JP3980853B2 - Vehicle traveling device - Google Patents

Vehicle traveling device Download PDF

Info

Publication number
JP3980853B2
JP3980853B2 JP2001290446A JP2001290446A JP3980853B2 JP 3980853 B2 JP3980853 B2 JP 3980853B2 JP 2001290446 A JP2001290446 A JP 2001290446A JP 2001290446 A JP2001290446 A JP 2001290446A JP 3980853 B2 JP3980853 B2 JP 3980853B2
Authority
JP
Japan
Prior art keywords
hydraulic
motor
drive
pressure
capacity control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001290446A
Other languages
Japanese (ja)
Other versions
JP2003097703A (en
Inventor
健吾 粂内
俊平 奥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeuchi Manufacturing Co Ltd
Original Assignee
Takeuchi Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeuchi Manufacturing Co Ltd filed Critical Takeuchi Manufacturing Co Ltd
Priority to JP2001290446A priority Critical patent/JP3980853B2/en
Publication of JP2003097703A publication Critical patent/JP2003097703A/en
Application granted granted Critical
Publication of JP3980853B2 publication Critical patent/JP3980853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Control Of Fluid Gearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、それぞれ油圧モータにより走行駆動される左右走行機構(例えば、クローラ走行機構もしくは車輪走行機構)を有してなる車両の走行装置に関し、さらに詳しくは可変容量型の油圧モータを用いて自動的な変速を行うように構成された走行装置に関する。
【0002】
【従来の技術】
このように左右のクローラもしくは車輪(なお、これらを総称してクローラ等と称する)をそれぞれ油圧モータにより走行駆動するように構成された車両は従来から知られている。この車両はエンジンと、このエンジンにより駆動される油圧ポンプとを備え、油圧ポンプから左右の油圧モータに駆動油圧を供給し、これら左右油圧モータによりそれぞれ左右のクローラ等を回転駆動して車両を走行させるように構成される。このときの走行速度制御は、油圧ポンプから油圧モータに供給される駆動油量を制御して行われ、例えば、可変容量型の油圧ポンプを用いて油圧モータへの供給油量を可変制御して走行速度が制御される。
【0003】
このような構成の車両において、可変容量型の油圧モータを用いるとともにこの油圧モータの可変容量制御を走行駆動負荷に応じて行って自動変速を行うことが知られている。例えば、大小二段の容量制御が可能な油圧モータを用い、走行駆動負荷が小さいときには油圧モータを小容量側に設定して高速走行を行わせ、走行駆動負荷が大きいときには油圧モータを大容量側に設定して低速走行を行わせるような自動変速機能を有した走行装置がある。このような走行駆動負荷に応じた自動変速制御は、走行駆動負荷を示す油圧モータの駆動油圧を制御パラメータとして用い、油圧モータの駆動油圧が低い領域では小容量側に設定して高速走行を行わせ、油圧モータの駆動油圧が高くなる領域で大容量側に設定して低速走行を行わせるようになっている。
【0004】
なお、上記のように左右のクローラ等を左右油圧モータでそれぞれ独立して駆動する構成の走行装置では、左右いずれか一方のクローラ等を駆動させるとともに他方のクローラ等を停止させてピボットターンを行わせたり、左右のクローラ等を逆方向に駆動させてスピンターンを行わせたりする。
【0005】
【発明が解決しようとする課題】
ところで、上記のように走行駆動負荷に応じて自動変速を行わせる走行装置において、例えば、左右の油圧モータを小容量側に設定して高速走行を行わせているような状態においてピボットターンを行った場合、静止保持されたクローラ等の駆動負荷は小さいため小容量側に設定されたままであるが、これと反対側のクローラ等は駆動負荷が大きくなって大容量側に切り換えられて低速走行状態となる。この状態でピボットターンを行わせると、駆動側のクローラ等を駆動する油圧モータは大容量であるため大きな駆動力でクローラ等を駆動するのに対し、静止保持側のクローラ等を静止保持する油圧モータは小容量であるため静止保持力が小さく、駆動側クローラ等の駆動に引きずられて静止保持側のクローラ等が走行側に動き、ピボットターンをうまく行うことができず、旋回半径が大きくなるという問題がある。
【0006】
本発明はこのような問題に鑑みたもので、上記のような自動変速を行わせる走行装置において、ピボットターンを正確に行うことができるようにすることを目的とする。
【0007】
【課題を解決するための手段】
このような目的達成のため、本発明に係る車両の走行装置は、左油圧モータ(21)により走行駆動される左走行機構(5L)と、右油圧モータ(26)により走行駆動される右走行機構(5R)と、前記左油圧モータに駆動油圧を供給する左油圧ポンプ(11)と、前記右油圧モータに駆動油圧を供給する右油圧ポンプ(16)と、走行制御を行うため外部操作される左および右操作手段(32,37)と、前記左操作手段(32)の操作に応じて前記左油圧ポンプ(11)から前記左油圧モータ(21)への駆動油圧の供給制御を行う左駆動制御手段(31)と、前記右操作手段(37)の操作に応じて前記右油圧ポンプ(16)から前記右油圧モータ(26)への駆動油圧の供給制御を行う右駆動制御手段(36)とを備えて構成される。そして、前記左および右油圧モータが可変容量型の油圧モータからなり、前記左および右油圧モータの容量がその駆動油圧のみに基づいて制御され、前記左油圧モータの駆動油圧が大きくなるに応じて前記左油圧モータの容量を大きくし、前記右油圧モータの駆動油圧が大きくなるに応じて前記右油圧モータの容量を大きくする可変容量制御を行う左および右モータ容量制御手段(22,23,27,28)を備え、前記左および右操作手段の一方が前記左および右油圧ポンプの一方から対応する前記左及び右油圧モータの一方への油圧供給を停止させるように操作され、前記左および右操作手段の他方が前記左および右油圧ポンプの他方から前記左及び右油圧モータの他方への油圧供給を行わせてこれを駆動させるように操作されたときには、前記左および右モータ容量制御手段による前記駆動油圧のみに基づく前記左および右モータの容量制御を行わず、これに代えて前記左および右モータ容量制御手段は、前記左および右油圧モータの駆動油圧の如何に拘わらず前記左および右油圧モータの容量を大きくさせる可変容量制御を行う。
【0008】
このような構成の車両の走行装置によれば、左もしくは右操作手段を操作するとこの操作に応じて左および右駆動制御手段により左および右油圧モータへの作動油供給が制御され、左および右油圧モータの回転が制御されて、車両の走行制御が行われる。このとき、左および右モータ容量制御手段が左および右油圧モータの駆動油圧に応じて左および右油圧モータの可変容量制御を行い、自動変速制御が行われる。但し、左および右操作手段により左および右油圧モータの一方を駆動させながら他方を静止保持させる操作、すなわちピボットターンを行わせる操作が行われたときには、左および右モータ容量制御手段は左および右油圧モータの駆動油圧の如何に拘わらず左および右油圧モータの容量を大きくする制御を行う。このため、ピボットターン時には左および右油圧モータがともに容量が大きくなって低速走行側に設定され、静止保持側の走行機構を確実に静止保持して正確なピボットターンを行うことができる。
【0009】
なお、上記走行装置に左および右操作手段の操作に応じて左および右モータ容量制御手段に容量制御用の信号油圧を送る信号圧供給制御バルブ(51)を備え、左および右操作手段により左および右油圧モータの一方を駆動して他方を静止保持させる操作が行われたときに、信号圧供給制御バルブは左および右油圧モータの駆動油圧の如何に拘わらず左および右油圧モータの容量を大きくさせる信号油圧を左および右モータ容量制御手段に送るように構成しても良い。
【0010】
さらに、前記左および右モータ容量制御手段が、モータ容量制御油圧を受けて前記左および右油圧モータの容量を制御する左および右モータ容量制御アクチュエータ(22,27)と、前記左および右モータ容量制御アクチュエータに前記モータ容量制御油圧を作用させる制御を行う左および右モータ容量制御バルブ(23,28)とから構成され、前記左および右モータ容量制御バルブが前記信号圧供給制御バルブからの前記信号油圧を受けて作動制御が行われ、前記左および右操作手段により前記左および右油圧モータの一方を駆動して他方を静止保持させる操作が行われたときに前記信号圧供給制御バルブから前記左および右モータ容量制御バルブに所定の信号油圧が送られ、前記所定の信号油圧を受けた前記左および右モータ容量制御バルブは前記左および右モータ容量制御アクチュエータにより前記左および右油圧モータの容量を大きくさせるように前記モータ容量制御油圧を作用させるように構成しても良い。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態について説明する。本発明に係る走行装置を有した運搬車両1を図2に示しており、この運搬車両1は運転キャビン3を有した車体2の左右にクローラ式走行機構5L,5Rを有して構成されている。車体2の上には荷台4が設けられており、荷台4に荷物を搭載して走行し、荷物の運搬を行う。左右のクローラ式走行機構5L,5Rは左右対称に構成されており、それぞれ、駆動スプロケット7L,7R、アイドラー8L,8Rおよびこれらスプロケット間に架けられたゴムクローラ6L,6Rから構成され、駆動スプロケット7L,7Rを回転駆動して走行する。
【0012】
これら駆動スプロケット7L,7Rはそれぞれ左右の油圧モータ21,26により駆動されるようになっており、これら左右の油圧モータ21,26に駆動用油圧を供給する制御を行う走行制御装置について図1の油圧回路を参照して説明する。
【0013】
運搬車両1には動力源としてのエンジンEが設けられており、このエンジンEにより回転駆動される左右油圧ポンプ11,16、パイロットポンプ41およびチャージポンプ42が設けられている。左右油圧ポンプ11,16は容量可変型の油圧ポンプ(例えば、可変斜板ポンプ)から構成されており、左ポンプ容量制御装置12a,12bおよび右ポンプ容量制御装置17a,17bが設けられている。そして、左ポンプ容量制御装置12a,12bに信号油路81,82を介して左ポンプ容量制御信号油圧を供給する制御を行う左走行制御バルブ31と、右ポンプ容量制御装置17a,17bに信号油路83,84を介して右ポンプ容量制御信号油圧を供給する制御を行う右走行制御バルブ36とを備える。また、運転キャビン3内に設けられた左右走行操作レバー32,37により左右走行制御バルブ31,36の作動が制御されるようになっている。
【0014】
左油圧ポンプ11は油路70,72を介して左油圧モータ21に繋がって油圧閉回路が構成されており、左油圧ポンプ11からの供給油圧により左油圧モータ21が回転駆動される。同様に、右油圧ポンプ16は油路75,77を介して右油圧モータ26に繋がって油圧閉回路が構成されており、右油圧ポンプ16からの供給油圧により右油圧モータ26が回転駆動される。ここで左右走行操作レバー32,37は中立位置に対して前進側および後進側に傾動操作されるようになっており、前進側に操作されたときには左右走行制御バルブ31,36から信号油路81,83を介して信号油圧がポンプ容量制御装置12a,17aに信号油圧を送って左右油圧ポンプ11,16から油路70,75に作動油を吐出させる。この結果、左右の油圧モータ21,26は前進側に回転駆動される。一方、左右走行操作レバー32,37が後進側に操作されたときには、左右走行制御バルブ31,36から信号油路82,84を介して信号油圧がポンプ容量制御装置12b,17bに信号油圧を送って左右油圧ポンプ11,16から油路72,77に作動油を吐出させる。この結果、左右の油圧モータ21,26は後進側に回転駆動される。
【0015】
このことから分かるように、左右の走行操作レバー32,37を前進側に傾動操作すれば左右の油圧モータ21,26をともに前進方向に回転駆動させて運搬車両1を前進走行させ、後進側に傾動操作すれば左右の油圧モータ21,26を後進方向に回転駆動させて運搬車両1を後進走行させる。このとき左右の走行レバー32,37の傾動角を相違させることにより、左右の油圧モータ21,26の回転速度を相違させて旋回走行させることもできる。また、左右の走行操作レバー32,37の一方を傾動操作させるとともに他方を中立位置で保持すれば、左右の油圧モータ21,26のいずれか一方を駆動させるとともに他方を静止保持して運搬車両1をピボットターンさせることができる。さらに、左右の走行操作レバー32,37の一方を前進側に傾動させるとともに他方を後進側に傾動させると、運搬車両1をスピンターンさせることができる。
【0016】
本発明に係る運搬車両1においては、左右の油圧モータ21,26の容量を大小二段階に切り換えることができるようになっており、これにより低速および高速走行の二段階の変速を行うようになっている。このため、左右の油圧モータ21,26には容量を切り換える左右容量制御傾転ピストン(容量制御アクチュエータ)22,27が設けられている。具体的には、左右油圧モータ21,26が斜板モータから構成され、左右容量制御傾転ピストン22,27により斜板角を大小二段に切換可能となっている。これら左右容量制御傾転ピストン22,27の作動制御のため、左右容量制御バルブ(モータ容量制御バルブ)23,28と、左右シャトルバルブ24,29とが設けられている。
【0017】
左容量制御バルブ23は、左容量制御傾転ピストン22をドレンに繋げる低速位置と、左油圧ポンプ11に繋がる油路70,72のうちの高圧側の油路を左シャトルバルブ24により選択して左容量制御傾転ピストン22に繋げる高速位置とに切り換えられるバルブである。この左容量制御バルブ23は、左シャトルバルブ24により選択された油路70,72のうちの高圧側油圧(すなわち、左油圧モータ21の駆動油圧)と、油路61から作用する油圧とのバランスに応じて低速もしくは高速位置に切り換えられる。また、右容量制御バルブ28は、右容量制御傾転ピストン27をドレンに繋げる低速位置と、右油圧ポンプ16に繋がる油路75,77のうちの高圧側の油路を右シャトルバルブ29により選択して右容量制御傾転ピストン27に繋げる高速位置とに切り換えられるバルブである。この右容量制御バルブ28は、右シャトルバルブ29により選択された油路75,77のうちの高圧側油圧(すなわち、右油圧モータ26の駆動油圧)と、油路61から作用する油圧とのバランスに応じて低速もしくは高速位置に切り換えられる。
【0018】
この油路61から作用する油圧について以下に説明する。油路61は変速制御バルブ51を介して油路60に繋がる。油路60はパイロットポンプ41からの吐出油を受けて調圧バルブ45により調圧された変速制御油圧が供給される。変速制御バルブ51は、油路61をドレン側に繋げる第1位置と、油路61を油路60に繋げる第2位置とに切換作動される。この切換作動のため、変速制御バルブ51にはソレノイド52とこれに対向するバネ53とが設けられており、ソレノイド52が非通電ではバネ53により第1位置に位置し、ソレノイド52が通電されたときに第2位置に位置する。
【0019】
このソレノイド52へバッテリBからの通電を行うライン55に、第1〜第4スイッチ33a,33b,38a,38bが設けられている。このとき、第1および第2スイッチ33a,33bが並列に繋がれるとともに第3および第4スイッチ38a,38bが並列に繋がれており、これらが直列接続されている。また、これら第1〜第4スイッチ33a,33b,38a,38bはそれぞれ左右走行制御バルブ31,36に繋がる信号油路81〜84の油圧を受けてオン作動される。
【0020】
このため、左右走行操作レバー32,37がともに前進側に傾動操作されると信号油路81,83に信号油圧が送られて第1および第3スイッチ33a,38aがオンとなり、バッテリBからの電流がライン55を通ってソレノイド52に流れて励磁され、変速制御バルブ51が第2位置に位置される。この結果、油路60から油路61に調圧バルブ45により調圧設定された変速制御油圧が供給され、この変速制御油圧が左右容量制御バルブ23,28を高速位置に移動させるように作用する。但し、上述したように、左右容量制御バルブ23,28には左右油圧モータ21,26の駆動油圧が左右容量制御バルブ23,28を低速位置に移動するように作用している。このため、左右油圧モータ21,26の駆動油圧が高圧のとき(走行駆動負荷が大きいとき)には左右容量制御バルブ23,28が低速位置に移動されて左右油圧モータ21,26が低速側(大容量側)となり、左右油圧モータ21,26の駆動油圧が低圧のとき(走行駆動負荷が小さいとき)には左右容量制御バルブ23,28が高速位置に移動されて左右油圧モータ21,26が高速側(小容量側)となり、走行駆動負荷に応じて自動変速がなされる。なお、左右走行操作レバー32,37がともに後進側に傾動操作された場合は、上記と同様の作動がなされるため、その説明は省略する。
【0021】
次に、ピボットターン操作について、左操作レバー32が前進側に傾動操作され、右操作レバー37が中立位置のまま保持された場合を例にして説明する。この場合には、第1スイッチ33aはオンとなるが、第2〜第4スイッチ33b,38a,38bが全てオフであるためソレノイド52は非通電となり、ソレノイド52が第1位置に位置し、油路61はドレンに繋がり、油路61から左右容量制御バルブ23,28に作用する油圧は零となる(零油圧となる変速制御油圧が作用する)。これにより、左右容量制御バルブ23,28は低速位置に移動され、左右油圧モータ21,26はともに低速側(大容量側)となり、この状態でピボットターンがなされる。このように本実施形態の運搬車両1では、ピボットターン操作が行われたときには、左右油圧モータ21,26は必ず低速側(大容量側)に切り換えられ、正確なピボットターンが行われる。
【0022】
なお、スピンターンのときには、第1および第2スイッチ33a,33bの一方がオンとなり、第3および第4スイッチ38a,38bの一方がオンとなるため、バッテリBからの電流がライン55を通ってソレノイド52に流れて励磁され、変速制御バルブ51が第2位置に位置される。この結果、油路60から油路61に調圧バルブ45により調圧設定された変速制御油圧が供給され、この変速制御油圧が左右容量制御バルブ23,28を高速位置に移動させるように作用し、これと左右油圧モータ21,26の走行駆動油圧とのバランスに基づいて左右容量制御バルブ23,28の位置が設定される。但し、一般的にスピンターンのときには走行駆動油圧が大きく、左右容量制御バルブ23,28は低速側(大容量側)に切り換えられた状態でスピンターンが行われる。
【0023】
なお、エンジンEにより駆動されるチャージポンプ42からの吐出油は、オイルフィルタ43により濾過された後、調圧バルブ44により調圧された油圧を左右走行制御バルブ31,36に供給し、且つ左右油圧ポンプ11,16に作動油を供給する。
【0024】
【発明の効果】
以上説明したように、本発明によれば、操作手段を操作するとこの操作に応じて駆動制御手段により左右油圧モータへの作動油供給が制御され、油圧モータの回転が制御されて、車両の走行制御が行われ、このとき、モータ容量制御手段が左右の油圧モータの駆動油圧に応じて左右油圧モータの可変容量制御を行い、自動変速制御が行われるが、操作手段により左および右油圧モータの一方を駆動させながら他方を静止保持させる操作、すなわちピボットターンを行わせる操作が行われたときには、モータ容量制御手段は左および右油圧モータの容量を大きくする制御を行う。このため、ピボットターン時には左右油圧モータがともに容量が大きくなって低速走行側に設定され、静止保持側の走行機構を確実に静止保持して正確なピボットターンを行うことができる。
【図面の簡単な説明】
【図1】本発明に係る走行装置の構成を示す油圧回路図である。
【図2】上記走行装置を備えた運搬車両の側面図である。
【符号の説明】
1 運搬車両
5L,5R クローラ式走行機構
11,16 油圧ポンプ
12a,12b,17a,17b ポンプ容量制御装置
21,26 油圧モータ
22,27 容量制御傾転ピストン
23,28 容量制御バルブ
31,32 走行制御バルブ
32,37 走行操作レバー
33a,33b,38a,38b 第1〜第4スイッチ
51 変速制御バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle traveling apparatus having a left and right traveling mechanism (for example, a crawler traveling mechanism or a wheel traveling mechanism) driven and driven by a hydraulic motor, and more particularly, automatically using a variable displacement hydraulic motor. The present invention relates to a traveling device configured to perform a typical speed change.
[0002]
[Prior art]
Vehicles configured to drive the left and right crawlers or wheels (collectively referred to collectively as crawlers or the like) by hydraulic motors are conventionally known. The vehicle includes an engine and a hydraulic pump driven by the engine, and supplies driving hydraulic pressure from the hydraulic pump to the left and right hydraulic motors. The left and right hydraulic motors drive the left and right crawlers to rotate the vehicle. Configured to let The traveling speed control at this time is performed by controlling the amount of driving oil supplied from the hydraulic pump to the hydraulic motor. For example, the amount of oil supplied to the hydraulic motor is variably controlled using a variable displacement hydraulic pump. Travel speed is controlled.
[0003]
In a vehicle having such a configuration, it is known that a variable displacement hydraulic motor is used and variable displacement control of the hydraulic motor is performed according to a travel drive load to perform automatic shift. For example, a hydraulic motor capable of large and small two-stage capacity control is used. When the travel drive load is small, the hydraulic motor is set to the small capacity side for high speed travel, and when the travel drive load is large, the hydraulic motor is There is a traveling device having an automatic transmission function that allows a low-speed traveling to be performed. In such automatic shift control according to the travel drive load, the drive oil pressure of the hydraulic motor indicating the travel drive load is used as a control parameter, and when the drive oil pressure of the hydraulic motor is low, it is set to the small capacity side to perform high speed travel. Accordingly, the low-speed traveling is performed by setting the large-capacity side in the region where the drive hydraulic pressure of the hydraulic motor becomes high.
[0004]
As described above, in the traveling apparatus configured to drive the left and right crawlers and the like independently by the left and right hydraulic motors, the left and right crawlers and the like are driven and the other crawler and the like are stopped to perform a pivot turn. Or drive the left and right crawlers in the opposite direction to make a spin turn.
[0005]
[Problems to be solved by the invention]
By the way, in the traveling device that performs automatic shift according to the traveling drive load as described above, for example, the pivot turn is performed in a state where the left and right hydraulic motors are set to the small capacity side to perform high speed traveling. In this case, the driving load of the crawler that is held stationary is small, so it remains set on the small capacity side. It becomes. If the pivot turn is performed in this state, the hydraulic motor that drives the crawler on the driving side has a large capacity and drives the crawler with a large driving force, whereas the hydraulic motor that holds the crawler on the stationary holding side stationary. Since the motor has a small capacity, the stationary holding force is small, and the crawler on the stationary holding side moves to the traveling side by being driven by the drive side crawler, etc., and the pivot turn cannot be performed well, and the turning radius becomes large There is a problem.
[0006]
The present invention has been made in view of such a problem, and an object of the present invention is to enable a pivot turn to be accurately performed in a traveling device that performs automatic shifting as described above.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, the vehicle travel device according to the present invention includes a left travel mechanism (5L) that is travel-driven by the left hydraulic motor (21) and a right travel that is travel-driven by the right hydraulic motor (26). A mechanism (5R), a left hydraulic pump (11) that supplies driving hydraulic pressure to the left hydraulic motor, a right hydraulic pump (16) that supplies driving hydraulic pressure to the right hydraulic motor, and externally operated to perform traveling control. Left and right operating means (32, 37), and left for controlling supply of drive hydraulic pressure from the left hydraulic pump (11) to the left hydraulic motor (21) in accordance with the operation of the left operating means (32). Drive control means (31) and right drive control means (36) for controlling supply of drive hydraulic pressure from the right hydraulic pump (16) to the right hydraulic motor (26) in accordance with the operation of the right operation means (37). And configured with . The left and right hydraulic motors are variable displacement hydraulic motors, and the capacities of the left and right hydraulic motors are controlled based only on the drive hydraulic pressure, and the drive hydraulic pressure of the left hydraulic motor increases. Left and right motor capacity control means (22, 23, 27) for performing variable capacity control for increasing the capacity of the left hydraulic motor and increasing the capacity of the right hydraulic motor as the drive hydraulic pressure of the right hydraulic motor increases. 28), and one of the left and right operating means is operated to stop the hydraulic supply from one of the left and right hydraulic pumps to one of the corresponding left and right hydraulic motors, and the left and right when the other operating means is operated to drive this by to perform the supply of hydraulic pressure to the other of the left and right hydraulic motor from the other of said left and right hydraulic pumps The left and right motor capacity control means do not perform capacity control of the left and right motors based only on the drive hydraulic pressure by the left and right motor capacity control means, but instead the left and right motor capacity control means drive the left and right hydraulic motors. Variable displacement control is performed to increase the displacement of the left and right hydraulic motors regardless of the hydraulic pressure.
[0008]
According to the vehicle traveling apparatus having such a configuration, when the left or right operation means is operated, the hydraulic oil supply to the left and right hydraulic motors is controlled by the left and right drive control means according to the operation, and the left and right The rotation of the hydraulic motor is controlled to control the traveling of the vehicle. At this time, perform a variable displacement control of the left and right hydraulic motors left and right motor capacity control means in accordance with the driving hydraulic pressure of the left and right hydraulic motors, automatic shift control is performed. However, it left and right while driving one of the left and right hydraulic motor by the operation means is held stationary and the other operation, that is, when the operation to perform a pivot turn is carried out, the left and right motor capacity control means Left and Right Control is performed to increase the capacity of the left and right hydraulic motors regardless of the drive hydraulic pressure of the hydraulic motor. For this reason, both the left and right hydraulic motors increase in capacity during the pivot turn and are set on the low-speed traveling side, and the traveling mechanism on the stationary holding side can be securely held stationary to perform an accurate pivot turn.
[0009]
Incidentally, comprising a signal pressure supply control valve (51) sending a signal oil pressure for capacity control to the left and right motor displacement control means in response to operation of the left and right operating means to said traveling device, the left by the left and right operating means When an operation is performed to drive one of the right and right hydraulic motors and keep the other stationary, the signal pressure supply control valve adjusts the capacity of the left and right hydraulic motors regardless of the drive oil pressure of the left and right hydraulic motors. it may be configured to send a signal hydraulic pressure to be largely in the left and right motor capacity control means.
[0010]
Further, the left and right motor capacity control means receives motor capacity control oil pressure to control the capacity of the left and right hydraulic motors, and the left and right motor capacity control actuators (22, 27). The left and right motor capacity control valves (23, 28) perform control for applying the motor capacity control hydraulic pressure to the control actuator, and the left and right motor capacity control valves are the signals from the signal pressure supply control valve. Actuation control is performed in response to oil pressure, and when the left and right operation means is operated to drive one of the left and right hydraulic motors and to keep the other stationary, the signal pressure supply control valve controls the left And a predetermined signal oil pressure is sent to the right motor capacity control valve, and the left and right motor capacity controls that have received the predetermined signal oil pressure. Valve may be configured to act the motor displacement control oil pressure so as to increase the capacity of the left and right hydraulic motor by the left and right motor displacement control actuator.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. A transport vehicle 1 having a traveling device according to the present invention is shown in FIG. 2, and the transport vehicle 1 has crawler traveling mechanisms 5 </ b> L and 5 </ b> R on the left and right of a vehicle body 2 having a driving cabin 3. Yes. A loading platform 4 is provided on the vehicle body 2 and travels with the luggage loaded on the loading platform 4 to carry the luggage. The left and right crawler type traveling mechanisms 5L and 5R are configured symmetrically, and are composed of drive sprockets 7L and 7R, idlers 8L and 8R, and rubber crawlers 6L and 6R spanned between the sprockets, respectively. , 7R is driven to rotate.
[0012]
These drive sprockets 7L and 7R are driven by left and right hydraulic motors 21 and 26, respectively, and a travel control device for controlling the supply of drive hydraulic pressure to these left and right hydraulic motors 21 and 26 is shown in FIG. This will be described with reference to the hydraulic circuit.
[0013]
The transport vehicle 1 is provided with an engine E as a power source, and left and right hydraulic pumps 11 and 16, a pilot pump 41 and a charge pump 42 which are rotationally driven by the engine E are provided. The left and right hydraulic pumps 11 and 16 are variable displacement type hydraulic pumps (for example, variable swash plate pumps), and are provided with left pump displacement control devices 12a and 12b and right pump displacement control devices 17a and 17b. The left travel control valve 31 that performs control for supplying the left pump displacement control signal hydraulic pressure to the left pump displacement control devices 12a and 12b via the signal oil passages 81 and 82, and the signal oil to the right pump displacement control devices 17a and 17b. And a right travel control valve 36 that performs control to supply the right pump displacement control signal hydraulic pressure via the paths 83 and 84. The operation of the left and right travel control valves 31 and 36 is controlled by the left and right travel operation levers 32 and 37 provided in the driving cabin 3.
[0014]
The left hydraulic pump 11 is connected to the left hydraulic motor 21 via oil passages 70 and 72 to form a hydraulic closed circuit, and the left hydraulic motor 21 is rotationally driven by the hydraulic pressure supplied from the left hydraulic pump 11. Similarly, the right hydraulic pump 16 is connected to the right hydraulic motor 26 via oil passages 75 and 77 to form a hydraulic closed circuit, and the right hydraulic motor 26 is rotationally driven by the hydraulic pressure supplied from the right hydraulic pump 16. . Here, the left and right traveling control levers 32 and 37 are tilted to the forward side and the backward side with respect to the neutral position, and when operated to the forward side, the signal oil path 81 from the left and right traveling control valves 31 and 36. , 83 sends the signal oil pressure to the pump displacement control devices 12a, 17a, and discharges the hydraulic oil from the left and right hydraulic pumps 11, 16 to the oil passages 70, 75. As a result, the left and right hydraulic motors 21 and 26 are driven to rotate forward. On the other hand, when the left and right traveling control levers 32 and 37 are operated to the reverse side, the signal hydraulic pressure is sent from the left and right traveling control valves 31 and 36 to the pump displacement control devices 12b and 17b via the signal oil passages 82 and 84. The hydraulic oil is discharged from the left and right hydraulic pumps 11 and 16 to the oil passages 72 and 77. As a result, the left and right hydraulic motors 21 and 26 are driven to rotate backward.
[0015]
As can be seen from this, when the left and right traveling operation levers 32 and 37 are tilted to the forward side, the left and right hydraulic motors 21 and 26 are both driven to rotate forwardly to cause the transport vehicle 1 to travel forward and to move backward. If the tilting operation is performed, the left and right hydraulic motors 21 and 26 are rotationally driven in the reverse direction to cause the transport vehicle 1 to travel backward. At this time, by making the tilt angles of the left and right traveling levers 32 and 37 different, it is also possible to turn the left and right hydraulic motors 21 and 26 at different rotational speeds. Further, if one of the left and right traveling operation levers 32 and 37 is tilted and the other is held at the neutral position, one of the left and right hydraulic motors 21 and 26 is driven and the other is held stationary to carry the transport vehicle 1. Can be pivot-turned. Further, when one of the left and right traveling operation levers 32 and 37 is tilted forward, and the other is tilted backward, the transport vehicle 1 can be spin-turned.
[0016]
In the transport vehicle 1 according to the present invention, the capacities of the left and right hydraulic motors 21 and 26 can be switched between two levels of large and small, thereby performing two-stage shifting at low speed and high speed. ing. For this reason, the left and right hydraulic motors 21 and 26 are provided with left and right displacement control tilt pistons (capacity control actuators) 22 and 27 for switching the displacement. Specifically, the left and right hydraulic motors 21 and 26 are swash plate motors, and the swash plate angles can be switched between large and small by the left and right displacement control tilting pistons 22 and 27. In order to control the operation of these left and right displacement control tilting pistons 22 and 27, left and right displacement control valves (motor displacement control valves) 23 and 28 and left and right shuttle valves 24 and 29 are provided.
[0017]
The left displacement control valve 23 uses the left shuttle valve 24 to select a low-speed position where the left displacement control tilting piston 22 is connected to the drain and a high-pressure side oil passage among the oil passages 70, 72 connected to the left hydraulic pump 11. The valve can be switched to a high speed position connected to the left displacement control tilting piston 22. The left capacity control valve 23 balances the high pressure side hydraulic pressure (that is, the drive hydraulic pressure of the left hydraulic motor 21) of the oil passages 70 and 72 selected by the left shuttle valve 24 and the hydraulic pressure acting from the oil passage 61. It can be switched to a low speed or high speed position according to. The right displacement control valve 28 selects a low speed position where the right displacement control tilting piston 27 is connected to the drain and a high pressure side oil passage among the oil passages 75, 77 connected to the right hydraulic pump 16 by the right shuttle valve 29. Thus, the valve can be switched to the high speed position connected to the right displacement control tilting piston 27. The right displacement control valve 28 balances the high pressure side hydraulic pressure (that is, the drive hydraulic pressure of the right hydraulic motor 26) of the oil passages 75 and 77 selected by the right shuttle valve 29 and the hydraulic pressure acting from the oil passage 61. It can be switched to a low speed or high speed position according to.
[0018]
The oil pressure acting from the oil passage 61 will be described below. The oil passage 61 is connected to the oil passage 60 via the transmission control valve 51. The oil passage 60 receives the oil discharged from the pilot pump 41 and is supplied with a shift control hydraulic pressure regulated by the pressure regulating valve 45. The shift control valve 51 is switched to a first position that connects the oil passage 61 to the drain side and a second position that connects the oil passage 61 to the oil passage 60. For this switching operation, the shift control valve 51 is provided with a solenoid 52 and a spring 53 opposite to the solenoid 52. When the solenoid 52 is not energized, it is positioned at the first position by the spring 53, and the solenoid 52 is energized. Sometimes located in the second position.
[0019]
First to fourth switches 33a, 33b, 38a, and 38b are provided on a line 55 for energizing the solenoid 52 from the battery B. At this time, the first and second switches 33a and 33b are connected in parallel, and the third and fourth switches 38a and 38b are connected in parallel, and these are connected in series. The first to fourth switches 33a, 33b, 38a, and 38b are turned on by receiving the oil pressure of the signal oil passages 81 to 84 that are connected to the left and right traveling control valves 31 and 36, respectively.
[0020]
Therefore, when both the left and right traveling control levers 32 and 37 are tilted to the forward side, the signal oil pressure is sent to the signal oil passages 81 and 83, the first and third switches 33a and 38a are turned on, and the battery B The current flows through the line 55 to the solenoid 52 and is excited, and the shift control valve 51 is positioned at the second position. As a result, the shift control hydraulic pressure adjusted by the pressure control valve 45 is supplied from the oil path 60 to the oil path 61, and this shift control hydraulic pressure acts to move the left and right displacement control valves 23, 28 to the high speed position. . However, as described above, the drive hydraulic pressure of the left and right hydraulic motors 21 and 26 acts on the left and right displacement control valves 23 and 28 so as to move the left and right displacement control valves 23 and 28 to the low speed position. For this reason, when the drive hydraulic pressure of the left and right hydraulic motors 21 and 26 is high (when the travel drive load is large), the left and right displacement control valves 23 and 28 are moved to the low speed position, and the left and right hydraulic motors 21 and 26 are moved to the low speed side ( When the drive hydraulic pressure of the left and right hydraulic motors 21 and 26 is low (when the travel drive load is small), the left and right capacity control valves 23 and 28 are moved to the high speed position, and the left and right hydraulic motors 21 and 26 are On the high speed side (small capacity side), automatic shifting is performed according to the travel drive load. When both the left and right traveling operation levers 32 and 37 are tilted to the reverse side, the same operation as described above is performed, and the description thereof is omitted.
[0021]
Next, the pivot turn operation will be described by taking as an example a case where the left operation lever 32 is tilted forward and the right operation lever 37 is held in a neutral position. In this case, the first switch 33a is turned on, but since the second to fourth switches 33b, 38a, and 38b are all turned off, the solenoid 52 is de-energized, and the solenoid 52 is located at the first position. The path 61 is connected to the drain, and the hydraulic pressure that acts on the left and right displacement control valves 23 and 28 from the oil path 61 becomes zero (the shift control hydraulic pressure that becomes zero hydraulic pressure acts). As a result, the left and right displacement control valves 23 and 28 are moved to the low speed position, and the left and right hydraulic motors 21 and 26 are both on the low speed side (large capacity side), and a pivot turn is made in this state. Thus, in the transport vehicle 1 of this embodiment, when the pivot turn operation is performed, the left and right hydraulic motors 21 and 26 are always switched to the low speed side (large capacity side), and an accurate pivot turn is performed.
[0022]
During the spin turn, one of the first and second switches 33a and 33b is turned on and one of the third and fourth switches 38a and 38b is turned on, so that the current from the battery B passes through the line 55. The shift control valve 51 is positioned at the second position by flowing through the solenoid 52 and being excited. As a result, the shift control hydraulic pressure set by the pressure control valve 45 is supplied from the oil path 60 to the oil path 61, and this shift control hydraulic pressure acts to move the left and right displacement control valves 23 and 28 to the high speed position. The positions of the left and right displacement control valves 23 and 28 are set based on the balance between this and the travel drive hydraulic pressure of the left and right hydraulic motors 21 and 26. However, generally, during the spin turn, the traveling drive hydraulic pressure is large, and the spin turn is performed in a state where the left and right capacity control valves 23 and 28 are switched to the low speed side (large capacity side).
[0023]
The oil discharged from the charge pump 42 driven by the engine E is filtered by the oil filter 43, and then the hydraulic pressure regulated by the pressure regulating valve 44 is supplied to the left and right traveling control valves 31, 36, and left and right Hydraulic oil is supplied to the hydraulic pumps 11 and 16.
[0024]
【The invention's effect】
As described above, according to the present invention, when the operation means is operated, the hydraulic oil supply to the left and right hydraulic motors is controlled by the drive control means in accordance with this operation, and the rotation of the hydraulic motor is controlled, so that the vehicle travels. At this time, the motor displacement control means performs variable displacement control of the left and right hydraulic motors according to the drive oil pressure of the left and right hydraulic motors, and automatic shift control is performed, but the left and right hydraulic motors are controlled by the operating means. When an operation for holding one side stationary while driving the other, that is, an operation for performing a pivot turn, the motor capacity control means performs control to increase the capacity of the left and right hydraulic motors. For this reason, both the left and right hydraulic motors have a large capacity during the pivot turn and are set to the low speed traveling side, and the traveling mechanism on the stationary holding side can be securely held stationary to perform an accurate pivot turn.
[Brief description of the drawings]
FIG. 1 is a hydraulic circuit diagram showing a configuration of a traveling device according to the present invention.
FIG. 2 is a side view of a transport vehicle provided with the traveling device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transport vehicle 5L, 5R Crawler type traveling mechanism 11, 16 Hydraulic pump 12a, 12b, 17a, 17b Pump capacity control device 21, 26 Hydraulic motor 22, 27 Capacity control tilting piston 23, 28 Capacity control valve 31, 32 Travel control Valves 32 and 37 Travel control levers 33a, 33b, 38a, and 38b First to fourth switches 51 Shift control valve

Claims (3)

左油圧モータ(21)により走行駆動される左走行機構(5L)と、右油圧モータ(26)により走行駆動される右走行機構(5R)と、前記左油圧モータに駆動油圧を供給する左油圧ポンプ(11)と、前記右油圧モータに駆動油圧を供給する右油圧ポンプ(16)と、走行制御を行うため外部操作される左および右操作手段(32,37)と、前記左操作手段(32)の操作に応じて前記左油圧ポンプ(11)から前記左油圧モータ(21)への駆動油圧の供給制御を行う左駆動制御手段(31)と、前記右操作手段(37)の操作に応じて前記右油圧ポンプ(16)から前記右油圧モータ(26)への駆動油圧の供給制御を行う右駆動制御手段(36)とを備えてなる車両の走行装置において、
前記左および右油圧モータが可変容量型の油圧モータからなり、前記左および右油圧モータの容量がその駆動油圧のみに基づいて制御され、前記左油圧モータの駆動油圧が大きくなるに応じて前記左油圧モータの容量を大きくし、前記右油圧モータの駆動油圧が大きくなるに応じて前記右油圧モータの容量を大きくする可変容量制御を行う左および右モータ容量制御手段(22,23,27,28)を備え、
前記左および右操作手段の一方が前記左および右油圧ポンプの一方から対応する前記左及び右油圧モータの一方への油圧供給を停止させるように操作され、前記左および右操作手段の他方が前記左および右油圧ポンプの他方から前記左及び右油圧モータの他方への油圧供給を行わせてこれを駆動させるように操作されたときには、前記左および右モータ容量制御手段による前記駆動油圧のみに基づく前記左および右モータの容量制御を行わず、これに代えて前記左および右モータ容量制御手段は、前記左および右油圧モータの駆動油圧の如何に拘わらず前記左および右油圧モータの容量を大きくさせる可変容量制御を行うことを特徴とする車両の走行装置。
A left travel mechanism (5L) driven to travel by a left hydraulic motor (21), a right travel mechanism (5R) driven to travel by a right hydraulic motor (26), and a left hydraulic pressure for supplying drive oil to the left hydraulic motor A pump (11), a right hydraulic pump (16) for supplying drive hydraulic pressure to the right hydraulic motor, left and right operating means (32, 37) externally operated for running control, and the left operating means ( 32) according to the operation of the left hydraulic pump (11) to the left hydraulic motor (21) according to the operation of the left drive control means (31) for controlling the supply of the drive hydraulic pressure and the operation of the right operation means (37). And a right drive control means (36) for controlling supply of drive hydraulic pressure from the right hydraulic pump (16) to the right hydraulic motor (26).
The left and right hydraulic motors are variable displacement type hydraulic motors, the capacities of the left and right hydraulic motors are controlled based only on the drive hydraulic pressure, and the left hydraulic motor is driven in accordance with the increase of the drive hydraulic pressure. Left and right motor capacity control means (22, 23, 27, 28) for performing variable capacity control for increasing the capacity of the hydraulic motor and increasing the capacity of the right hydraulic motor as the drive hydraulic pressure of the right hydraulic motor increases. )
One of the left and right operating means is operated to stop the supply of hydraulic pressure from one of the left and right hydraulic pumps to one of the corresponding left and right hydraulic motors, and the other of the left and right operating means is the Based on only the drive hydraulic pressure by the left and right motor capacity control means when operated to drive the hydraulic pressure supply from the other of the left and right hydraulic pumps to the other of the left and right hydraulic motors. The left and right motor capacity control means do not perform capacity control of the left and right motors. Instead, the left and right motor capacity control means increase the capacity of the left and right hydraulic motors regardless of the drive oil pressure of the left and right hydraulic motors. A vehicle travel apparatus characterized by performing variable displacement control.
前記左および右操作手段の操作に応じて前記左および右モータ容量制御手段に容量制御用の信号油圧を送る信号圧供給制御バルブ(51)を備え、
前記左および右操作手段により前記左および右油圧モータの一方を駆動して他方を静止保持させる操作が行われたときに、前記信号圧供給制御バルブは前記左および右油圧モータの駆動油圧の如何に拘わらず前記左および右油圧モータの容量を大きくさせる信号油圧を前記左および右モータ容量制御手段に送るように構成されていることを特徴とする請求項1に記載の車両の走行装置。
A signal pressure supply control valve (51) for sending a signal oil pressure for capacity control to the left and right motor capacity control means according to the operation of the left and right operation means;
When an operation for driving one of the left and right hydraulic motors and holding the other stationary by the left and right operation means is performed, the signal pressure supply control valve determines whether the drive hydraulic pressure of the left and right hydraulic motors 2. The vehicle travel device according to claim 1, wherein a signal oil pressure for increasing the capacity of the left and right hydraulic motors is sent to the left and right motor capacity control means regardless of the above.
前記左および右モータ容量制御手段が、モータ容量制御油圧を受けて前記左および右油圧モータの容量を制御する左および右モータ容量制御アクチュエータ(22,27)と、前記左および右モータ容量制御アクチュエータに前記モータ容量制御油圧を作用させる制御を行う左および右モータ容量制御バルブ(23,28)とから構成され、前記左および右モータ容量制御バルブが前記信号圧供給制御バルブからの前記信号油圧を受けて作動制御が行われ、
前記左および右操作手段により前記左および右油圧モータの一方を駆動して他方を静止保持させる操作が行われたときに前記信号圧供給制御バルブから前記左および右モータ容量制御バルブに所定の信号油圧が送られ、前記所定の信号油圧を受けた前記左および右モータ容量制御バルブは前記左および右モータ容量制御アクチュエータにより前記左および右油圧モータの容量を大きくさせるように前記モータ容量制御油圧を作用させることを特徴とする請求項2に記載の車両の走行装置。
The left and right motor capacity control means receives a motor capacity control oil pressure to control the capacity of the left and right hydraulic motors, and the left and right motor capacity control actuators Left and right motor capacity control valves (23, 28) for controlling the motor capacity control oil pressure to be applied to the left and right motor capacity control valves. The left and right motor capacity control valves control the signal oil pressure from the signal pressure supply control valve. In response to the operation control,
A predetermined signal is sent from the signal pressure supply control valve to the left and right motor capacity control valves when the left and right operation means is operated to drive one of the left and right hydraulic motors and keep the other stationary. The left and right motor capacity control valves that have received the predetermined signal oil pressure are supplied with the motor capacity control oil pressure so that the left and right motor capacity control actuators increase the capacity of the left and right hydraulic motors. The vehicle travel device according to claim 2, wherein the vehicle travel device is operated.
JP2001290446A 2001-09-25 2001-09-25 Vehicle traveling device Expired - Lifetime JP3980853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290446A JP3980853B2 (en) 2001-09-25 2001-09-25 Vehicle traveling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290446A JP3980853B2 (en) 2001-09-25 2001-09-25 Vehicle traveling device

Publications (2)

Publication Number Publication Date
JP2003097703A JP2003097703A (en) 2003-04-03
JP3980853B2 true JP3980853B2 (en) 2007-09-26

Family

ID=19112748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290446A Expired - Lifetime JP3980853B2 (en) 2001-09-25 2001-09-25 Vehicle traveling device

Country Status (1)

Country Link
JP (1) JP3980853B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057757A (en) * 2010-09-10 2012-03-22 Hitachi Constr Mach Co Ltd Working machine

Also Published As

Publication number Publication date
JP2003097703A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US8122714B2 (en) Variable hydraulic motor driving device
JPH11115780A (en) Displacement control method of steering pump for work vehicle and its device
JP2017179922A (en) Hydraulic system for work machine
JP2023044383A (en) Work vehicle hydraulic system
US10435867B2 (en) Hydraulic system for working machine
JP3980853B2 (en) Vehicle traveling device
US11352766B2 (en) Working machine with a speed control arrangement
JP6847821B2 (en) Work machine hydraulic system
JP6682496B2 (en) Hydraulic system of work equipment
JP4632867B2 (en) Work vehicle
JPH08258579A (en) Transmission for hydrostatic transmission vehicle
JP2000266181A (en) Hydrostatic transmission device
JPH04321875A (en) Travelling controller for work car
JP3978292B2 (en) Travel drive device
JP6766030B2 (en) Work machine hydraulic system
JP3638122B2 (en) Travel control device
JP4328479B2 (en) Vehicle drive control device
JPS63235135A (en) Travelling speed changeover device of hydraulic travelling vehicle
JPH03282063A (en) Hydraulic circuit for closed circuit hydraulic transmission
WO2023074821A1 (en) Shovel
JP2509884B2 (en) Travel speed switching device for hydraulic traveling vehicle
JPH078360Y2 (en) Running control circuit for construction machinery
JPH03267534A (en) Prime mover controller for construction machine
JP3732019B2 (en) Hydrostatic transmission device
JP2581212Y2 (en) Traveling hydraulic control circuit for hydraulically driven vehicles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070628

R150 Certificate of patent or registration of utility model

Ref document number: 3980853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250