A are formed. In addition, as the shape of the dynamic pressure groove, a spiral shape, an axial groove shape, or the like may be adopted.
[0030]
In addition, a spiral-shaped dynamic pressure groove 8c1 as shown in FIG. 3B, for example, is formed on the lower end surface 8c of the bearing sleeve 8 serving as the thrust bearing surface of the first thrust bearing portion S1. In addition, as a shape of the dynamic pressure groove, a herringbone shape, a radiation groove shape, or the like may be adopted.
[0031]
The shaft portion 2 a of the shaft member 2 is inserted into the inner peripheral surface 8 a of the bearing sleeve 8, and the flange portion 2 b is accommodated in a space portion between the lower end surface 8 c of the bearing sleeve 8 and the inner bottom surface 7 c 1 of the housing 7.
[0032]
The seal member 10 is fixed to the opening 7a of the housing 7 by an appropriate means such as adhesion, press-fitting, laser beam welding, and high-frequency pulse bonding, and the inner peripheral surface 10a thereof has a predetermined seal with the outer peripheral surface 2a1 of the shaft portion 2a. Opposing through space. Then, lubricating oil is supplied to the internal space of the housing 7 that is sealed with the seal member 10.
[0033]
When the shaft member 2 rotates, the regions (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 are opposed to the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gap. Further, the region serving as the thrust bearing surface of the lower end surface 8c of the bearing sleeve 8 faces the upper end surface 2b1 of the flange portion 2b via the thrust bearing gap, and the region serving as the thrust bearing surface of the inner bottom surface 7c1 of the housing 7 is the flange. It faces the lower end surface 2b2 of the portion 2b via a thrust bearing gap. As the shaft member 2 rotates, the dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is rotated in the radial direction by the lubricating oil film formed in the radial bearing gap. It is supported non-contact freely. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the flange portion 2b of the shaft member 2 is rotatably supported in both thrust directions by the oil film of the lubricating oil formed in the thrust bearing gap. . Thereby, the first thrust bearing portion S1 and the second thrust bearing portion S2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are configured.
[0034]
The hydrodynamic bearing device 1 of this embodiment is assembled in a manner as shown in FIGS.
[0035]
First, as shown in FIG. 5, the bearing sleeve 8 is mounted on the shaft member 2 and inserted into the inner periphery of the housing 7. The bearing sleeve 8 may be press-fitted into the inner periphery of the housing 7.
[0036]
Next, as shown in FIG. 6, the bearing sleeve 8 is pushed downward together with the shaft member 2, and the lower end surface 2b2 of the flange portion 2b is brought into contact with the inner bottom surface 7c1 of the housing 7. At the same time, the bearing sleeve 8 The lower end surface 8c is brought into contact with the upper end surface 2b1 of the flange portion 2b. This state is a state in which the thrust bearing gap is zero (the thrust bearing gap between the first thrust bearing portion S1 and the second thrust bearing portion S2 is zero). The shaft member 2 is first inserted into the inner periphery of the housing 7, and then the bearing sleeve 8 is mounted on the shaft member 2 and inserted (or press-fitted) into the inner periphery of the housing 7, and the state shown in FIG. May be achieved.
[0037]
Next, as shown in FIG. 7, the seal member 10 is inserted (or press-fitted) into the opening 7 a of the housing 7 and brought into contact with the upper end surface 8 b of the bearing sleeve 8.
[0038]
Next, as shown in FIG. 8, the shaft member 2 together with the bearing sleeve 8 and the seal member 10, the thrust bearing gap (size is δ1) of the first thrust bearing portion S 1 and the second thrust bearing portion. The shaft is moved relative to the housing 7 in the axial direction (upward in the figure) by a dimension δ (δ = δ1 + δ2) corresponding to the total amount of the thrust bearing gap (size is δ2) in S2. When the bearing sleeve 8 and the seal member 10 are fixed to the housing 7 at that position, a predetermined thrust bearing gap δ (δ = δ1 + δ2) is formed. The seal member 10 may be inserted (or press-fitted) into the opening 7a of the housing 7 after forming a predetermined thrust bearing gap δ (δ = δ1 + δ2).
[0039]
According to the above method, the components of the hydrodynamic bearing device 1 are actually combined to temporarily realize a state where the thrust bearing clearance is zero, and from this state, the housing 7 and the bearing sleeve 8 are relatively moved in the axial direction by a predetermined amount. Since the thrust bearing gap is formed by moving, the surface accuracy of the thrust surface (8c, 7c1, 2b1, 2b2), the shaft of the flange portion 2b can be managed only by managing the axial relative movement amount δ (δ = δ1 + δ2). The thrust bearing gap can be formed with high accuracy without being affected by the dimensional accuracy.
[0040]
【The invention's effect】
According to the present invention , the thrust bearing gap can be accurately and easily set without being affected by the component accuracy. Thereby, the processing cost and assembly cost of components can be reduced .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a spindle motor having a hydrodynamic bearing device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a fluid dynamic bearing device according to an embodiment of the present invention.
3 is a cross-sectional view of the bearing sleeve {FIG. 3 (a)} and a view of the lower end face {FIG. 3 (b)}.
4 is a cross-sectional view {FIG. 4 (a)} of a housing and a plan view {FIG. 4 (b)} of an inner bottom surface.
5 is a cross-sectional view showing an assembly process of the fluid dynamic bearing device shown in FIG. 2;
6 is a cross-sectional view showing an assembly process of the hydrodynamic bearing device shown in FIG. 2;
7 is a cross-sectional view showing an assembly process of the hydrodynamic bearing device shown in FIG. 2;
8 is a cross-sectional view showing an assembly process of the hydrodynamic bearing device shown in FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 2b1 Upper end surface 2b2 Lower end surface 7 Housing 7b Side portion 7c Bottom portion 7c1 Inner bottom surface 8 Bearing sleeve 8a Inner peripheral surface 8b Upper end surface 8c Lower end surface 10 Seal member R1 1st 1 radial bearing portion R2 second radial bearing portion S1 first thrust bearing portion S2 second thrust bearing portion

Claims (1)

側部および底部を有するコップ状のハウジングと、該ハウジングの内周に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、前記軸受スリーブの内周面と前記軸部の外周面との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で前記軸部をラジアル方向に非接触支持するラジアル軸受部と、前記軸受スリーブの一端面とこれに対向する前記フランジ部の一端面との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用で前記フランジ部をスラスト方向に非接触支持する第1スラスト軸受部と、前記ハウジングの底部の内底面とこれに対向する前記フランジ部の他端面との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用で前記フランジ部をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置、の製造方法であって、
前記ハウジングの内底面に前記フランジ部の他端面を当接させると共に、前記フランジ部の一端面に前記軸受スリーブの一端面を当接させ、
前記フランジ部の一端面に前記軸受スリーブの一端面を当接させた状態で、前記軸受スリーブを、前記フランジ部と伴に、前記第1スラスト軸受部及び第2スラスト軸受部のスラスト軸受隙間の合計量に相当する寸法だけ、前記ハウジングに対して軸方向に相対移動させて、前記第1スラスト軸受部及び第2スラスト軸受部のスラスト軸受隙間を所定寸法に形成することを特徴とする動圧軸受装置の製造方法。
A cup-shaped housing having side portions and a bottom portion, a bearing sleeve fixed to the inner periphery of the housing, a shaft member having a shaft portion and a flange portion, an inner peripheral surface of the bearing sleeve, and an outer peripheral surface of the shaft portion A radial bearing portion that supports the shaft portion in a non-contact manner in the radial direction by the dynamic pressure action of lubricating oil generated in a radial bearing gap, and one end surface of the bearing sleeve and the flange portion facing the radial bearing portion. A first thrust bearing portion provided between the first end surface and supporting the flange portion in a thrust non-contact manner by a dynamic pressure action of lubricating oil generated in a thrust bearing gap, and an inner bottom surface of the bottom portion of the housing and opposite thereto A second thrust bearing portion provided between the other end surface of the flange portion and supporting the flange portion in the thrust direction in a non-contact manner by a dynamic pressure action of lubricating oil generated in a thrust bearing gap. Dynamic bearing device having a method of manufacturing,
While contacting the other end surface of the flange portion to the inner bottom surface of the housing, contact one end surface of the bearing sleeve to one end surface of the flange portion,
In a state where one end surface of the bearing sleeve is in contact with one end surface of the flange portion, the bearing sleeve, together with the flange portion, has a thrust bearing gap between the first thrust bearing portion and the second thrust bearing portion. The dynamic pressure is characterized in that a thrust bearing gap between the first thrust bearing portion and the second thrust bearing portion is formed in a predetermined dimension by moving relative to the housing in the axial direction by a dimension corresponding to the total amount. Manufacturing method of bearing device.
JP2002042624A 2002-02-20 2002-02-20 Hydrodynamic bearing device and manufacturing method thereof Expired - Lifetime JP3981564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042624A JP3981564B2 (en) 2002-02-20 2002-02-20 Hydrodynamic bearing device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002042624A JP3981564B2 (en) 2002-02-20 2002-02-20 Hydrodynamic bearing device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003239974A JP2003239974A (en) 2003-08-27
JP3981564B2 true JP3981564B2 (en) 2007-09-26

Family

ID=27782653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042624A Expired - Lifetime JP3981564B2 (en) 2002-02-20 2002-02-20 Hydrodynamic bearing device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3981564B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090653A (en) 2003-09-18 2005-04-07 Ntn Corp Fluid bearing device
JP4446727B2 (en) 2003-12-17 2010-04-07 Ntn株式会社 Hydrodynamic bearing device
JP2005321089A (en) * 2004-04-09 2005-11-17 Ntn Corp Dynamic pressure bearing device
KR101213552B1 (en) 2004-04-09 2012-12-18 엔티엔 가부시키가이샤 Dynamic pressure bearing device
JP2006052782A (en) * 2004-08-11 2006-02-23 Ntn Corp Sliding bearing unit built in rfid tag
JP4672379B2 (en) * 2005-01-17 2011-04-20 Ntn株式会社 Hydrodynamic bearing device
JP4588561B2 (en) * 2005-07-06 2010-12-01 Ntn株式会社 Hydrodynamic bearing device
US8403565B2 (en) 2006-03-20 2013-03-26 Ntn Corporation Fluid dynamic bearing device
JP5318344B2 (en) 2006-11-30 2013-10-16 Ntn株式会社 Hydrodynamic bearing device and manufacturing method thereof
JP5207657B2 (en) * 2007-04-23 2013-06-12 Ntn株式会社 Method for manufacturing hydrodynamic bearing device
JP4941156B2 (en) 2007-07-30 2012-05-30 日本電産株式会社 Fluid dynamic bearing device, spindle motor, and disk drive device
JP5133131B2 (en) * 2008-05-21 2013-01-30 Ntn株式会社 Hydrodynamic bearing device
JP5133156B2 (en) * 2008-07-08 2013-01-30 Ntn株式会社 Fluid dynamic bearing device
JP5306747B2 (en) 2008-09-09 2013-10-02 Ntn株式会社 Hydrodynamic bearing device
JP5172576B2 (en) * 2008-09-30 2013-03-27 Ntn株式会社 Fluid dynamic bearing device and manufacturing method thereof
CN102421554B (en) * 2009-05-04 2015-12-16 Gkn烧结金属股份有限公司 Bonding for powder metal component
JP6502068B2 (en) * 2014-11-20 2019-04-17 Ntn株式会社 Method of manufacturing fluid dynamic bearing device

Also Published As

Publication number Publication date
JP2003239974A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP4216509B2 (en) Method for manufacturing hydrodynamic bearing device
JP3981564B2 (en) Hydrodynamic bearing device and manufacturing method thereof
US6390681B1 (en) Dynamic pressure bearing-unit
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
KR101098791B1 (en) Dynamic pressure bearing device and motor using the same
KR101213552B1 (en) Dynamic pressure bearing device
US8113715B2 (en) Fluid dynamic bearing device
JP3893021B2 (en) Hydrodynamic bearing unit
US8356938B2 (en) Fluid dynamic bearing apparatus
WO2004029471A1 (en) Hydrodynamic bearing device
JP3774080B2 (en) Hydrodynamic bearing unit
JP2008267531A (en) Method for manufacturing dynamic pressure bearing device
JP4226559B2 (en) Method for manufacturing hydrodynamic bearing device
JP2003314538A (en) Manufacturing method for fluid dynamic bearing unit
JP2004028165A (en) Fluid bearing device
JP2008190711A (en) Manufacturing process for hydrodynamic bearing unit
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2008144847A (en) Dynamic pressure bearing device
JP2005130699A (en) Spindle motor of disk unit
JP2004190786A (en) Dynamic-pressure bearing device and manufacturing method therefor
JP2002276649A (en) Dynamic pressure type bearing unit
JP2000220633A (en) Dynamic pressure type bearing device and its manufacture
JP2005143295A (en) Spindle motor for disk unit
JP4554324B2 (en) Hydrodynamic bearing device
JP2003314533A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3981564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term